共查询到20条相似文献,搜索用时 15 毫秒
1.
Nengfang Chao Gang Chen Jian Li Longwei Xiang Zhengtao Wang Kunjun Tian 《Ground water》2020,58(5):735-748
Groundwater plays a major role in the hydrological processes driven by climate change and human activities, particularly in upper mountainous basins. The Jinsha River Basin (JRB) is the uppermost region of the Yangtze River and the largest hydropower production region in China. With the construction of artificial cascade reservoirs increasing in this region, the annual and seasonal flows are changing and affecting the water cycles. Here, we first infer the groundwater storage changes (GWSC), accounting for sediment transport in JRB, by combining the Gravity Recovery and Climate Experiment mission, hydrologic models and in situ data. The results indicate: (1) the average estimation of the GWSC trend, accounting for sediment transport in JRB, is 0.76 ± 0.10 cm/year during the period 2003 to 2015, and the contribution of sediment transport accounts for 15%; (2) precipitation (P), evapotranspiration (ET), soil moisture change, GWSC, and land water storage changes (LWSC) show clear seasonal cycles; the interannual trends of LWSC and GWSC increase, but P, runoff (R), surface water storage change and SMC decrease, and ET remains basically unchanged; (3) the main contributor to the increase in LWSC in JRB is GWSC, and the increased GWSC may be dominated by human activities, such as cascade damming and climate variations (such as snow and glacier melt due to increased temperatures). This study can provide valuable information regarding JRB in China for understanding GWSC patterns and exploring their implications for regional water management. 相似文献
2.
3.
简要回顾了几十年来对地震发生前、地震过程中和震后地下流体和地球化学变化的研究和成果,这些研究一般都是以探索地震预报可能性为目的的。论述了与地震有关的地下水文及地球化学变化的机理,这些地下流体(包括地下水和气体诸如氢、氧和惰性气体)的起源和迁移流动现象以及详细介绍了早期和近代对有关地震的地下流体和地球化学变化的观测成果。同时指出了对地下流体和地球化学作为地震前兆来观测研究的困难所在以及为了克服这些困难而应该采取的地震前兆观测研究的方向,例如多种手段和多种原理方法,开发有效的地球物理和地球化学模型以及适当的数据分析统计方法等。 相似文献
4.
5.
Laura Toran Jonathan Nyquist Donald Rosenberry Michael Gagliano Natasha Mitchell James Mikochik 《Ground water》2015,53(6):841-850
Variations in lake seepage were studied along a 130 m shoreline of Mirror Lake NH. Seepage was downward from the lake to groundwater; rates measured from 28 seepage meters varied from 0 to ?282 cm/d. Causes of this variation were investigated using electrical resistivity surveys and lakebed sediment characterization. Two‐dimensional (2D) resistivity surveys showed a transition in lakebed sediments from outwash to till that correlated with high‐ and low‐seepage zones, respectively. However, the 2D survey was not able to predict smaller scale variations within these facies. In the outwash, fast seepage was associated with permeability variations in a thin (2 cm) layer of sediments at the top of the lakebed. In the till, where seepage was slower than that in the outwash, a three‐dimensional resistivity survey mapped a point of high seepage associated with heterogeneity (lower resistivity and likely higher permeability). Points of focused flow across the sediment–water interface are difficult to detect and can transmit a large percentage of total exchange. Using a series of electrical resistivity geophysical methods in combination with hydrologic data to locate heterogeneities that affect seepage rates can help guide seepage meter placement. Improving our understanding of the causes and types of heterogeneity in lake seepage will provide better data for lake budgets and prediction of mass transfer of solutes or contaminants between lakes and groundwater. 相似文献
6.
A Permanent Multilevel Monitoring and Sampling System in the Coastal Groundwater Mixing Zones 下载免费PDF全文
To study the spatial and temporal variability of water dynamics and chemical reactions within the coastal groundwater mixing zones (CGMZs), high‐resolution periodical and spatial groundwater sampling within CGMZs is needed. However, current samplers and sampling systems may require heavy driving machines to install. There is also possible contamination from the metal materials for current samplers and sampling systems. Here, a permanent multilevel sampling system is designed to sample coastal groundwater within CGMZs. This cost‐effective system consists of metal‐free materials and can be installed easily. The system is tested in Po Sam Pai and Tingkok, Tolo Harbor and Hong Kong. Major ions, nutrients, stable isotopes and radium and radon isotopes were analyzed and the data provided scientific information to study the fresh‐saltwater interface fluctuations, and temporal variations and spatial heterogeneity of geochemical processes occurred within CGMZs. The reliable spatial and temporal data from the sampling system demonstrate that the system functions well and can provide scientific data for coastal aquifer studies. 相似文献
7.
