首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously defined in situ biogeochemical transformation as the biogenic formation of reactive minerals that are capable of abiotically degrading chlorinated solvents such as trichloroethene without accumulation of degradation products such as vinyl chloride (AFCEE et al. 2008 ). This process has been implemented in biowalls used to intercept contaminated groundwater. Abiotic patterns of contaminant degradation were observed at Altus Air Force Base (AFB) and in an associated column study, but not at other sites including Dover AFB. These abiotic patterns were associated with biogenic formation of reactive iron sulfide minerals. Iron sulfides in the form of small individual grains, coatings on magnetite, and sulfur‐deficient pyrite framboids were observed in samples collected from the Altus AFB biowalls and one of the EPA columns. Larger iron sulfide grains coated with oxide layers were observed in samples collected from Dover AFB. Altus AFB and the EPA column differed from Dover AFB in that groundwater flow at Dover AFB was relatively slow and potentially reversing. High volumetric sulfate consumption rates, an abiotic pattern of trichloroethene (TCE) degradation, and the formation of small, high surface area iron sulfide particles were associated with relatively high rates of TCE removal via an abiotic pattern. Geochemical modeling demonstrated that iron monosulfides such as mackinawite were near saturation, and iron disulfides such as pyrite were supersaturated at all sites. This environmental condition can be supportive of nucleation of small particles rather than crystal growth leading to larger particles. When nucleation is dominant, small, high surface area, and reactive particles result. When crystal growth dominates the crystals are larger and have lower specific surface area and reactivity. These results taken together suggest that creation of a dynamic environment can promote biogeochemical transformation based on generation of reactive iron sulfides.  相似文献   

2.
3.
ZVI‐Clay is an emerging remediation approach that combines zero‐valent iron (ZVI)‐mediated degradation and in situ stabilization of chlorinated solvents. Through use of in situ soil mixing to deliver reagents, reagent‐contaminant contact issues associated with natural subsurface heterogeneity are overcome. This article describes implementation, treatment performance, and reaction kinetics during the first year after application of the ZVI‐Clay remediation approach at Marine Corps Base Camp Lejeune, North Carolina. Primary contaminants included trichloroethylene, 1,1,2,2‐tetrachloroethane, and related natural degradation products. For the field application, 22,900 m3 of soils were treated to an average depth of 7.6 m with 2% ZVI and 3% sodium bentonite (dry weight basis). Performance monitoring included analysis of soil and water samples. After 1 year, total concentrations of chlorinated volatile organic compounds (CVOCs) in soil samples were decreased by site‐wide average and median values of 97% and >99%, respectively. Total CVOC concentrations in groundwater were reduced by average and median values of 81% and >99%, respectively. In several of the soil and groundwater monitoring locations, reductions in total CVOC concentrations of greater than 99.9% were apparent. Further reduction in concentrations of chlorinated solvents is expected with time. Pre‐ and post‐mixing average hydraulic conductivity values were 1.7 × 10?5 and 5.2 × 10?8 m/s, respectively, indicating a reduction of about 2.5 orders of magnitude. By achieving simultaneous contaminant mass depletion and hydraulic conductivity reduction, contaminant flux reductions of several orders of magnitude are predicted.  相似文献   

4.
In this study, nanoscale zero-valent iron (NZVI) particles were synthesized and utilized to integrate with surfactant and electrokinetics for the remediation of perchloroethylene (PCE). The average particle diameter and specific surface area of the lab-synthesized iron particles were 109.3 nm and 129.7 m2 g–1, respectively. Experiments were performed in a glass sandbox to simulate the transport and degradation of PCE in the aquifer. The results of the transport tests revealed that the PCE concentrations at the bottom layer was higher than those at the mid and upper layers, and that the surfactant Tween 80 showed its conspicuous mobilization for PCE in the aquifer. As the results of the degradation tests showed, NZVI activity could be promoted by electrokinetics that enhanced the remediation performance of PCE contaminated groundwater by the NZVI reactive barrier. Chlorinated byproducts were not detected during the degradation tests, that is, PCE was completely dechlorinated by NZVI in the reactive barrier. The information collected from this study will be useful for further application of the NZVI reactive barrier system to remediate the aquifers contaminated by the chlorinated solvents.  相似文献   

