首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In‐channel rock vane structures are widely used in stream restoration as a way to reduce stream channel erosion and create pool or riffle features. When these structures change hydraulic gradients they may affect ecological stream functions, such as hyporheic exchange flow (HEF) patterns. A study of constructed in‐channel structure controls on HEF was conducted in the third‐order Batavia Kill, New York using stream and hyporheic temperature amplitude analysis and computational fluid dynamics (CFD) hydraulic simulations. Temperature monitors were installed in the water column and channel bed at six locations around each of seven in‐channel restoration structures (three cross‐vanes and four J‐hooks) at baseflow in 2007. Elevation surveys of the structures were then used to simulate HEF using CFD. The results indicate a pattern of pronounced upwelling in the run section just below the structure, upwelling transitioning to downwelling within the pool, and pronounced downwelling in the glide out of the pool. This pattern is consistent with natural riffle pool sequences. The direction of HEF inferred from the temperature amplitude analysis agreed with the direction of flow simulated with CFD at 80% of the locations, and the few disagreements were expected due to model limitations. CFD simulation demonstrated that increasing stream flows result in changes in HEF spatial patterns and magnitude at each structure. This work illustrates how CFD simulations can guide design of in‐channel restoration structures for HEF function. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Stream–subsurface water interaction induced by natural riffles and constructed riffles/steps was examined in lowland streams in southern Ontario, Canada. The penetration of stream water into the subsurface was analysed using hydrometric data, and the zone of > 10% stream water was calculated from a chemical mixing equation using tracer injection of bromide and background chloride concentrations. The constructed riffles studied induced more extensive hyporheic exchange than the natural riffles because of their steeper longitudinal hydraulic head gradients and coarser streambed sediments. The depth of > 10% stream water zone in a small and a large constructed riffle extended to > 0·2 m and > 1·4 m depths respectively. Flux and residence time distribution of hyporheic exchange were simulated in constructed riffles using MODFLOW, a finite‐difference groundwater flow model. Hyporheic flux and residence time distribution varied along the riffles, and the exchange occurring upstream from the riffle crest was small in flux and had a long residence time. In contrast, hyporheic exchange occurring downstream from the riffle crest had a relatively short residence time and accounted for 83% and 70% of total hyporheic exchange flow in a small and large riffle respectively. Although stream restoration projects have not considered the hyporheic zone, our data indicate that constructed riffles and steps can promote vertical hydrologic exchange and increase the groundwater–surface water linkage in degraded lowland streams. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Stream restoration goals include improving habitat and water quality through reconstruction of morphological features found at analogous, pristine stream reaches. Enhancing hyporheic exchange may facilitate achieving these goals. Although hyporheic exchange at restoration sites has been explored in a few previous studies, comparative studies of restored versus reference or control streams are largely absent. We hypothesized that restoration cross‐vanes enhance hyporheic exchange, resulting in biogeochemical alteration of stream water chemistry in the streambed. Two streams restored using cross‐vanes to control erosion and improve habitat were compared with their associated reference reaches, which provided the basis for the restoration design. Thirteen temperature profile rods with vertically stacked sensors were installed at each site for 2 weeks. Heat tracing was used to quantify vertical flux in the streambed from the diurnal temperature fluctuations in the subsurface. Stream water and bed pore waters from mini‐piezometers were analysed for ion and nutrient chemistry. In general, mean vertical flux rates through the streambed were small throughout reference sites (?0.3 to 0.3 m/day) and at most locations at restored sites. Immediately adjacent to cross‐vanes, vertical flux rates were larger (up to 3.5 m/day). Geochemistry of pore waters shows distinct differences in the sources for the reference and restored sites. Strong downwelling zones adjacent to cross‐vanes showed high dissolved oxygen (10.75 mg/l) and geochemistry in the streambed similar to surface water. Reference sites had lower dissolved oxygen in the streambed (0.66–5.14 mg/l), and geochemical patterns suggest a mixture of discharging groundwater and surface water in the hyporheic zone. Restored sites also clearly show sulfate and nitrate