Spatially and temporally distributed measurements of processes, such as baseflow at the watershed scale, come at substantial equipment and personnel cost. Research presented here focuses on building a crowdsourced database of inexpensive distributed stream stage measurements. Signs on staff gauges encourage citizen scientists to voluntarily send hydrologic measurements (e.g., stream stage) via text message to a server that stores and displays the data on the web. Based on the crowdsourced stream stage, we evaluate the accuracy of citizen scientist measurements and measurement approach. The results show that crowdsourced data collection is a supplemental method for collecting hydrologic data and a promising method of public engagement. 相似文献
8.
Gravity Recovery and Climate Experiment (GRACE) satellite mission is ground-breaking information hotspot for the evaluation of groundwater storage. The present study aims at validating the sensitivity of GRACE data to groundwater storage variation within a basaltic aquifer system after its statistical downscaling on a regional scale. The basaltic aquifer system which covers 82.06% area of Maharashtra state in India, is selected as the study area. Five types of basaltic aquifer systems with varying groundwater storage capacities, based on hydrologic characteristics, have been identified within the study area. The spatial and seasonal trend analysis of observed in situ groundwater storage anomalies (ΔGWSano) computed from groundwater level data of 983 wells from the year 2002 to 2016, has been performed to analyze the variation in groundwater storages in the different basaltic aquifer system. The groundwater storage anomalies (ΔGWSDano) have been derived from GRACE Release 05 (RL05) after removing the soil moisture anomaly (ΔSMano) and canopy water storage anomaly (ΔCNOano) obtained from Global Land Data Assimilation System (GLDAS) land surface models (NOAH, MOSAIC, CLM and VIC). The artificial neural network technique has been used to downscale the GRACE and GLDAS data at a finer spatial resolution of 0.125°. The study shows that downscaled GRACE and GLDAS data at a finer spatial resolution is sensitive to seasonal groundwater storage variability in different basaltic aquifer systems and the regression coefficient R has been found satisfactory in the range of 0.696 to 0.818. 相似文献
9.
A general watershed model represents the runoff phase of the hydrologic cycle by a series of moisture accounting equations. The Stanford Watershed Model uses fixed equations containing variable parameters which are calibrated for a watershed by trial-and-error matching of simulated to recorded flows. Opset was developed to estimate these parameters through a computerized least squares matching. The procedure reduces estimating scatter and provides parameter estimates which were correlated with physical characteristics of the watershed and with watershed changes with urbanization. 相似文献
10.
Walton R. Kelly 《Ground water》2015,53(6):832-833
11.
Technological advances, by facilitating extensive data collection, better data sharing, formulation of sophisticated methods, and development of complex models, have brought hydrologic research to a whole new level. Despite these obvious advances, there are also concerns about their general use in practice. On the one hand, it is natural to develop more complex models than perhaps needed (i.e. representations having too many parameters and requiring too much data); on the other hand, it is often difficult to ‘translate’ results from one specific situation to another. Recent studies have addressed these concerns, albeit in different forms, such as dominant processes, thresholds, model integration, and model simplification. A common aspect in some of these studies is that they recognize the need for a globally agreed upon ‘classification system’ in hydrology. The present study explores this classification issue further from a simple phase‐space data reconstruction perspective. The reconstruction involves representation of the given multidimensional hydrologic system using only an available single‐variable series through a delay coordinate procedure. The ‘extent of complexity’ of the system (defined especially in the context of variability of relevant data) is identified by the ‘region of attraction of trajectories’ in the phase space, which is then used to classify the system as potentially low‐, medium‐ or high‐dimensional. A host of river‐related data, representing different geographic and climatic regions, temporal scales, and processes, are studied. Yielding ‘attractors’ that range from ‘very clear’ ones to ‘very blurred’ ones, depending on data, the results indicate the usefulness of this simple reconstruction concept for studying hydrologic system complexity and classification. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
12.
13.
Groundwater level fluctuations are affected by surface properties due to complex correlations of groundwater-surface water interaction and/or other surface processes, which are usually hard to be accurately quantified. Previous studies have assessed the relationship between groundwater level fluctuations and specific controlling factors. However, few studies have been conducted to explore the impact of the combination of multiple factors on the groundwater system. Hence, this paper tries to explore the localized and scale-specific multivariate relationships between the groundwater level and controlling factors (such as hydrologic and meteorological factors) using bivariate wavelet coherence and multiple wavelet coherence. The groundwater level fluctuations of two wells in areas covered by different plant densities (i.e., the riparian zone of the Colorado River, USA) are analyzed. Main findings include three parts. First, barometric pressure and river stage are the best factors to interpret the groundwater level fluctuations at small scales (<1 day) and large scales (>1 day) at the well of low-density plants stand, respectively. Second, at the well of high-density plants stand, the best predictors to control the groundwater level fluctuations include barometric pressure (<1 day), the combination of barometric pressure and temperature (1-7 days), temperature (7-30 days), and the combination of barometric pressure, temperature, and river stage (>30 days). The best predictor of groundwater head fluctuations depends on the variance of the vegetation coverage and hydrological processes. Third, these results provide a suite of factors to explain the groundwater level variations, which is an important topic in water-resource prediction and management. 相似文献
14.