5.
Four samples of two commercially available iron brands used as substrate for iron permeable reactive barriers (PRBs) were tested for suitability for remediation of perchloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cDCE) and vinyl chloride (VC). Kinetic studies indicate that rates of reaction are enhanced for cDCE and VC on Connelly iron (2.8 x 10(-4) to 6.9 x 10(-4) L/m2/hr and 2.0 x 10(-4) to 9.0 x 10(-4) L/m2/hr, for cDCE and VC, respectively) vs. Peerless iron (3.1 x 10(-5) to 4.6 x 10(-5) L/m2/hr and 2.4 x 10(-5) to 4.1 x 10(-5) L/m2/hr, for cDCE and VC, respectively). Carbon isotopic analyses of the residual chlorinated ethylene (CE) during degradation indicate significant fractionation occurs during reductive dechlorination, with, for example, up to 70% enrichment in carbon isotopic values observed when VC is more than 99% degraded. Comparison of fractionation factors (epsilon) indicates significant differences in carbon isotopic fractionation for different iron types and for different CEs. For the lower CEs (cDCE and VC) in particular, both slower reaction rates and larger fractionation are observed for degradation on Peerless vs. Connelly iron. This is the first study to establish a correlation between the rate of abiotic degradation on Fe(0) and the extent of isotopic fractionation, and the first to confirm consistent differences in these two parameters as a function of iron type. The possibility that these differences in kinetics and carbon isotopic fractionation for cDCE and VC are related to differences in branching ratios between competing hydrogenolysis and beta-elimination reactions during reductive dechlorination on the iron surfaces is discussed.  相似文献   

6.
Permeable reactive barriers (PRBs), such as mulch biowalls, have been installed at numerous groundwater cleanup sites, and laboratory and field studies have demonstrated biotic and abiotic processes that degrade chlorinated volatile organic compounds (CVOCs) in groundwater passing through these engineered remedies. However, the longevity of mulch biowalls remains a fundamental research question. Soil and groundwater sampling at seven mulch biowalls at Altus Air Force Base (AFB) approximately 10 years after installation demonstrated the ongoing degradation of CVOCs. Trichloroethene was not detected in five of seven groundwater samples collected from the biowall despite upgradient detections above federal drinking water standards. Microbial sampling established the presence of key dechlorinating bacteria and the abundance of genes encoding specific enzymes for degradation, high methane concentrations, low sulfate concentrations, and negative oxidation-reduction potential, all indicative of highly reducing conditions within the biowalls and favorable conditions for CVOC destruction via microbial reductive dechlorination. High cellulose content (>79%) of the mulch, elevated total organic carbon (TOC) content in groundwater, and elevated potentially bioavailable organic carbon (PBOC) measurements in soil samples further supports an ongoing, long-lived source of carbon. These results demonstrate the ongoing and long-term efficacy of the mulch biowalls at Altus AFB. In addition, concentrations of bacteria, TOC, PBOC, and other geochemical parameters suggest a modest impact of the biowalls downgradient. The continued presence of CVOCs downgradient may be attributable to back diffusion from low-permeability shale. However, the biowalls continue to provide benefits by removing CVOCs in groundwater, thus reducing further CVOC loading to the downgradient, low-permeability strata.  相似文献   

7.
The combined remedy approach to groundwater remediation optimizes contaminated site cleanup as measured by technical efficacy and sustainability. Regardless of the potential for improving site cleanups, there are several obstacles limiting the implementation of combined remedies. The obstacles primarily stem from an inability of liability owners to easily determine if economic costs are synergistic or additive and from regulatory hesitancy to codify needed timing and technology sequencing flexibility within design documents. These obstacles can often be circumvented by employing multicomponent and multifunctional remedial amendment formulations delivered with a single application. Case studies are presented that demonstrate efficacy of this combined remedies approach. The sustainability of the approach is also assessed by evaluation of economic viability, social productivity, and environmental protection. The case studies include combined abiotic and biotic degradation of chlorinated ethene and ethane compounds, combined reductive, and microaerophilic treatment of chlorinated benzenes, and combined chemical oxidation and biodegradation of petroleum compounds. Case studies are supported with conventional concentration trends and advanced diagnostics including compound specific isotope analysis (CSIA) and genetic‐based molecular biological tools (MBTs).  相似文献   