reduction occurring in the streambed, which is not observed at the reference sites. The stream restoration sites studied here enhance rapid hyporheic exchange, but upwelling of groundwater has a stronger influence on streambed geochemistry at reference sites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper focuses on surface–subsurface water exchange in a steep coarse‐bedded stream with a step‐pool morphology. We use both flume experiments and numerical modelling to investigate the influence of stream discharge, channel slope and sediment hydraulic conductivity on hyporheic exchange. The model step‐pool reach, whose topography is scaled from a natural river, consists of three step‐pool units with 0.1‐m step heights, discharges ranging between base and over‐bankfull flows (scaled values of 0.3–4.5 l/s) and slopes of 4% and 8%. Results indicate that the deepest hyporheic flow occurs with the steeper slope and at moderate discharges and that downwelling fluxes at the base of steps are highest at the largest stream discharges. In contrast to findings in a pool‐riffle morphology, those in this study show that steep slopes cause deeper surface–subsurface exchanges than gentle slopes. Numerical simulation results show that the portion of the hyporheic zone influenced by surface water temperature increases with sediment hydraulic conductivity. These experiments and numerical simulations emphasize the importance of topography, sediment permeability and roughness elements along the channel surface in governing the locations and magnitude of downwelling fluxes and hyporheic exchange. Our results show that hyporheic zones in these steep streams are thicker than previously expected by extending the results from streams with pool‐riffle bed forms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
We investigated the role of increasingly well‐constrained geologic structures in the subsurface (i.e., subsurface architecture) in predicting streambed flux and hyporheic residence time distribution (RTD) for a headwater stream. Five subsurface realizations with increasingly resolved lithological boundaries were simulated in which model geometries were based on increasing information about flow and transport using soil and geologic maps, surface observations, probing to depth to refusal, seismic refraction, electrical resistivity (ER) imaging of subsurface architecture, and time‐lapse ER imaging during a solute tracer study. Particle tracking was used to generate RTDs for each model run. We demonstrate how improved characterization of complex lithological boundaries and calibration of porosity and hydraulic conductivity affect model prediction of hyporheic flow and transport. Models using hydraulic conductivity calibrated using transient ER data yield estimates of streambed flux that are three orders of magnitude larger than uncalibrated models using estimated values for hydraulic conductivity based on values published for nearby hillslopes (10?4 vs. 10?7 m2/s, respectively). Median residence times for uncalibrated and calibrated models are 103 and 100 h, respectively. Increasingly well‐resolved subsurface architectures yield wider hyporheic RTDs, indicative of more complex hyporheic flowpath networks and potentially important to biogeochemical cycling. The use of ER imaging to monitor solute tracers informs subsurface structure not apparent from other techniques, and helps to define transport properties of the subsurface (i.e., hydraulic conductivity). Results of this study demonstrate the value of geophysical measurements to more realistically simulate flow and transport along hyporheic flowpaths.  相似文献   

6.
Traditional characterization of hyporheic processes relies upon modelling observed in‐stream and subsurface breakthrough curves to estimate hyporheic zone size and infer exchange rates. Solute data integrate upstream behaviour and lack spatial coverage, limiting our ability to accurately quantify spatially heterogeneous exchange dynamics. Here, we demonstrate the application of near‐surface electrical resistivity imaging (ERI) methods, coupled with experiments using an electrically conductive stream tracer (dissolved NaCl), to provide in situ imaging of spatial and temporal dynamics of hyporheic exchange. Tracer‐labelled water in the stream enters the hyporheic zone, reducing electrical resistivity in the subsurface (to which subsurface ERI is sensitive). Comparison of background measurements with those recording tracer presence provides distributed characterization of hyporheic area (in this application, ∼0·5 m2). Results demonstrate the first application of ERI for two‐dimensional imaging of stream‐aquifer exchange and hyporheic extent. Future application of this technique will greatly enhance our ability to quantify processes controlling solute transport and fate in hyporheic zones, and provide data necessary to inform more complete numerical models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
