首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Karst Aquifer GIS‐based model (KAGIS model) is developed and applied to Mela aquifer, a small karst aquifer located in a Mediterranean region (SE Spain). This model considers different variables, such as precipitation, land use, surface slope and lithology, and their geographical heterogeneity to calculate both, the run‐off coefficients and the fraction of precipitation which contributes to fill the soil water reservoir existing above the aquifer. Evapotranspiration uptakes deplete water, exclusively, from this soil water reservoir and aquifer recharge occurs when water in the soil reservoir exceeds the soil field capacity. The proposed model also obtains variations of the effective porosity in a vertical profile, an intrinsic consequence of the karstification processes. A new proposal from the Nash–Sutcliffe efficiency index, adapted to arid environments, is presented and employed to evaluate the model's ability to predict the water table oscillations. The uncertainty in the model parameters is determined by the Generalized Likelihood Uncertainty Estimation method. Afterwards, when KAGIS is calibrated, wavelet analysis is applied to the resulting data in order to evaluate the variability in the aquifer behaviour. Wavelet analysis reveals that the rapid hydrogeological response, typical of a wide variety of karst systems, is the prevailing feature of Mela aquifer. This study proves that KAGIS is a useful tool to quantify recharge and discharge rates of karst aquifers and can be effectively applied to develop a proper management of water resources in Mediterranean areas.  相似文献   

2.
3.
The modeling of groundwater flow in karst aquifers is a challenge due to the extreme heterogeneity of its hydraulic parameters and the duality in their discharge behavior, that is, rapid response of highly conductive karst conduits and delayed drainage of the low‐permeability fractured matrix after recharge events. There are a number of different modeling approaches for the simulation of the karst groundwater dynamics, applicable to different aquifer as well as modeling problem types, ranging from continuum models to double continuum models to discrete and hybrid models. This study presents the application of an equivalent porous model approach (EPM, single continuum model) to construct a steady‐state numerical flow model for an important karst aquifer, that is, the Western Mountain Aquifer Basin (WMAB), shared by Israel and the West‐Bank, using MODFLOW2000. The WMAB was used as a catchment since it is a well‐constrained catchment with well‐defined recharge and discharge components and therefore allows a control on the modeling approach, a very rare opportunity for karst aquifer modeling. The model demonstrates the applicability of equivalent porous medium models for the simulation of karst systems, despite their large contrast in hydraulic conductivities. As long as the simulated saturated volume is large enough to average out the local influence of karst conduits and as long as transport velocities are not an issue, EPM models excellently simulate the observed head distribution. The model serves as a starting basis that will be used as a reference for developing a long‐term dynamic model for the WMAB, starting from the pre‐development period (i.e., 1940s) up to date.  相似文献   

4.
Groundwater resources are typically the main fresh water source in arid and semi‐arid regions. Natural recharge of aquifers is mainly based on precipitation; however, only heavy precipitation events (HPEs) are expected to produce appreciable aquifer recharge in these environments. In this work, we used daily precipitation and monthly water level time series from different locations over a Mediterranean region of Southeastern Spain to identify the critical threshold value to define HPEs that lead to appreciable aquifer recharge in this region. Wavelet and trend analyses were used to study the changes in the temporal distribution of the chosen HPEs (≥20 mm day?1) over the observed period 1953–2012 and its projected evolution by using 18 downscaled climate projections over the projected period 2040–2099. The used precipitation time series were grouped in 10 clusters according to similarities between them assessed by using Pearson correlations. Results showed that the critical HPE threshold for the study area is 20 mm day?1. Wavelet analysis showed that observed significant seasonal and annual peaks in global wavelet spectrum in the first sub‐period (1953–1982) are no longer significant in the second sub‐period (1983–2012) in the major part of the ten clusters. This change is because of the reduction of the mean HPEs number, which showed a negative trend over the observed period in nine clusters and was significant in five of them. However, the mean size of HPEs showed a positive trend in six clusters. A similar tendency of change is expected over the projected period. The expected reduction of the mean HPEs number is two times higher under the high climate scenario (RCP8.5) than under the moderate scenario (RCP4.5). The mean size of these events is expected to increase under the two scenarios. The groundwater availability will be affected by the reduction of HPE number which will increase the length of no aquifer recharge periods (NARP) accentuating the groundwater drought in the region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Classification of Thermal Patterns at Karst Springs and Cave Streams   总被引:1,自引:0,他引:1  
Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types: those produced by flow paths with ineffective heat exchange, such as conduits, and those produced by flow paths with effective heat exchange, such as small fractures and pore space. Thermally ineffective patterns result when water flows through the aquifer before it can equilibrate to the rock temperature. Thermally ineffective patterns can be either event‐scale, as produced by rainfall or snowmelt events, or seasonal scale, as produced by input from a perennial surface stream. Thermally effective patterns result when water equilibrates to rock temperature, and the patterns displayed depend on whether the aquifer temperature is changing over time. Shallow aquifers with seasonally varying temperatures display a phase‐shifted seasonal signal, whereas deeper aquifers with constant temperatures display a stable temperature pattern. An individual aquifer may display more than one of these patterns. Since karst aquifers typically contain both thermally effective and ineffective routes, we argue that the thermal response is strongly influenced by recharge mode.  相似文献   