15.
Active faults are commonly associated with spatially anomalously high concentrations of soil gases such as carbon dioxide
and Rn, suggesting that they are crustal discontinuities with a relatively high vertical permeability through which crustal
and subcrustal gases may preferably escape towards the earth's surface. Many earthquake-related hydrologic and geochemical
temporal changes have been recorded, mostly along active faults especially at fault intersections, since the 1960s. The reality
of such changes is gradually ascertained and their features well delineated and fairly understood. Some coseismic changes
recorded in ``near field' are rather consistent with poroelastic dislocation models of earthquake sources, whereas others
are attributable to near-surface permeability enhancement. In addition, coseismic (and postseismic) changes were recorded
for many moderate to large earthquakes at certain relatively few ``sensitive sites' at epicentral distances too large (larger
for larger earthquakes, up to 1000 km or more for magnitude 8) to be explained by the poroelastic models. They are probably
triggered by seismic shaking. The sensitivity of different sites can be greatly different, even when separated only by meters.
The sensitive sites are usually located on or near active faults, especially their intersections and bends, and characterized
by some near-critical hydrologic or geochemical condition (e.g., permeability that can be greatly increased by a relatively
small seismic shaking or stress increase). Coseismic changes recorded for different earthquakes at a sensitive site are usually
similar, regardless of the earthquakes' location and focal mechanism. The sensitivity of a sensitive site may change with
time. Also pre-earthquake changes were observed hours to years before some destructive earthquakes at certain sensitive sites,
some at large epicentral distances, although these changes are relatively few and less certain. Both long-distance coseismic
and preseismic changes call for more realistic models than simple elastic dislocation for explanation. Such models should
take into consideration the heterogeneity of the crust where stress is concentrated at certain weak points (sensitive sites)
along active faults such that the stress condition is near a critical level prior to the occurrence of the corresponding earthquakes.
To explain the preseismic changes, the models should also assume a broad-scaled episodically increasing strain field. 相似文献
16.
17.
Intensive groundwater development in the urban area of the Nagaoka Plain, Japan, has induced changes in the pH and saturation index of calcite in groundwater. To account for these chemical changes, it is important to determine seasonal variations of recharge and the groundwater flow system in the aquifer. This study identified the sources and flow system of groundwater in this urban area by a comprehensive method using stable isotope data and a numerical groundwater model of the Nagaoka Plain. Stable isotope evidence shows that the groundwater is recharged by meteoric water originating from low‐elevation areas rather than the mountains surrounding the plain. The water table in the study area is drawn down during the winter and recovers in the other seasons. Numerical modeling shows that discharge occurs primarily along the Shinano River during the recovery period, whereas discharge is centered in urbanized areas during the drawdown period, when a conical depression of the water table stimulates recharge from the immediate area. These results are indications of a local groundwater flow system, with its recharge area between the Shinano River and the urban areas, which is governed by intensive seasonal groundwater extraction. 相似文献
18.
In the arid to semi-arid district of Chengcheng, Weinan City, in central Shaanxi Province, diminishing groundwater reserves in the shallow Quaternary (QLB) aquifer and elevated fluoride in the similarly shallow Permo-Triassic (PTF) aquifer, have promoted interest in the development of groundwater resources in the deep but poorly understood Cambrian-Ordovician carbonate aquifer system (COC). To investigate the origin of the COC groundwaters and the relationship between the deep and shallower systems, a hydrochemical study was undertaken involving 179 major and minor ion analyses, 39 stable isotope analyses (δD and δ18O), and 14 carbon isotope analyses (14C and δ13C). PHREEQC 3.0 was used to investigate mixing. Hydrochemical data support the presence of a well-connected regional flow system extending southwards from the more mountainous north. Stable isotope data indicate that the COC groundwaters originate as soil zone infiltration, under a much cooler regime than is found locally today. This is confirmed by 14C, which indicates the groundwater to be palaeowater recharged during the late Pleistocene (∼10–12 ka B.P.). The presence of nitrate in the COC groundwaters suggests leakage from overlying shallow aquifers currently provides an additional source of COC recharge, with major faults possibly providing the primary pathways for downward vertical flow. 相似文献
19.