There are many field techniques used to quantify rates of hyporheic exchange, which can vary in magnitude and direction spatially over distances of only a few metres, both within and between morphological features. We used in‐stream mini‐piezometers and heat transport modelling of stream and streambed temperatures to quantify the rates and directions of water flux across the streambed interface upstream and downstream of three types of in‐stream geomorphic features: a permanent dam, a beaver dam remnant and a stream meander. We derived hyporheic flux estimates at three different depths at six different sites for a month and then paired those flux rates with measurements of gradient to derive hydraulic conductivity (K) of the streambed sediments. Heat transport modelling provided consistent daily flux estimates that were in agreement directionally with hydraulic gradient measurements and also identified vertical heterogeneities in hydraulic conductivity that led to variable hyporheic exchange. Streambed K varied over an order of magnitude (1·9 × 10?6 to 5·7 × 10?5 m/s). Average rates of hyporheic flux ranged from static (q < ±0·02 m/day) to 0·42 m/day. Heat transport modelling results suggest three kinds of flow around the dams and the meander. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi‐arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface. Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi‐arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS‐P, a one‐dimensional, surface‐water, solute‐transport model from which we extracted the storage exchange rate α and cross‐sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short‐term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non‐gaining reach, stream water was diverted to the subsurface by debris dams and captured by large‐scale near‐stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Groundwater surface water interaction in the hyporheic zone remains an important challenge for water resources management and ecosystem restoration. In heterogeneous stratified glacial sediments, reach‐scale environments contain an uneven distribution of focused groundwater flow occurring simultaneously with diffusely discharging groundwater. This results in a variation of stream‐aquifer interactions, where focused flow systems are able to temporally dominate exchange processes. The research presented here investigates the direct and indirect influences focused groundwater discharge exerts on the hyporheic zone during baseflow recession. Field results demonstrate that as diffuse sources of groundwater deplete during baseflow recession, focused groundwater discharge remains constant. During baseflow recession the hyporheic zone is unable to expand, while the high nitrate concentration from focused discharge changes the chemistry of the stream. The final result is a higher concentration of nitrate in the hyporheic zone as this altered surface water infiltrates into the subsurface. This indirect coupling of focused groundwater discharge and the hyporheic zone is unaccounted for in hyporheic studies at this time. Results indicate important implications for the potential reduction of agricultural degradation of water quality.  相似文献   

10.
Stream‐tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach‐integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS‐P. Transient storage modelling results were compared with direct observations to evaluate the reliability of the TSM. Results from the tracer injection in the bedrock reach supported the assumption that most transient storage in headwater mountain streams results from hyporheic exchange. Direct observations from the well networks in colluvial reaches showed that subsurface flow paths tended to parallel the valley axis. Cross‐valley gradients were weak except near steps, where vertical and cross‐valley hydraulic gradients indicated a strong potential for stream water to downwell into the hyporheic zone. The TSM parameters showed that both size and residence time of transient storage were greater in reaches with a few large log‐jam‐formed steps than in reaches with more frequent, but smaller steps. Direct observations showed that residence times in the unconstrained stream were longer than in the constrained stream and that little change occurred in the location and extent of the hyporheic zone between low‐ and high‐baseflow discharges in any of the colluvial reaches. The transient storage modelling results did not agree with these observations, suggesting that the TSM was insensitive to long residence‐time exchange flows and was very sensitive to changes in discharge. Disagreements between direct observations and the transient storage modelling results highlight fundamental problems with the TSM that confound comparisons between the transient storage modelling results for tracer injections conducted under differing flow conditions. Overall, the results showed that hyporheic exchange was little affected by stream discharge (at least over the range of baseflow discharges examined in this study). The results did show that channel morphology controlled