6.
New Zealand's gravel‐bed rivers have deposited coarse, highly conductive gravel aquifers that are predominantly fed by river water. Managing their groundwater resources is challenging because the recharge mechanisms in these rivers are poorly understood and recharge rates are difficult to predict, particularly under a more variable future climate. To understand the river‐groundwater exchange processes in gravel‐bed rivers, we investigate the Wairau Plain Aquifer using a three‐dimensional groundwater flow model which was calibrated using targeted field observations, “soft” information from experts of the local water authority, parameter regularization techniques, and the model‐independent parameter estimation software PEST. The uncertainty of simulated river‐aquifer exchange flows, groundwater heads, spring flows, and mean transit times were evaluated using Null‐space Monte‐Carlo methods. Our analysis suggests that the river is hydraulically perched (losing) above the regional water table in its upper reaches and is gaining downstream where marine sediments overlay unconfined gravels. River recharge rates are on average 7.3 m3/s, but are highly dynamic in time and variable in space. Although the river discharge regularly hits 1000 m3/s, the net exchange flow rarely exceeds 12 m3/s and seems to be limited by the physical constraints of unit‐gradient flux under disconnected rivers. An important finding for the management of the aquifer is that changes in aquifer storage are mainly affected by the frequency and duration of low‐flow periods in the river. We hypothesize that the new insights into the river‐groundwater exchange mechanisms of the presented case study are transferable to other rivers with similar characteristics.  相似文献   

7.
David F. Boutt 《水文研究》2017,31(7):1479-1497
This study analyzes a long‐term regional compilation of water table response to climate variability based on 124 long‐term groundwater wells distributed across New England, USA, screened in a variety of geologic materials. The New England region of the USA is located in a humid‐temperature climate underlain by low‐storage‐fractured metamorphic and crystalline bedrock dissected by north–south trending valleys filled with glacial and post‐glacial valley fill sediments. Uplands are covered by thin glacial till that comprises more than 60% of the total area. Annual and multi‐annual responses of the water table to climate variability are assessed to understand how local hydraulic properties and hydrogeologic setting (located in recharge/discharge region) of the aquifer influence the hydrologic sensitivity of the aquifer system to climate variability. This study documents that upland aquifer systems dominated by thin deposits of surface till comprise ~70% of the active and dynamic storage of the region. Total aquifer storage changes of +5 to ?7 km3 occur over the region during the study interval. The storage response is dominated by thin and low permeability surficial till aquifer that fills and drains on a multi‐annual basis and serves as the main mechanism to deliver water to valley fill aquifers and underlying bedrock aquifers. Whereas the till aquifer system is traditionally neglected as an important storage reservoir, this study highlights the importance of a process‐based understanding of how different landscape hydrogeologic units contribute to the overall hydrologic response of a region.  相似文献   

8.
Climate predictions indicate that precipitation patterns will change and average air temperatures will increase across much of the planet. These changes will alter surface water and groundwater temperatures which can significantly affect the local and regional environment. Here, we examine the role of precipitation timing in changes to groundwater temperature in carbonate‐karst aquifers using measured groundwater level and temperature data from the Konza Prairie Long‐Term Ecological Research Site, Kansas. We demonstrate that shifts to increased cool‐season precipitation may mitigate the increases in groundwater temperature produced by increases in average annual air temperature. In karst, the solution‐enlarged conduits allow faster and focused recharge, and the recharge‐event temperature can strongly influence the groundwater temperature in the aquifer. Our field data and analysis show that predictions of future groundwater conditions in karst aquifers need to consider changes in precipitation patterns, in addition to changes to average annual air temperature.  相似文献   

