首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximately 190 kg of 2 μm‐diameter zero‐valent iron (ZVI) particles were injected into a test zone in the top 2 m of an unconfined aquifer within a trichloroethene (TCE) source area. A shear‐thinning fluid was used to enhance ZVI delivery in the subsurface to a radial distance of up to 4 m from a single injection well. The ZVI particles were mixed in‐line with the injection water, shear‐thinning fluid, and a low concentration of surfactant. ZVI was observed at each of the seven monitoring wells within the targeted radius of influence during injection. Additionally, all wells within the targeted zone showed low TCE concentrations and primarily dechlorination products present 44 d after injection. These results suggest that ZVI can be directly injected into an aquifer with shear‐thinning fluids to induce dechlorination and extends the applicability of ZVI to situations where other emplacement methods may not be viable.  相似文献   

2.
1,4‐Dioxane is totally miscible in water, sequestering in vadose pore water that can serve as a source of long‐term groundwater contamination. Although some 1,4‐dioxane is removed by conventional soil vapor extraction (SVE), remediation is typically inefficient. SVE efficiency is hindered by low Henry’s Law constants at ambient temperature and redistribution to vadose pore water if SVE wells pull 1,4‐dioxane vapors across previously clean soil. It was hypothesized that heated air injection and more focused SVE extraction (“Enhanced SVE” or XSVE) could increase the efficiency of 1,4‐dioxane vadose treatment, and this new process was tested at former McClellan Air Force Base, CA. The XSVE system had four peripheral heated air injection wells surrounding a 6.1 m × 6.1 m × 9.1 m deep treatment zone with a central vapor extraction well. After 14 months of operation, soil temperatures reached as high as ~90 °C near the injection wells and the treatment zone was flushed with ~20,000 pore volumes of injected air. Post‐treatment sampling results showed reductions of ~94% in 1,4‐dioxane and ~45% in soil moisture. Given the simplicity of the remediation system components and the promising demonstration test results, XSVE has the potential to be a cost‐effective remediation option for vadose zone soil containing 1,4‐dioxane.  相似文献   

3.
This research addresses the challenges of the lack of non‐invasive methods and poor spatiotemporal resolution associated with monitoring biogeochemical activity central to bioremediation of subsurface contaminants. Remediation efforts often include growth of biofilm to contain or degrade chemical contaminants, such as nitrates, hydrocarbons, heavy metals, and some chlorinated solvents. Previous research indicates that nuclear magnetic resonance (NMR) is sensitive to the biogeochemical processes of biofilm accumulation. The current research focuses on developing methods to use low‐cost NMR technology to support in situ monitoring of biofilm growth and geochemical remediation processes in the subsurface. Biofilm was grown in a lab‐scale radial flow bioreactor designed to model the near wellbore subsurface environment. The Vista Clara Javelin NMR logging device, a slim down‐the‐borehole probe, collected NMR measurements over the course of eight days while biofilm was cultivated in the sand‐packed reactor. Measured NMR mean log T2 relaxation times decreased from approximately 710 to 389 ms, indicating that the pore environment and bulk fluid properties were changing due to biofilm growth. Destructive sampling employing drop plate microbial population analysis and scanning electron and stereoscopic microscopy confirmed biofilm formation. Our findings demonstrate that the NMR logging tool can detect small to moderate changes in T2 distribution associated with environmentally relevant quantities of biofilm in quartz sand.  相似文献   

4.
This study evaluates the efficiency of a full‐scale, 81 m‐wide permeable reactive barrier (PRB) configured by injection of dairy whey in the downgradient region of a contaminant source zone to enhance the in situ biodegradation of high concentrations (102 to 103μg/L) of chlorinated ethenes (CEs). Ten biannual whey injections were completed in a 3.5‐year pilot phase and 1.5‐year operational phase. Improved and sustained dechlorination was observed at extraction/injection and downgradient wells in the fully‐operational phase, when dried whey masses were increased from 13.6 kg to 230–360 kg, whey slurry volumes were increased from 2300 L to 307,000–480,000 L, and extraction/injection well loops were employed for the application of whey. At extraction/injection wells, CEs decreased to low (≤10 μg/L) or undetectable levels. At downgradient wells, average trichloroethene concentrations decreased, by as much as 100% (from ≤384.2 during the pilot phase to ≤102.6 μg/L during the operational phase), while average cis‐dichloroethene concentrations decreased by as much as 57.5% (from ≤6466.1 to ≤4912.2 μg/L). Downgradient vinyl chloride averages either increased by as much as 63.8% (from ≤859.6 to ≤1407.9 μg/L) or decreased by 64.0% (from 1375.4 to 880 μg/L). Downgradient ethene + ethane averages increased by as much as 73.2% (from ≤1145.3 to ≤1347.1 μg/L). On the basis of the 2008 average market price, the estimated material cost of whey is $1.96/kg organic carbon or, for the configuration of an 81 m PRB by biannual application of 300 kg whey, $325/year. Carbon substrate cost comparisons and implications for efficient in situ treatment design are discussed.  相似文献   