development of the hyporheic zone in these steep mountain stream channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The spatial and temporal variability of groundwater–surface‐water (GW–SW) interactions was investigated in an intensively utilized salmon spawning riffle. Hydrochemical tracers, were used along with high‐resolution hydraulic head and temperature data to assess hyporheic dynamics. Surface and subsurface hydrochemistry were monitored at three locations where salmon spawning had been observed in previous years. Temperature and hydraulic head were monitored in three nests of three piezometers located to characterize the head, the run and the tail‐out of the riffle feature. Hydrochemical gradients between surface and subsurface water indicated increasing GW influence with depth into the hyporheic zone. Surface water was characterized by high dissolved oxygen (DO) concentrations, low alkalinity and conductivity. Hyporheic water was generally characterized by high levels of alkalinity and conductivity indicative of longer residence times, and low DO, indicative of reducing conditions. Hydrochemical and temperature gradients varied spatially over the riffle in response to changes in local GW–SW interactions at the depths investigated. Groundwater inputs dominated the head and tail of the riffle. The influence of SW increased in the area of accelerating flow and decreasing water depth through the run of the riffle. Temporal GW–SW interactions also varied in response to changing hydrological conditions. Gross changes in hyporheic hydrochemistry were observed at the weekly scale in response to changing flow conditions and surface water inputs to the hyporheic zone. During low flows, caused by freezing or dry weather, hyporheic hydrochemistry was dominated by GW inputs. During higher flows hyporheic hydrochemistry indicated that SW contributions increased. In addition, high‐resolution hydraulic head data indicated that rapid changes in GW–SW interactions occurred during hydrological events. The spatial, and possibly the temporal, variability of GW–SW interactions had a marked effect on the survival of salmon ova. It is concluded that hyporheic dynamics and their effect on stream ecology should be given increased consideration by fisheries and water resource managers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
In the McMurdo Dry Valleys of Antarctica, glaciers are the source of meltwater during the austral summer, and the streams and adjacent hyporheic zones constitute the entire physical watershed; there are no hillslope processes in these systems. Hyporheic zones can extend several metres from each side of the stream, and are up to 70 cm deep, corresponding to a lateral cross‐section as large as 12 m2, and water resides in the subsurface year around. In this study, we differentiate between the near‐stream hyporheic zone, which can be characterized with stream tracer experiments, and the extended hyporheic zone, which has a longer time‐scale of exchange. We sampled stream water from Green Creek and from the adjacent saturated alluvium for stable isotopes of D and 18O to assess the significance and extent of stream‐water exchange between the streams and extended hyporheic zones over long time‐scales (days to weeks). Our results show that water residing in the extended hyporheic zone is much more isotopically enriched (up to 11‰ D and 2·2‰ 18O) than stream water. This result suggests a long residence time within the extended hyporheic zone, during which fractionation has occurred owing to summer evaporation and winter sublimation of hyporheic water. We found less enriched water in the extended hyporheic zone later in the flow season, suggesting that stream water may be exchanged into and out of this zone, on the time‐scale of weeks to months. The transient storage model OTIS was used to characterize the exchange of stream water with the extended hyporheic zone. Model results yield exchange rates (α) generally an order magnitude lower (10?5 s?1) than those determined using stream‐tracer techniques on the same stream. In light of previous studies in these streams, these results suggest that the hyporheic zones in Antarctic streams have near‐stream zones of rapid stream‐water exchange, where ‘fast’ biogeochemical reactions may influence water chemistry, and extended hyporheic zones, in which slower biogeochemical reaction rates may affect stream‐water chemistry at longer time‐scales. