首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen transfer in the capillary fringe (CF) is of primary importance for a wide variety of biogeochemical processes occurring in shallow groundwater systems. In case of a fluctuating groundwater table two distinct mechanisms of oxygen transfer within the capillary zone can be identified: vertical predominantly diffusive mass flux of oxygen, and mass transfer between entrapped gas and groundwater. In this study, we perform a systematic experimental sensitivity analysis in order to assess the influence of different parameters on oxygen transfer from entrapped air within the CF to underlying anoxic groundwater. We carry out quasi two‐dimensional flow‐through experiments focusing on the transient phase following imbibition to investigate the influence of the horizontal flow velocity, the average grain diameter of the porous medium, as well as the magnitude and the speed of the water table rise. We present a numerical flow and transport model that quantitatively represents the main mechanisms governing oxygen transfer. Assuming local equilibrium between the aqueous and the gaseous phase, the partitioning process from entrapped air can be satisfactorily simulated. The different experiments are monitored by measuring vertical oxygen concentration profiles at high spatial resolution with a noninvasive optode technique as well as by determining oxygen fluxes at the outlet of the flow‐through chamber. The results show that all parameters investigated have a significant effect and determine different amounts of oxygen transferred to the oxygen‐depleted groundwater. Particularly relevant are the magnitude of the water table rise and the grain size of the porous medium.  相似文献   

2.
In this study, a water‐air two‐phase flow model was employed to investigate the formation, extension, and dissipation of groundwater ridging induced by recharge events in a hypothetical hillslope‐riparian zone, considering interactions between the liquid and gas phases in soil voids. The simulation results show that, after a rain begins, the groundwater table near the stream is elevated instantaneously and significantly, thereby generating a pressure gradient driving water toward both the stream (the discharge of groundwater to the stream) and upslope (the extension of groundwater ridging into upslope). Meanwhile, the airflow upslope triggered by the advancing wetting front moves downward gradually. Therefore, the extension of groundwater ridging into upslope and the downward airflow interact within a certain region. After the rain stops, groundwater ridging near the stream declines quickly while the airflow in the lower part of upslope is still moving into the hillslope. Thus, the airflow upslope mitigates the dissipation of groundwater ridging. Additionally, the development of groundwater ridging under different conditions, including rain intensity, intrinsic permeability, capillary fringe height, and initial groundwater table, was analyzed. Changes in intrinsic permeability affect the magnitude of groundwater ridging near the stream, as well as the downward speed of airflow, thereby generating highly complex responses. The capillary fringe is not a controlling factor but an influence factor on the formation of groundwater ridging, which is mainly related to the antecedent moisture. It was demonstrated that groundwater ridging also occurs where an unsaturated zone occurs above the capillary fringe with a subsurface lateral flow.  相似文献   

3.
An investigation of groundwater table fluctuations induced by rainfall should consider interactions between the liquid and gas phases in soils. In this study, a water‐air two‐phase flow model was initially verified by simulating an infiltration experiment. It was then employed to model the interactions between liquid and gas phases regarding actions of airflow on the groundwater table and the fluctuations of the phreatic level and water level in the well induced by rainfall. The effects of airflo7w caused by rainfall on phreatic level fluctuations were also studied quantitatively by comparing the results obtained using the proposed model with those obtained from a water single‐phase flow model. The simulation results show that in addition to actual recharge, compressed airflow in unsaturated zones causes the phreatic level to increase, but the rise in the phreatic level is lower than that in the pore‐air pressure head in unsaturated zones due to the mitigation of capillary fringe. The existence of airflow enhances the phreatic level rise during and after rainfall. In addition, the water level in the well, pushed by the phreatic level fluctuations, varies similarly to the phreatic level, but it experiences somewhat delayed and slightly attenuated. The Lisse effect precisely reflects the phreatic level fluctuations before actual recharge. Furthermore, the fluctuations in the phreatic level and water level in the well and the contributions of airflow to phreatic level fluctuations are affected by many factors: rain intensity, initial moisture, overlying aquitard, groundwater table depths, and screen depths of the well.  相似文献   