8.
Reductive dechlorination of perchloroethylene (PCE) and trichloroethylene (TCE) by vitamin B12 is an analogue of the microbial reductive dechlorination reaction and is presently being applied as a remediation technique. Stable carbon isotopic analysis, an effective and powerful tool for the investigation and monitoring of contaminant remediation, was used to characterize the isotopic effects of reductive dechlorination of PCE and TCE by vitamin B12 in laboratory microcosms. In laboratory experiments, 10 mg/L vitamin B12 degraded >90% of the initial 20 mg/L PCE with TCE, the primary product of PCE degradation, accounting for between 64% and 72% of the PCE degraded. In experiments with TCE, 147 mg/L vitamin B12 degraded >90% of the initial 20 mg/L TCE with cis -dichloroethene ( c DCE), the primary product of degradation accounting for between 30% and 35% of the TCE degraded. Degradation of both PCE and TCE exhibited first-order kinetics. Strong isotopic fractionation of the reactant PCE and of the reactant TCE was observed over the course of degradation. This fractionation could be described with a Rayleigh model using enrichment factors of −16.5%o and −15.8%o for PCE, and −17.2%o and −16.6%o for TCE. Fractionation was similar in all experiments, with a mean enrichment factor of −16.5%o ± 0.6%o. The occurrence of such large enrichment factors indicates that isotopic analysis can be used to monitor the dechlorination of PCE and TCE by vitamin B12 and remediation of ground water plumes. Evidence indicates that isotopic fractionation is taking place during complexation of the chlorinated ethenes to vitamin B12, as has been suggested for reductive dechlorination by zero valent iron. The differences between e values for this reaction and those observed for anaerobic biodegradation of the chlorinated ethenes suggest that there may be differences in the rate-determining step for these two processes.  相似文献   

9.
At a low permeability clay till site contaminated with chlorinated ethenes (Gl. Kongevej, Denmark), enhanced reductive dechlorination (ERD) was applied by direct push injection of molasses and dechlorinating bacteria. The performance was investigated by long‐term groundwater monitoring, and after 4 years of remediation, the development of degradation in the clay till matrix was investigated by high‐resolution subsampling of intact cores. The formation of degradation products, the presence of specific degraders Dehalococcoides spp. with the vinyl chloride (VC) reductase gene vcrA, and the isotope fractionation of trichloroethene, cis‐dichloroethene (cis‐DCE), and VC showed that degradation of chlorinated ethenes occurred in the clay till matrix as well as in sand lenses, sand stringers, and fractures. Bioactive sections of up to 1.8 m had developed in the clay till matrix, but sections, where degradation was restricted to narrow zones around sand lenses and stringers, were also observed. After 4 years of remediation, an average mass reduction of 24% was estimated. Comparison of the results with model simulation scenarios indicate that a mass reduction of 85% can be obtained within approximately 50 years without further increase in the narrow reaction zones if no donor limitations occur at the site. Long‐term monitoring of the concentration of chlorinated ethenes in the underlying chalk aquifer revealed that the aquifer was affected by the more mobile degradation products cis‐DCE and VC generated during the remediation by ERD.  相似文献   