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Although there has been recent focus on understanding spatial variability in hyporheic zone geochemistry across different morphological units under baseflow conditions, less attention has been paid to temporal responses of hyporheic zone geochemistry to non‐steady‐state conditions. We documented spatial and temporal variability of hyporheic zone geochemistry in response to a large‐scale storm event, Tropical Storm Irene (August 2011), across a pool–riffle–pool sequence along Chittenango Creek in Chittenango, NY, USA. We sampled stream water as well as pore water at 15 cm depth in the streambed at 14 locations across a 30 m reach. Sampling occurred seven times at daily intervals: once during baseflow conditions, once during the rising limb of the storm hydrograph, and five times during the receding limb. Principal component analysis was used to interpret temporal and spatial changes and dominant drivers in stream and pore water geochemistry (n = 111). Results show the majority of spatial variance in hyporheic geochemistry (62%) is driven by differential mixing of stream and ground water in the hyporheic zone. The second largest driver (17%) of hyporheic geochemistry was temporal dilution and enrichment of infiltrating stream water during the storm. Hyporheic sites minimally influenced by discharging groundwater (‘connected’ sites) showed temporal changes in water chemistry in response to the storm event. Connected sites within and upstream of the riffle reflected stream geochemistry throughout the storm, whereas downstream sites showed temporally lagged responses in some conservative and biogeochemically reactive solutes. This suggests temporal changes in hyporheic geochemistry at these locations reflect a combination of changes in infiltrating stream chemistry and hyporheic flowpath length and residence time. The portion of the study area strongly influenced by groundwater discharge increased in size throughout the storm, producing elevated Ca2+ and concentrations in the streambed, suggesting zones of localized groundwater inputs expand in response to storms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Time‐lapse geophysical surveys can map lingering hyporheic storage by detecting changes in response to saline tracer. Tracer tests were conducted in Crabby Creek, an urban stream outside Philadelphia, to examine the influence of stream restoration structures and variable sediment thickness. We compared electrical resistivity surveys with extensive well sampling (57 wells) in two 13.5‐m‐long reaches, each with a step drop created by a J‐hook. The two step drops varied in tracer behaviour, based on both the well data and the geophysical data. The well data showed more variation in arrival time where the streambed sediment was thick and was more uniform where sediment was thin. The resistivity in the reach with thin sediment showed lingering tracer in the hyporheic zone both upstream and downstream from the J‐hook. In the second reach where the sediment was thicker, the lingering tracer in the hyporheic zone was more extensive downstream from the J‐hook. The contrasting results between the two reaches from both methods suggested that sediments influenced hyporheic exchange more than the step at this location. Resistivity inversion differed from well data in both reaches in that it showed evidence for tracer after well samples had returned to background, mapping lingering tracer either upstream or downstream of a step. We conclude that resistivity surveys may become an important tool for hyporheic zone characterization because they provide information on the extent of slow moving fluids in the hyporheic zone, which have the potential to enhance chemical reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Temporal Hyporheic Zone Response to Water Table Fluctuations   总被引:1,自引:0,他引:1       下载免费PDF全文
Expansion and contraction of the hyporheic zone due to temporal hydrologic changes between stream and riparian aquifer influence the biogeochemical cycling capacity of streams. Theoretical studies have quantified the control of groundwater discharge on the depth of the hyporheic zone; however, observations of temporal groundwater controls are limited. In this study, we develop the concept of groundwater‐dominated differential hyporheic zone expansion to explain the temporal control of groundwater discharge on the hyporheic zone in a third‐order stream reach flowing through glacially derived terrain typical of the Great Lakes region. We define groundwater‐dominated differential expansion of the hyporheic zone as: differing rates and magnitudes of hyporheic zone expansion in response to seasonal vs. storm‐related water table fluctuation. Specific conductance and vertical hydraulic gradient measurements were used to map changes in the hyporheic zone during seasonal water table decline and storm events. Planar and riffle beds were monitored in order to distinguish the cause of increasing hyporheic zone depth. Planar bed seasonal expansion of the hyporheic zone was of a greater magnitude and longer in duration (weeks to months) than storm event expansion (hours to days). In contrast, the hyporheic zone beneath the riffle bed exhibited minimal expansion in response to seasonal groundwater decline compared to storm related expansion. Results indicated that fluctuation in the riparian water table controlled seasonal expansion of the hyporheic zone along the planar bed. This groundwater induced hyporheic zone expansion could increase the potential for biogeochemical cycling and natural attenuation.  相似文献   

16.