4.
The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. Although the tidal oscillation is damped near the shoreline, there is a quasi‐steady‐state rise in the mean water‐table position, which may have an influence on regional groundwater flow. In this paper the effects of tidal fluctuations on groundwater hydraulics are investigated using a variably saturated numerical model that includes the effects of a realistic mild beach slope, seepage face and the unsaturated zone. In particular the impact of these factors on the velocity field in the aquifer is assessed. Simulations show that the tidal fluctuation has substantial consequences for the local velocity field in the vicinity of the exit face, which affects the nearshore migration of contaminant in coastal aquifers. An overheight in the water table as a result of the tidal fluctuation is observed and this has a significant effect on groundwater discharge to the sea when the landward boundary condition is a constant water level. The effect of beach slope is very significant and simplifying the problem by considering a vertical beach face causes serious errors in predicting the water‐table position and the groundwater flux. For media with a high effective capillary fringe, the moisture retained above the water table is important in determining the effects of the tidal fluctuations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
The point velocity probe (PVP) is a device that can measure groundwater velocity at the centimeter scale, and unlike devices that measure velocity within well screens, the PVP operates while in direct contact with the porous medium. Because of this feature, it was postulated that the PVP could be effective in measuring velocity within the capillary fringe. This hypothesis was tested using a laboratory flow-through cell filled with a medium-fine sand from Canadian Forces Base Borden. The cell was constructed to simulate conditions such that the PVP was positioned from 2.5 cm below the water table to 79 cm above the water table. As the water table was lowered, the PVP gave highly consistent values of velocity over the range equivalent to 2.5 cm below the water table to 44 cm above the water table, the approximate extent of the capillary fringe. The average measured velocity was 11.3 cm/d ± 11.6%, somewhat higher than that calculated based on the measured discharge through the cell (7.5 cm/d ± 5.5%). With a further decline in the water table there was a progressive decrease in the measured velocity values, consistent with the declining hydraulic conductivity as the sand material drained. Readings could not be made beyond about 57 cm, where the water content was approximately 75% of saturation. These experiments showed that the PVP is capable of measuring groundwater velocity within the saturated zone above the water table and possibly into the unsaturated zone. Currently, this is the only instrument available with this capability.  相似文献   