9.
In this study, two conceptual models, the classic reservoir (CR) model and exchange reservoirs model embedded by dual porosity approach (DPR) are developed for simulation of karst aquifer functioning drained by multiple outlets. The performances of two developed models are demonstrated at a less developed karstic aquifer with three spring outlets located in Zagros Mountain in the south‐west of Iran using 22‐years of daily data. During the surface recharge, a production function based on water mass balance is implemented for computing the time series of surface recharge to the karst formations. The efficiency of both models has been assessed for simulation of daily spring discharge during the recession and also surface recharge periods. Results indicate that both CR and DPR models are capable of simulating the ordinates of spring hydrographs which drainage less developed karstic aquifer. However, the goodness of fit criteria indicates outperformance of DPR model for simulation of total hydrograph ordinates. In addition, the DPR model is capable of quantifying hydraulic properties of two hydrologically connected overlapping continua conduits network and fissure matrix which lays important foundations for the mining operation and water resource management whereas homogeneous model representations of the karstic subsurface (e.g., the CR) do not work accurately in the karstic environment.  相似文献   

10.
Abstract

A study of the effect of changes in climate on aquifer storage and river recharge using a simple model of an idealized aquifer/river system shows the combined influence of aquifer properties and climate change scenario on the system response. The study shows that changes in the seasonal distribution of recharge may have a critical effect on low flows in rivers supported by baseflow. However, rivers supported by slowly responding aquifers may show a considerable delay in response to climate change allowing an opportunity for water resources planning over an extended period.  相似文献   

11.
Recharge processes of karst aquifers are difficult to assess given their strong heterogeneity and the poorly known effect of vadose zone on infiltration. However, recharge assessment is crucial for the evaluation of groundwater resources. Moreover, the vulnerability of karst aquifers depends on vadose zone behaviour because it is the place where most contamination takes place. In this work, an in situ experimental approach was performed to identify and quantify flow and storage processes occurring in karst vadose zone. Cave percolation monitoring and dye tracing were used to investigate unsaturated zone hydrological processes. Two flow components (diffuse and quick) were identified and, respectively, account for 66% and 34% of the recharge. Quickflow was found to be the result of bypass phenomenon in vadose zone related to water saturation. We identify the role of epikarst as a shunting area, most of the storage in the vadose zone occurring via the diffuse flow component in low permeability zones. Relationship between rainfall intensity and transit velocity was demonstrated, with 5 times higher velocities for the quick recharge mode than the diffuse mode. Modelling approach with KarstMod software allowed to simulate the hybrid recharge through vadose zone and shows promising chances to properly assess the recharge processes in karst aquifer based on simple physical models.  相似文献   