Fine sediment deposition in streambeds can reduce pore water fluxes and the overall rate of hyporheic exchange, producing deleterious effects on benthic and hyporheic ecological communities. To increase understanding of the factors that control the reduction of hyporheic exchange by fine sediment deposition, we conducted experiments in a laboratory flume to observe changes in the rates of solute exchange and kaolinite clay deposition as substantial amounts of kaolinite accumulated in the streambed. Two long‐term experiments were conducted, with durations of 14 days and 29 days. Use of a laboratory flume system allowed steady stream flow conditions to be maintained throughout both experiments, and alternating injections of known quantities of kaolinite and a sodium chloride tracer were used to assess the effect of clay accumulation on hyporheic exchange directly. In the first experiment, there was no bed sediment transport and kaolinite deposition formed a highly clogged near‐surface layer that greatly reduced hyporheic exchange. Application of a fundamental model for advective hyporheic exchange indicated that the effective permeability and porosity of the streambed decreased substantially during the course of the experiment. In the second experiment, the kaolinite was prepared with different surface properties to be more mobile, and the experiment was conducted with a small degree of bed sediment transport. As a result, no distinct clogged layer developed, and the rate of hyporheic exchange was found to remain approximately constant throughout the experiment (29 days). These results indicate that increasing fine sediment loads, e.g. those that occur from changes in land use, can have substantially different impacts on hyporheic exchange and associated ecological processes depending on the stream flow conditions, the rate and frequency of bed sediment transport, and the extent of interaction of the introduced fines with bed sediments. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Hyporheic restoration is of increasing interest given the role of hyporheic zones in supporting ecosystem services and functions. Given the prevalence of sediment pollution to waterways, an emerging restoration technique involves the removal of sediment from the interstices of gravel‐bed streams. Here, we document streambed sediment removal following a large, accidental release of fine sediment into a gravel‐bed river. We use this as a natural experiment to assess the impact of fine sediment removal on reach‐scale measures of transient storage and to document the responses of reaches with contrasting morphology (restored vs. unrestored) to changing discharge one‐field season. We conducted a series of conservative solute tracer experiments in each reach, interpreting both summary statistics for the recovered in‐stream solute tracer time series. Additionally, we applied the transient storage model to interpret the results via model parameters, including a Monte Carlo analysis to measure parameter identifiability and sensitivity in each experiment. Despite the restoration effort resulting in an open matrix gravel bed in the restored reach, we did not find the significant differences in most time series metrics describing reach‐scale transport and transient storage. We hypothesize that this is due to enhanced vertical exchange with the gravel bed in the restored reach replacing lateral exchange with macrophyte beds in the unrestored reach, developing a conceptual model to explain our findings. Consequently, we found that the impact of reach‐scale removal of fine sediment is not measureable using reach‐scale solute tracer studies. We offer recommendations for future studies seeking to measure the impacts of stream restoration at the reach scale.  相似文献   

18.
A summary is provided of the second in a series of Integrated Science Initiative workshops supported by the UNESCO International Hydrological Programme. The workshop brought together hydrologists, ecologists, biogeochemists, hydrogeologists and natural resource managers to discuss the processes that occur in hyporheic and riparian ecotones. The principal objectives were to share new ideas on the importance of biogeochemical processes that affect nutrients at the groundwater–surface water interface, to understand the impact of nutrient flux on stream (principally hyporheic) ecology, and to identify the management strategies for river corridors to mitigate the effects of nutrients applied to land and discharged via groundwater into rivers. The workshop concluded that: (1) more interdisciplinary research and environmental management practices are needed to better understand, predict and manage processes at the interface of environmental compartments; (2) the goal of environmental regulations to improve ecological health requires a holistic approach integrating our understanding of the ecological, hydrological, biogeochemical and physical processes; (3) upscaling spatially and temporally variable processes remains difficult and may hinder translation of research at micro‐scales (molecular to grain size) into macro‐scale (reach to catchment) decision‐making; (4) scientists need to better communicate existing research to river managers, while smanagers must better communicate policy and regulatory‐driven science requirements to researchers. Existing models, such as those that simulate stream–hyporheic exchange, are not widely known and rarely used by environmental managers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The assumption of spatial repetition is commonly made when producing bedform scale models of the hyporheic zone. Two popular solute transport codes, MT3DMS and PHT3D, do not currently provide the necessary boundary condition required to simulate spatial periodicity in hyporheic zone transport problems. In this study, we develop a spatially periodic boundary (SPB) for solutes that is compatible with a SPB that was previously developed for MODFLOW to simulate the flow component of spatially periodic problems. The approach is ideal for simulating groundwater flow and transport patterns under repeating surface features, such as ripples or dunes on the bottom of a lake or stream. The appropriate block‐centered finite‐difference approach to implement the boundary is presented and the necessary source code modifications are discussed. The performance of the solute SPB, operating in conjunction with the groundwater flow SPB, is explored through comparison of a multi‐bedform hyporheic‐zone model with a single bedform variant. The new boundary conditions perform well in situations where both dispersive effects and lateral seepage flux in the underflow regime beneath the hyporheic zone are minimal.  相似文献   

20.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号