6.
Groundwater ridging is the rapid rise of a shallow water table during a rainfall event, in an environment where, in the pre‐event period, the capillary fringe extends to the ground surface. Groundwater ridging is widely cited to account for the observed significant appearance of pre‐event water in a stream stormflow hydrograph. Various hypotheses have been advanced to explain the groundwater‐ridging mechanism; and most recently, from a field study site in South Africa, an energy hypothesis was proposed, which explains that groundwater‐ridging water‐table rise is a result of rapid introduction and transmission of additional pressure head into the capillary fringe from an intense rainfall at the ground surface. However, there is a need for further analysis and evidence from other field study sites to confirm and support this newly proposed energy hypothesis. The objectives of this paper are, therefore, as follows: to review previous observations on groundwater ridging, from other study sites, in order to deduce evidence of the newly proposed energy hypothesis; to present and evaluate a one‐dimensional diffusion mathematical model that can simulate groundwater‐ridging water‐table rise, based on the newly proposed energy hypothesis; and to evaluate the importance of a capillary fringe in streamflow generation. Analysis of previous observations from other study sites generally indicated that the rate of groundwater‐ridging water‐table rise is directly related to the rainfall intensity, hence confirming and agreeing with the newly proposed energy hypothesis. Additionally, theoretical results by the mathematical model agreed fairly well with the field results observed under natural rainfall, confirming that the rapidly rainfall‐induced energy is diffusively transmitted downwards through pore water, elevating the pressure head at every depth. The results in this study also support the concept of a three‐end‐member stream stormflow hydrograph and contribute to the explanation of how catchments can store water for long periods but then release it rapidly during storm events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, we attempted to analyse a drawdown pattern around a pumping well in an unconfined sandy gravelly aquifer constructed in a laboratory tank by means of both experimental and numerical modelling of groundwater flow. The physical model consisted of recharge, aquifer and discharge zones. Permeability and specific yield of the aquifer material were determined by Dupuit approximation under steady‐state flow and stepwise gravitational drainage of groundwater, respectively. The drawdown of water table in pumping and neighbouring observation wells was monitored to investigate the effect of no‐flow boundary on the drawdown pattern during pumping for three different boundary conditions: (i) no recharge and no discharge with four no‐flow boundaries (Case 1); (ii) no recharge and reservoir with three no‐flow boundaries (Case 2); (iii) recharge and discharge with two no‐flow boundaries (Case 3). Based on the aquifer parameters, numerical modelling was also performed to compare the simulated drawdown with that observed. Results showed that a large difference existed between the simulated drawdown and that observed in wells for all cases. The reason for the difference could be explained by the formation of a curvilinear type water table between wells rather than a linear one due to a delayed response of water table in the capillary fringe. This phenomenon was also investigated from a mass balance study on the pumping volume. The curvilinear type of water table was further evidenced by measurement of water contents at several positions in the aquifer between wells using time domain reflectometry (TDR). This indicates that the existing groundwater flow model applicable to an unconfined aquifer lacks the capacity to describe a slow response of water table in the aquifer and care should be taken in the interpretation of water table formation in the aquifer during pumping. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Changes in the water table level result in variable water saturation and variable hydrological fluxes at the interface between the unsaturated and saturated zone. This may influence the transport and fate of contaminants in the subsurface. The objective of this study was to examine the impact of a decreasing and an increasing water table on solute transport. We conducted tracer experiments at downward flow conditions in laboratory columns filled with two different uniform porous media under static and transient flow conditions either increasing or decreasing the water table. Tracer breakthrough curves were simulated using a mobile–immobile transport model. The resulting transport parameters were compared to identify dominant transport processes. Changes in the water table level affected dispersivities and mobile water fractions depending on the direction of water table movement and the grain size of the porous media. In fine glass beads, the water flow velocity was similar to the decline rate of the water table, and the mobile water fraction was decreased compared with steady‐state saturated conditions. However, immobile water was negligible. In coarse glass beads, water flow was faster because of fingered flow in the unsaturated part, and the mobile water fraction was smaller than in the fine material. Here, a rising water table led to an even smaller mobile water fraction and increased solute spreading because of diffusive interaction with immobile water. We conclude that changes of the water table need to be considered to correctly simulate transport in the subsurface at the transition of the unsaturated–saturated zone. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Vegetated, shallow groundwater environments typically have high environmental and economic value. A sound understanding of the complex interactions and feedbacks between surface vegetation and groundwater resources is crucial to managing and maintaining healthy ecosystems while responding to human needs. A vegetated shallow groundwater environment was modelled using the software HYDRUS 2D to investigate the effects of several combinations of soil type and root distributions on shallow groundwater resources. Three rainfall regimes coupled to both natural and anthropogenically affected groundwater conditions were used to investigate the effect that combinations of four soil types and five root distributions can have on (a) groundwater level drops, (b) groundwater depletion, (c) groundwater recharge and (d) water stress conditions. Vegetation with roots distributed across the whole unsaturated zone and vegetation with dimorphic root systems (i.e. roots having larger concentrations both near the surface and the capillary fringe) behaved differently from vegetation growing roots mainly near the saturated zone. Specifically, vegetation with roots in the unsaturated zone caused water‐table drops and groundwater depletions that were half the amount due to deep‐rooted vegetation. Vegetation with a large portion of roots near the soil surface benefited from rainfall and was less vulnerable to water‐table lowering; as such, the fraction of the total area of roots affected by water stress conditions could be 40% smaller than in the case with deep‐rooted vegetation. However, roots uniformly distributed in the unsaturated zone could halve groundwater recharge rates observed in bare soils. Our analysis provided insights that can enable the formulation of site‐ and purpose‐specific management plans to respond to both human and ecosystem water requirements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

Wetting front instability (fingered flow) accelerates solute transport through the unsaturated zone to the groundwater table. Whether fingers widen or dissipate close to the groundwater is unclear. Water flow in a two-dimensional artificial capillary fringe below a dry layer exhibiting fingered flow was investigated. The flow diverged strongly in the wet soil, suggesting that fingers dissipate. Expressions for the finger radius in dry and wet soil were combined and adapted to a soil hydraulic property parameterization popular in numerical modelling. The modified equation provided finger radii for soils in humid and arid climates. The fingers in the arid soil were excessively wide. The finger radii were used to model solute transport, assuming fingers dissipated in the subsoil. Modelling was cumbersome for the arid climate. One shower may often be insufficient to trigger fingering in arid regions with short, heavy showers. In soils with shallow groundwater, the diverging subsoil flow determines solute leaching.  相似文献   