10.
In situ biogeochemical transformation involves biological formation of reactive minerals in an aquifer that can destroy chlorinated solvents such as trichloroethene (TCE) without accumulation of intermediates such as vinyl chloride. There is uncertainty regarding the materials and geochemical conditions that are required to promote biogeochemical transformation. The objective of this study was to identify amendments and biogeochemical conditions that promote in situ biogeochemical transformation. Laboratory columns constructed with plant mulch were supplemented with different amendments and were operated under varying conditions of water chemistry and hydraulic residence time. Four patterns of TCE removal were observed: (1) no removal, (2) biotic transformation of TCE to cis‐1,2‐dichloroethene (cis‐1,2‐DCE), (3) biogeochemical transformation of TCE without accumulation of reductive dechlorination products, and (4) mixed behavior where a combination of patterns was observed either simultaneously or over time. Principal coordinates analysis and analysis of variance (ANOVA) identified factors that promoted biogeochemical transformation: (1) high influent sulfate concentration, (2) relatively high hydraulic retention time, (3) supplementation of mulch with vegetable oil, and (4) addition of hematite or magnetite. The combination of the first three factors promoted complete sulfate reduction and a high volumetric sulfate consumption rate. The fourth factor provided a source of ferrous iron and/or a surface to which sulfide could react to form reactive iron sulfides. Many columns demonstrated either no TCE removal or a biotic TCE transformation pattern. Modification of column operation to include all four factors identified above promoted biogeochemical transformation in these columns. These results support the importance of the factors in biogeochemical transformation.  相似文献   

11.
MIN3P, a multicomponent reactive transport model for variably saturated porous media, is used to simulate the outputs of column tests carried out using zero valent iron (ZVI) for nickel contaminated groundwater remediation. The objective of this study is to investigate the main chemical reactions involved in contaminant removal and the main causes of the reactivity decline of ZVI over time. According to the results of the model the major causes of ZVI reactivity loss is identified in the mineral precipitation of α‐FeOOH on iron surface that probably caused ZVI passivation and led to a decline of the electron transfer rate. An existing empirical relationship between mineral precipitation and the reactivity loss of ZVI, included in the model, reproduced the changes in nickel removal observed during different laboratory column tests.  相似文献   

12.
Degradation of dissolved chlorinated solvents using granular iron is an established in situ technology. This paper reports on investigations into mixing iron and bentonite with contaminated soil for in situ containment and degradation of dense nonaqueous phase liquid source zones. In the laboratory, hypovials containing soil, water, bentonite, iron, and free-phase trichloroethene (TCE) were assembled. Periodic measurement of TCE, chloride, and degradation products showed progressive degradation of TCE to nondetectable levels. Subsequently, a demonstration was conducted at Canadian Forces Base Borden near Alliston, Ontario, Canada, where, in 1991, a portion of the surficial aquifer was isolated and free-phase tetrachloroethene (PCE) was introduced. Using a drill rig equipped with large-diameter mixing blades, three mixed zones were prepared containing 0%, 5%, and 10% granular iron by volume. The bentonite was added to serve as a lubricant to facilitate injection of the iron and to isolate the contaminated zone. Analysis of core samples showed reasonably uniform distributions of iron through the mixed zones. Monitoring over a 13-month period following installation showed, relative to the control, a decline in PCE concentrations to virtually nondetectable values. Reaction rates in the laboratory tests were similar to those reported in the literature, while the rate in the field test was substantially lower. The lower rate may be a consequence of mass transfer limitations under the static conditions of the field test. Results indicate that mixing iron and bentonite into source zones may be an effective means of source-zone remediation, with the particular advantage of being relatively immune to effects of geologic heterogeneity.  相似文献   

13.
Magnetite is a natural component of many aquifers. Abiotic degradation of chlorinated solvents by magnetite can be an important mechanism for natural attenuation of these contaminants. The quantity of magnetite in aquifer materials can be estimated by measuring the magnetic susceptibility of the materials. This is most commonly done by determining the magnetic susceptibility of core samples in an analytical laboratory using a magnetic susceptibility meter. Unfortunately, the cost of acquiring core samples often makes an evaluation of abiotic degradation by magnetite economically unrealistic. Downhole sondes (probes) are available for the determination of magnetic susceptibility. In this study, a downhole sonde was evaluated as an affordable alternative to acquiring and analyzing core samples. The sonde was introduced into 10 monitoring wells. The data from the sonde were then compared to data from core samples that were collected from the same elevation as the sonde data. The core samples analyzed in the laboratory were used as the standard against which the sonde data were compared. The downhole sonde reported values that were similar to values reported on core samples. At most wells, the means of the two measurements could not be distinguished at the 95% confidence interval. When the means could be distinguished, they still agreed within a factor of two.  相似文献   