12.
Kai‐Yuan Ke 《水文研究》2014,28(3):1409-1421
This research proposes a combination of SWAT and MODFLOW, MD‐SWAT‐MODFLOW, to address the multi‐aquifers condition in Choushui River alluvial fan, Taiwan. The natural recharge and unidentified pumping/recharge are separately estimated. The model identifies the monthly pumping/recharge rates in multi‐aquifers so that the daily streamflow can be simulated correctly. A multi‐aquifers condition means a subsurface formation composed of at least the unconfined aquifer, the confined aquifer, and an in‐between aquitard. In such a case, the variation of groundwater level is related to pumping/recharge activities in vertically adjacent aquifer and the river‐aquifer interaction. Both factors in turn affect the streamflow performance. Results show that MD‐SWAT‐MODFLOW performs better than SWAT alone in terms of simulated streamflow, especially during low flow period, when pumping/recharge rates are properly estimated. A sensitivity analysis of individual parameter suggests that the vertical leakance may be the most sensitive among all investigated MODFLOW parameters in terms of the estimated pumping/recharge among aquifers, and the Latin‐Hypercube‐One‐factor‐At‐a‐Time sensitivity analysis indicates that the hydraulic conductivity of channel is the most sensitive to the model performance. It also points out the necessity to simultaneously estimate pumping/recharge rates in multi‐aquifers. The estimated net pumping rate can be treated as a lower bound of the actual local pumping rate. As a whole, the model provides the spatio‐temporal groundwater use, which gives the authorities insights to manage groundwater resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The paper presents an attempt to determine the characteristics of karst aquifers using information on groundwater level (GWL) in natural holes and boreholes with different data quantity and time resolution of GWL measurements. In this paper the particulars of karst aquifers were analysed for four examples from the Dinaric karst. In all four study areas, aquifers are formed in bare, deep and well‐developed Dinaric karst consisting of Cretaceous limestones. The first example represents a wide area of Imotsko polje in the karst. The aquifer was analysed on the basis of infrequent water level monitoring in natural karst water features (jamas, lakes, wells) and discharges of springs and rivers. The karst aquifer in this example is complex, non‐homogenous and variable in space and time, which is frequent in the Dinaric karst. Regardless of the aforementioned it was possible to determine its elementary characteristics. The second example represents 10 wells used for the water supply for the city of Pula. The GWL and salinity were measured once a week in the period between 1981 and 1996. Even though these measurements were relatively infrequent in space and time, they served as bases for assessment of average and maximum aquifer conditions as well as boundaries of saltwater intrusion. In the third example only a portion of aquifer of the karst spring Blaz, which is in the contact with the Adriatic Seas, has been analyzed. It is a spring with an intrusion of salt water. For purposes of study of saltwater intrusion, 26 piezometers were drilled in its vicinity in which GWL, salinity and temperature were measured once a day during 168 days, a period comprising one complete cycle of seawater intrusion and retreat. These measurements proved the existence of dispersed discharge from the aquifer into the sea and its non‐homogeneity in space. In the fourth example GWL was measured continuously in 10 deep (up to 300 m) piezometers in the hinterland of the Ombla Spring catchment. The measurement period lasted 2 years (January 1988 to December 1989). The analyses are made with hourly data. The results made it possible to determine numerous characteristics of the karst aquifer and a significant non‐homogeneity of groundwater distribution in karst aquifers, depending more on the underground karst phenomena than the surface karst forms. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Large areas of Europe, especially in the Alps, are covered by carbonate rocks and in many alpine regions, karst springs are important sources for drinking water supply. Because of their high variability and heterogeneity, the understanding of the hydrogeological functioning of karst aquifers is of particular importance for their protection and utilisation. Climate change and heavy rainfall events are major challenges in managing alpine karst aquifers which possess an enormous potential for future drinking water supply. In this study, we present research from a high-alpine karst system in the UNESCO Biosphere Reserve Großes Walsertal in Austria, which has a clearly defined catchment and is drained by only one spring system. Results show that (a) the investigated system is a highly dynamic karst aquifer with distinct reactions to rainfall events in discharge and electrical conductivity; (b) the estimated transient atmospheric CO2 sink is about 270 t/a; (c) the calculated carbonate rock denudation rate is between 23 and 47 mm/1000a and (d) the rainfall-discharge behaviour and the internal flow dynamics can be successfully simulated using the modelling package KarstMod. The modelling results indicate the relevance of matrix storage in determining the discharge behaviour of the spring, particularly during low-flow periods. This research and the consequent results can contribute and initiate a better understanding and management of alpine karst aquifers considering climate change with more heavy rainfall events and also longer dry periods.  相似文献   

15.
《水文科学杂志》2013,58(1):206-220
Abstract

The Asmari limestone formation is the major aquifer system at the Khersan 3 Dam site, Zagros, Iran. Characterization of the aquifer system and study of karst development are essential for forecasting leakage potential and to plan remediation works. The aquifer functioning and karst structure were evaluated by geology, well hydrodynamics and natural tracing studies, showing one unconfined and three artesian sub-aquifers, the last being characterized by rapid flow, with contributing old recharge water, and a recharge at higher elevation than the unconfined sub-aquifer. The anticline structure outcrops the artesian sub-aquifers downstream of the site. The confining layers disappear and the aquifer system discharges as a mix of all groundwater. Artesian groundwater is estimated to contribute about 80% (dry season) and 50% (wet season) of flow in the mixing zone. Very few karst features are observed in cores and galleries at the site, despite some karst landforms in the reservoir area. However the aquifer exhibits fast flow of karst type in the artesian sub-aquifers.  相似文献   

16.
Simulating groundwater flow in basin‐fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin‐fill aquifers by direct infiltration and transport through faults and fractures in the high‐elevation areas, by flowing overland through high‐elevation areas to infiltrate at basin‐fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin‐fill aquifers by calibrating a groundwater‐flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady‐state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance.  相似文献   

17.
Aquifer storage and recovery (ASR) is the artificial recharge and temporary storage of water in an aquifer when water is abundant, and recovery of all or a portion of that water when it is needed. One key limiting factor that still hinders the effectiveness of ASR is the high costs of constructing, maintaining, and operating the artificial recharge systems. Here we investigate a new recharge method for ASR in near‐surface unconsolidated aquifers that uses small‐diameter, low‐cost wells installed with direct‐push (DP) technology. The effectiveness of a DP well for ASR recharge is compared with that of a surface infiltration basin at a field site in north‐central Kansas. The performance of the surface basin was poor at the site due to the presence of a shallow continuous clay layer, identified with DP profiling methods, that constrained the downward movement of infiltrated water and significantly reduced the basin recharge capacity. The DP well penetrated through this clay layer and was able to recharge water by gravity alone at a much higher rate. Most importantly, the costs of the DP well, including both the construction and land costs, were only a small fraction of those for the infiltration basin. This low‐cost approach could significantly expand the applicability of ASR as a water resources management tool to entities with limited fiscal resources, such as many small municipalities and rural communities. The results of this investigation demonstrate the great potential of DP wells as a new recharge option for ASR projects in near‐surface unconsolidated aquifers.  相似文献   