11.
Ziyong Sun  Xiang Long  Rui Ma 《水文研究》2016,30(9):1388-1402
There is considerable interest in naturalizing flow regime on managed rivers to slow the spread of saltcedar (Tamarix ramosissima) invasion in southwestern USA or to preserve riparian forests dominated by saltcedar and other species in northwestern China. However, little is known about the responses of established saltcedar in water sources to frequent intra‐annual fluctuation of water table resulting from this new, more dynamic flow regime. This study investigates how saltcedar at a riparian site in the middle reaches of the Heihe River, northwest China, responds in water sources use to intra‐annual water table fluctuations. Stable oxygen isotope was employed to determine accurate depth at which saltcedar obtains its water supply, and soil moisture monitoring was used to determine sources of plant‐available soil water. We found that the primary zone of water uptake by saltcedar were stable at 25–60 cm depth, but the water sources used by saltcedar switched between groundwater and soil moisture with the water table fluctuations. Saltcedar derived its water from groundwater when water table was at depth less than 60 cm but switched to soil moisture at 25–60 cm depth when water table declined. It is supposed that the well‐developed clay layer at 60–80 cm depth constrained lateral roots of saltcedar to the soil layers above 60 cm, while the fine‐textured soils at this site, which were periodically resaturated by rising groundwater before the stored soil moisture had become depleted, provided an important water reservoir for saltcedar when groundwater dropped below the primary zone of fine roots. The root distribution of saltcedar may also be related to local groundwater history. The quick decline in water table in the early 1980s when the riparian saltcedar had established may strand its roots in the shallow unsaturated zone. We suggested that raising the water table periodically instead of maintaining it invariably above the rooting depth could sustain desired facultative phreatophytes while maximizing water deliveries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Dunn AM  Silliman SE 《Ground water》2003,41(6):729-734
A laboratory tank was used to study entrapment of water in coarse sand lenses above the water table and of air in coarse sand lenses below the water table. Monitoring of these experiments involved a combination of visual inspection, measurement of moisture content, and measurement of air/water pressure. The medium consisted of coarse sand lenses with various degrees of vertical connectivity embedded within a fine sand matrix. Experiments were performed under conditions of both drainage (from a fully saturated medium) and imbibition. Observations during drainage included: (1) water was trapped in the coarse sand zones above the water table at heights significantly greater than anticipated from consideration of capillary rise in the coarse sand; (2) rapid drainage of these same coarse zones occurred when air penetrated into these zones through the surrounding fine sands; and (3) prior to the time of penetration of the coarse sand by air, water pressure in the coarse zone dropped significantly below atmospheric pressure. Observations during imbibition included: (1) entrapment of air within coarse sands below the water table, (2) the pore fluids in these zones varied spatially from predominantly air to predominantly water, and (3) pressure in the trapped air phase was significantly greater than pressure in the water phase in the surrounding fine sand. Overall, these results demonstrated significant sensitivity to the geometry of the coarse sand inclusions, particularly the vertical connectivity of the coarse sand lens.  相似文献   

13.
Evapotranspiration (ET) plays a crucial role in catchment water budgets, typically accounting for more than 50% of annual precipitation falling within temperate deciduous forests. Groundwater ET is a portion of total ET that occurs where plant roots extend to the capillary fringe above the phreatic surface or induce upward movement of water from the water table by hydraulic redistribution. Groundwater ET is spatially restricted to riparian zones or other areas where the groundwater is accessible to plants. Due to the difficulty in measuring groundwater ET, it is rarely incorporated explicitly into hydrological models. In this study, we calibrated Topographic Model (TOPMODEL) using a 14‐year hydrograph record and added a groundwater ET pathway to derive a new model, Groundwater Evapotranspiration TOPMODEL (GETTOP). We inspected groundwater elevations and stream flow hydrographs for evidence of groundwater ET, examined the relationship between groundwater ET and topography, and delineated the area where groundwater ET is likely to take place. The total groundwater ET flux was estimated using a hydrological model. Groundwater ET was larger where the topography was flat and the groundwater table was shallow, occurring within about 10% of the area in a headwater catchment and accounting for 6 to 18% of total annual ET. The addition of groundwater ET to GETTOP improved the simulation of stream discharge and more closely balanced the watershed water budget. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Changes in Entrapped Gas Content and Hydraulic Conductivity with Pressure   总被引:1,自引:0,他引:1  
Water table fluctuations continuously introduce entrapped air bubbles into the otherwise saturated capillary fringe and groundwater zone, which reduces the effective (quasi‐saturated) hydraulic conductivity, Kquasi, thus impacting groundwater flow, aquifer recharge and solute and contaminant transport. These entrapped gases will be susceptible to compression or expansion with changes in water pressure, as would be expected with water table (and barometric pressure) fluctuations. Here we undertake laboratory experiments using sand‐packed columns to quantify the effect of water table changes of up to 250 cm on the entrapped gas content and the quasi‐saturated hydraulic conductivity, and discuss our ability to account for these mechanisms in ground water models. Initial entrapped air contents ranged between 0.080 and 0.158, with a corresponding Kquasi ranging between 2 and 6 times lower compared to the Ks value. The application of 250 cm of water pressure caused an 18% to 26% reduction in the entrapped air content, resulting in an increase in Kquasi by 1.16 to 1.57 times compared to its initial (0 cm water pressure) value. The change in entrapped air content measured at pressure step intervals of 50 cm, was essentially linear, and could be modeled according to the ideal gas law. Meanwhile, the changes in Kquasi with compression–expansion of the bubbles because of pressure changes could be adequately captured with several current hydraulic conductivity models.  相似文献   