14.
Trihalomethanes (THMs) are formed by the reaction of reactive chlorine species, such as hypochlorous acid, with naturally occurring organic matter. THMs are also found in soil and groundwater at sites where releases of organic solvents have occurred and are often ascribed to the biological degradation chlorinated solvents. This research was prompted by the discovery of THMs in groundwater at a site with a reported discharge of sodium hypochlorite. This paper reports the formation of THMs in soil and water resulting from the reaction of sodium hypochlorite with soil. Soil samples were reacted with dilute bleach solutions (sodium hypochlorite) and the solution collected for analysis by gas chromatography/mass spectrometry. All THMs were detected in test samples after treatment. Concentrations of chloroform up to 2450 µg/L in aqueous extracts were detected compared to 40 µg/L in bleach and 1 µg/L in blank samples.  相似文献   

15.
Early diagenetic modification of magnetic properties is an important process in marine sediments, but temporal and spatial variability of diagenetic processes have rarely been reported for recent coastal sediments. The magnetic properties of sediments from the Ria de Vigo (NW Spain) define a marked three-part zonation with depth. The uppermost zone is magnetically dominated by (titano-)magnetite. In the intermediate zone, rapid down-core dissolution of (titano-)magnetite increases the relative influence of high-coercivity magnetic minerals, which react more slowly during reductive dissolution than (titano-)magnetite. This zone is characterized by the ubiquitous occurrence of framboidal iron sulphides. Pyrite is the dominant iron sulphide, but framboidal ferrimagnetic greigite is also frequently observed in association with pyrite. The lowermost zone is characterized by an almost complete depletion of magnetic minerals associated with progressive reduction of detrital iron oxides with depth. This zonation is controlled by organic matter diagenesis, which varies with water depth and wave-induced sediment resuspension and organic matter reoxidation in the water column. This leads to a shallowing and thinning of each zone with more intense reductive diagenesis toward the interior of the ria. Such a zonation seems to be a common feature in shallow water marine environments. If preserved, the described zonation and its spatial variability provide a potential tool for detecting estuarine-like environments in the geological record. Magnetic detection of current or past reductive conditions also has important implications for assessing paleoenvironmental proxies that are sensitive to diagenetic redox state.  相似文献   

16.
To gain perspective and insight into the performance of permeable reactive barriers containing granular iron metal, it is useful to compare the degradation kinetics of individual chlorinated solvents over a range of operating conditions. Pseudo first-order disappearance rate constants normalized to iron surface area concentration (kSA) recently have been reported for this purpose. This paper presents the results of further exploratory data analysis showing the extent to which variation in kSA is due to initial halocarbon concentration, iron type, and other factors. To aid in preliminary design calculations, representative values of kSA and a reactive transport model have been used to calculate the minimum barrier width needed for different ground water flow velocities and degrees of halocarbon conversion. Complete dechlorination of all degradation intermediates requires a wider treatment zone, but the effect is not simply additive because degradation occurs by sequential and parallel reaction pathways.  相似文献   

17.
A pilot‐scale zero valent iron (ZVI) Permeable Reactive Barrier (PRB) was installed using an azimuth‐controlled ‐vertical hydrofracturing at an industrial facility to treat a chlorinated Volatile Organic Compound (VOC) plume. Following ZVI injection, no significant reduction in concentration was observed to occur with the exception of some multilevel monitoring wells, which also showed high levels of total organic carbon (TOC). These patterns suggested that the zero valent iron was not well distributed in the PRB creating leaky conditions. The geochemical data indicated reducing conditions in these areas where VOC reduction was observed, suggesting that biotic processes, associated to the guar used in the injection of the iron, could be a major mechanism of VOC degradation. Compound‐Specific Isotope Analysis (CSIA) using both carbon and chlorine stable isotopes were used as a complementary tool for evaluating the contribution of abiotic and biotic processes to VOC trends in the vicinity of the PRB. The isotopic data showed enriched isotope values around the PRB compared to the isotope composition of the VOC source confirming that VOC degradation is occurring along the PRB. A batch experiment using site groundwater collected near the VOC source and the ZVI used in the PRB was performed to evaluate the site‐specific abiotic isotopic fractionation patterns. Field isotopic trends, typical of biodegradations were observed at the site and were different from those obtained during the batch abiotic experiment. These differences in isotopic trends combined with changes in VOC concentrations and redox parameters suggested that biotic processes are the predominant pathways involved in the degradation of VOCs in the vicinity of the PRB.  相似文献   