18.
Formation of extensive phreatic caves in eogenetic karst aquifers is widely believed to require mixing of fresh and saltwater. Extensive phreatic caves also occur, however, in eogenetic karst aquifers where fresh and saltwater do not mix, for example in the upper Floridan aquifer. These caves are thought to have formed in their modern settings by dissolution from sinking streams or by convergence of groundwater flow paths on springs. Alternatively, these caves have been hypothesized to have formed at lower water tables during sea level low‐stands. These hypotheses have not previously been tested against one another. Analyzing morphological data and water chemistry from caves in the Suwannee River Basin in north‐central Florida and water chemistry from wells in the central Florida carbonate platform indicates that phreatic caves within the Suwannee River Basin most likely formed at lower water tables during lower sea levels. Consideration of the hydrological and geochemical constraints posed by the upper Floridan aquifer leads to the conclusion that cave formation was most likely driven by dissolution of vadose CO2 gas into the groundwater. Sea level rise and a wetter climate during the mid‐Holocene lifted the water table above the elevation of the caves and placed the caves tens of meters below the modern water table. When rising water tables reached the land surface, surface streams formed. Incision of surface streams breached the pre‐existing caves to form modern springs, which provide access to the phreatic caves. Phreatic caves in the Suwannee River Basin are thus relict and have no causal relationship with modern surficial drainage systems. Neither mixing dissolution nor sinking streams are necessary to form laterally extensive phreatic caves in eogenetic karst aquifers. Dissolution at water tables, potentially driven by vadose CO2 gas, offers an underappreciated mechanism to form cavernous porosity in eogenetic carbonate rocks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
One of the most important issues for water resource management is developing strategies for groundwater modelling that are adaptable to data scarcity. These strategies are particularly important in arid and semi‐arid areas where access to data is poor and data collection is difficult, such as the Lake Chad Basin in Africa. In the present study, we establish a numerical groundwater flow model and evaluate the effects of dry and wet periods on groundwater recharge in the Chari–Logone area (96 000 km2) of the Lake Chad Basin. Boundary conditions, flow direction, sources, and sinks for the Chari–Logone local model were obtained by revising and remodelling the Lake Chad Basin regional hydrogeological model (508 400 km2) developed by the BRGM (Bureau de Recherches Géologiques et Minières) in the 1990s. The simulated aquifer water level showed good agreement with observed levels. Aquifer recharge is primarily determined by river–aquifer interactions and mostly occurs in the southern section of the study area. In wet years, groundwater recharge also occurs in the N'Djamena area. The approach we adopted provided relevant results and was useful as an initial step in more detailed modelling of the area. It also proved to be a useful method for groundwater modelling in large semi‐arid and arid regions where available data are scarce. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Spatial heterogeneity in the subsurface of karst environments is high, as evidenced by the multiphase porosity of carbonate rocks and complex landform features that result in marked variability of hydrological processes in space and time. This includes complex exchange of various flows (e.g., fast conduit flows and slow fracture flows) in different locations. Here, we integrate various “state‐of‐the‐art” methods to understand the structure and function of this poorly constrained critical zone environment. Geophysical, hydrometric, and tracer tools are used to characterize the hydrological functions of the cockpit karst critical zone in the small catchment of Chenqi, Guizhou Province, China. Geophysical surveys, using electrical resistivity tomography (ERT), inferred the spatial heterogeneity of permeability in the epikarst and underlying aquifer. Water tables in depression wells in valley bottom areas, as well as discharge from springs on steeper hillslopes and at the catchment outlet, showed different hydrodynamic responses to storm event rainwater recharge and hillslope flows. Tracer studies using water temperatures and stable water isotopes (δD and δ18O) could be used alongside insights into aquifer permeability from ERT surveys to explain site‐ and depth‐dependent variability in the groundwater response in terms of the degree to which “new” water from storm rainfall recharges and mixes with “old” pre‐event water in karst aquifers. This integrated approach reveals spatial structure in the karst critical zone and provides a conceptual framework of hydrological functions across spatial and temporal scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号