15.
Abstract

Many of the hydrological and ecological functions of alluvial flood plains within watersheds depend on the water flow exchanges between the vadoze soil zone and the shallow groundwater. The water balance of the soil in the flood plain is investigated, in order to evaluate the main hydrological processes that underlie the temporal dynamics of soil moisture and groundwater levels. The soil moisture and the groundwater level in the flood plain were monitored continuously for a three-year period. These data were integrated with the results derived from applying a physically-based numerical model which simulated the variably-saturated vertical water flow in the soil. The analysis indicated that the simultaneous processes of lateral groundwater flow and the vertical recharge from the unsaturated zone caused the observed water table fluctuations. The importance of these flows in determining the rises in the water table varied, depending on soil moisture and groundwater depth before precipitation. The monitoring period included two hydrological years (September 2009–September 2011). About 13% of the precipitation vertically recharged the groundwater in the first year and about 50% in the second. The difference in the two recharge coefficients was in part due to the lower groundwater levels in the recharge season of the first hydrological year, compared to those observed in the second. In the latter year, the shallow groundwater increased the soil moisture in the unsaturated zone due to capillary rise, and so the mean hydraulic conductivity of the unsaturated soil was high. This moisture state of soil favoured a more efficient conversion of infiltrated precipitation into vertical groundwater recharge. The results show that groundwater dynamics in the flood plain are an important source of temporal variability in soil moisture and vertical recharge processes, and this variability must be properly taken into account when the water balance is investigated in shallow groundwater environments.

Citation Pirastru, M. and Niedda, M., 2013. Evaluation of the soil water balance in an alluvial flood plain with a shallow groundwater table. Hydrological Sciences Journal, 58 (4), 898–911.  相似文献   

16.
Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table fluctuations in response to precipitation; however, observed variations in soil morphology also occurred above the maximum height of observed saturation. Variations in unsaturated fluxes have been hypothesized to explain differences in soil horizon thickness and presence/absence of specific horizons but have not been explicitly investigated. We examined tensiometer and shallow groundwater well records to identify differences in unsaturated water fluxes among podzols that show distinct morphological and chemical differences. The lack of vertical hydraulic gradients at the study sites suggests that lateral unsaturated flow occurs in several of the soil units. We propose that the variations in soil horizon thickness and presence/absence observed at the site are due in part to slope‐parallel water flux in the unsaturated portion of the solum. In addition, unsaturated flow may be involved in the translocation of spodic material that primes those areas to contribute water with distinct chemistry to the stream network and represents a potential source/sink of organometallic compounds in the landscape.  相似文献   

17.
Farmed catchments in the Mediterranean area often exhibit dense networks of ditches which are also preferential zones of water table recharge, and thereby of groundwater contamination. This study presents an experimental analysis of seepage losses and related groundwater recharge patterns during a typical Mediterranean runoff event at the scale of a ditch located above a shallow water table. The objectives were (i) to evaluate the patterns of water table recharge by seepage in a ditch, (ii) to study the main flow processes occurring during recharge, and (iii) to estimate solute propagation in case of contaminated flow in the ditch. The field observation indicated three major points. Firstly, they showed that seepage losses during a runoff event in a ditch can rapidly lead to a significant recharge of a shallow water table. Secondly, the recharge induces a groundwater mound much larger than the event plume. The infiltrated water and the accompanying solutes remained in the vicinity of the ditch. The patterns of groundwater recharge and contamination appeared very different. Lastly, both unsaturated and saturated‐piston flow processes were observed which suggests that a variably‐saturated flow modelling approach ought to be used to simulate the ditch‐water shallow table interaction. Finally, the study indicates that the patterns of water table recharge and contamination in Mediterranean catchments with dense ditches network vary largely in space and time, and will require dense monitoring networks to estimate the evolution of the average contamination levels. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
This article describes a MODFLOW Infiltration Device (INFD) Package that can simulate infiltration devices and their two‐way interaction with groundwater. The INFD Package relies on a water balance including inflow of storm water, leakage‐like seepage through the device faces, overflow, and change in storage. The water balance for the device can be simulated in multiple INFD time steps within a single MODFLOW time step, and infiltration from the device can be routed through the unsaturated zone to the groundwater table. A benchmark test shows that the INFD Package's analytical solution for stage computes exact results for transient behavior. To achieve similar accuracy by the numerical solution of the MODFLOW Surface‐Water Routing (SWR1) Process requires many small time steps. Furthermore, the INFD Package includes an improved representation of flow through the INFD sides that results in lower infiltration rates than simulated by SWR1. The INFD Package is also demonstrated in a transient simulation of a hypothetical catchment where two devices interact differently with groundwater. This simulation demonstrates that device and groundwater interaction depends on the thickness of the unsaturated zone because a shallow groundwater table (a likely result from storm water infiltration itself) may occupy retention volume, whereas a thick unsaturated zone may cause a phase shift and a change of amplitude in groundwater table response to a change of infiltration. We thus find that the INFD Package accommodates the simulation of infiltration devices and groundwater in an integrated manner on small as well as large spatial and temporal scales.  相似文献   