18.
Although intensive research on Fe(0) permeable reactive barriers (PRB) for in situ groundwater remediation has been conducted and multiple applications have been installed in the past two decades, some properties of reactive materials in use have not been fully considered and discussed yet. In the present investigation, a typical granular cast iron has been characterized with different techniques. The grain size distribution not only has an influence on the resulting pore geometry and the surface area but material properties significantly differ between fine and coarse grains. Metallographic analyses revealed large differences in both graphite inclusions and microstructures that likely influence the reactivity. Both graphite and cementite proved to be more resistant toward acidic dissolution compared to Fe0. The intrinsic material characteristics described here have not been covered in the existing PRB literature.  相似文献   

19.
We investigate magnetic phase (trans)formation in the presence of petroleum hydrocarbons and its relation to bacterial activity, in particular in the zone of remediation driven fluctuating water levels at a former military air base in the Czech Republic. In a previous study an increase of magnetite concentration from the groundwater table towards the top of the groundwater fluctuation zone (GWFZ) was reported, however with limited reliability as there was no control on small-scale effects. To recognize statistically significant magnetic signatures versus depth, we obtained multiple sediment cores from three locations in January 2011 and April 2012, penetrating the unsaturated zone, the GWFZ and the uppermost one meter below the groundwater level (~2.3 m depth at the time of sampling). Magnetic concentration variation versus depth was determined by measuring magnetic susceptibility (MS) and remanence parameters. Small-scale features were identified and eliminated by statistical processing of multiple cores. A trend of increasing MS values from the lowermost position of the groundwater table upward was verified and highest magnetic concentration was found at the top of the GWFZ. Magnetic mineralogy indicates that newly formed fine-grained magnetite in the single domain to small pseudo-single domain range is responsible for the MS enhancement confirming previous results. There is no correlation with the depth variation of hydrocarbon (HC) concentrations; however, total organic carbon is linked to MS and may represent a degradation product of HC that is bioavailable for microorganisms. Bacterial activity is likely responsible for magnetite formation as indicated by most probable number (MPN) results of iron-metabolizing bacteria. The comparison of our results with an earlier study conducted at the same site revealed that magnetic concentration clearly decreased since remediation was terminated in 2008, possibly due to dissolution of magnetite.  相似文献   

20.
A three‐dimensional model for predicting redox controlled, multi‐species reactive transport processes in groundwater systems is presented. The model equations were fully integrated within a MODFLOW‐family reactive transport code, RT3D. The model can simulate organic compound biodegradation coupled to different terminal electron acceptor processes. A computational approach, which uses the spatial and temporal distribution of the rates of different redox reactions, is proposed to map redox zones. The method allows one to quantify and visualize the biological degradation reactions occurring in three distinct patterns involving fringe, pseudo‐core and core processes. The capabilities of the numerical model are demonstrated using two hypothetical examples: a batch problem and a simplified two‐dimensional reactive transport problem. The model is then applied to an unconfined aquifer underlying a leaking landfill located near the city of Turin, in Piedmont (Italy). At this site, high organic load from the landfill leachate activates different biogeochemical processes, including aerobic degradation, denitrification, manganese reduction, iron reduction, sulfate reduction and methanogenesis. The model was able to describe and quantify these complex biogeochemical processes. The proposed model offers a rational framework for simulating coupled reactive transport processes occurring beneath a landfill site. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号