19.
A 1-month pumping test has been carried out during the summer of 1970 in order to study the desaturation of the cone of depression and the restoration of the water level and the re-wetting during the recovery phase. The observations were continued in order to evaluate the water movements during an annual cycle.The water flux resulting from a potential difference was evaluated. A slow and long-continued drainage is due to the low permeability of the water-bearing formations. Less than half the gravitational water was removed. The specific yields obtained from nuclear methods and other more classical methods based on transient flow formulae are quite different, being, in the latter case, 10–15 times smaller.The interaction between the saturated and unsaturated zones has been determined: contrary to what we would expect, in the unsaturated zone the capillary fringe has contributed only a small part to the water flux. Measurements of soil-water content show that in the cone of depression the resaturation is not complete.During the recharge period, we have noticed a water-level rise in the absence of vertical fluxes, due to an increase of the level in the river; the water movement is controlled by the nature of the formation and the influence of the water content on the permeability. The water balance obtained from the water content measurements is close to that found by the generalized Darcy law and it gives an acceptable approximation of infiltration and evapotranspiration components. The evapotranspiration estimated by this method is, however, very different from that derived from the climatic method.A continuous inflow to the water table has been determined, but it is often insignificant. Most of the groundwater recharge is obtained by a few periods of intense precipitation during which the daily fluxes reach values 100 times higher than normal inflow. Summer rains can reach the groundwater table when their intensity and timing create conditions favourable for downward flow in the upper soil horizons.  相似文献   

20.
This paper characterizes a seasonally inundated Danish floodplain wetland in a state close to naturalness and includes an analysis of the major controls on the wetland water and nitrogen balances. The main inputs of water are precipitation and percolation during ponding and unsaturated conditions. Lateral saturated subsurface flow is low. The studied floodplain owes its wetland status to the hydraulic properties of its sediments: the low hydraulic conductivity of a silt–clay deposit on top of the floodplain maintains ponded water during winter, and parts of autumn and spring. A capillary fringe extends to the soil surface, and capillary rise from groundwater during summer maintains near‐saturated conditions in the root zone, and allows a permanently very high evapotranspiration rate. The average for the growing season of 1999 is 3·6 mm day?1 and peak rate is 5·6 mm day?1. In summer, the evapotranspiration is to a large degree supplied by subsurface storage in a confined peat layer underlying the silt–clay. The floodplain sediments are in a very reduced state as indicated by low sulphate concentrations. All nitrate transported into the wetland is thus denitrified. However, owing to modest water exchange with surrounding groundwater and surface water, denitrification is low; 71 kg NO3–N ha?1 during the study period of 1999. Reduction of nitrate diffusing into the sediments during water ponding accounts for 75% of nitrate removal. Biomass production and nitrogen uptake in above‐ground vegetation is high—8·56 t dry matter ha?1 year?1 and 103 kg N ha?1 year?1. Subsurface ammonium concentrations are high, and convective upward transport into the root zone driven by evapotranspiration amounted to 12·8 kg N ha?1year?1. The floodplain wetland sediments have a high nitrogen content, and conditions are very favourable for mineralization. Mineralization thus constitutes 72% of above‐ground plant uptake. The study demonstrates the necessity of identifying controlling factors, and to combine surface flow with vadose and groundwater flow processes in order to fully comprehend the flow and nitrogen dynamics of this type of wetland. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号