5.
Regional finite‐difference models often have cell sizes that are too large to sufficiently model well‐stream interactions. Here, a steady‐state hybrid model is applied whereby the upper layer or layers of a coarse MODFLOW model are replaced by the analytic element model GFLOW, which represents surface waters and wells as line and point sinks. The two models are coupled by transferring cell‐by‐cell leakage obtained from the original MODFLOW model to the bottom of the GFLOW model. A real‐world test of the hybrid model approach is applied on a subdomain of an existing model of the Lake Michigan Basin. The original (coarse) MODFLOW model consists of six layers, the top four of which are aggregated into GFLOW as a single layer, while the bottom two layers remain part of MODFLOW in the hybrid model. The hybrid model and a refined “benchmark” MODFLOW model simulate similar baseflows. The hybrid and benchmark models also simulate similar baseflow reductions due to nearby pumping when the well is located within the layers represented by GFLOW. However, the benchmark model requires refinement of the model grid in the local area of interest, while the hybrid approach uses a gridless top layer and is thus unaffected by grid discretization errors. The hybrid approach is well suited to facilitate cost‐effective retrofitting of existing coarse grid MODFLOW models commonly used for regional studies because it leverages the strengths of both finite‐difference and analytic element methods for predictions in mildly heterogeneous systems that can be simulated with steady‐state conditions.  相似文献   

6.
7.
8.
A typhoon (Typhoon No. 10) attacked Shikoku Island and the Tyugoku area of Japan in 2004. This typhoon produced a new daily precipitation record of 1317 mm on Shikoku Island and triggered hundreds of landslides in Tokushima Prefecture. One catastrophic landslide was triggered in the Shiraishi area of Kisawa village, and destroyed more than 10 houses while also leaving an unstable block high on the slope. The unstable block kept moving after the event, showing accelerating and decelerating movement during and after rainfall and reaching a displacement of several meters before countermeasures were put into place. To examine the mechanism for this landsliding characteristic, samples (weathered serpentinite) were taken from the field, and their shear behaviours examined using ring shear tests. The test results revealed that the residual shear strength of the samples is positively dependent on the shear rate, which may provide an explanation for the continuous accelerating–decelerating process of the landsliding. The roughness of the shear surface and the microstructure of the shear zone were measured and observed by laser microscope and SEM techniques in an attempt to clarify the mechanism of shear rate effect on the residual shear strength. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Toxic and carcinogenic effects of arsenic in drinking water continue to impact people throughout the world and arsenic remains common in groundwater at cleanup sites and in areas with natural sources. Advances in groundwater remediation are needed to attain the low concentrations that are protective of human health and the environment. In this article, we present the successful use of a permeable reactive barrier (PRB) utilizing sulfate reduction coupled with zero‐valent iron (ZVI) to remediate the leading edge of a dissolved arsenic plume in a wetland area near Tacoma, Washington. A commercially available product (EHC‐M®, Adventus Americas Inc., Freeport, Illinois) that contains ZVI, organic carbon substrate, and sulfate was injected into a reducing, low‐seepage‐velocity aquifer elevated in dissolved arsenic and iron from a nearby, slag‐containing landfill. Removal effectiveness was strongly correlated with sulfate concentration, and was coincident with temporary redox potential (Eh) reductions, consistent with arsenic removal by iron sulfide precipitation. The PRB demonstrates that induced sulfate reduction and ZVI are capable of attaining a regulatory limit of 5 µg/L total arsenic, capturing of 97% of the arsenic entering the PRB, and sustaining decreased arsenic concentrations for approximately 2 years, suggesting that the technology is appropriate for consideration at other sites with similar hydrogeochemical conditions. The results indicate the importance of delivery and longevity of minimum sulfate concentrations and of maintaining sufficient dissolved organic carbon and/or microscale ZVI to precipitate FeS, a precursor phase to arsenic‐bearing pyrite that may provide a stable, long‐term sink for arsenic.  相似文献   

10.
This paper evaluates the results from three methods commonly used to estimate oil transmissivity: the modified Cooper solution (Beckett and Lyverse 2002), the modified Bouwer and Rice method (Kirkman 2013), and the modified Jacob and Lohman method (Huntley 2000). Determining the validity of oil transmissivity values is important (e.g., when used in extraction system design and operation) and not straightforward as these methods are based on different assumptions and boundary conditions and introduce different simplifying assumptions to allow for estimating oil drawdown. Data from 289 bail‐down tests performed during an oil remediation project were used in this evaluation. Analysis of these tests produced realistic transmissivity values and good correlation between these three methods, giving the authors confidence in the oil transmissivity values as this correlation is reflected across a significant number of data sets. Secondly, the nature of oil and water recharge to the wells interpreted from Kirkman's J‐ratio values largely validates the Huntley (2000) simplifying assumption that the potentiometric surface will be relatively constant during the test, allowing the use of the modified Bouwer and Rice method. Finally, the impact of oil extraction on measured oil thickness and estimated oil transmissivity was also assessed. The study showed a clear general decrease in both measured oil thicknesses and estimated oil transmissivity during the oil recovery project. However, measured oil thickness and estimated oil transmissivity are not clearly correlated, and, as a consequence, the range of decrease in one parameter does not allow any prediction of the range of decrease in the second parameter.  相似文献   

11.
Field Treatment of MTBE‐Contaminated Groundwater Using Ozone/UV Oxidation   总被引:1,自引:0,他引:1  
Methyl‐tertiary butyl ether (MTBE) is often found in groundwater as a result of gasoline spills and leaking underground storage tanks. An extrapolation of occurrence data in 2008 estimated at least one detection of MTBE in approximately 165 small and large public water systems serving 896,000 people nationally (United States Environmental Protection Agency [U.S. EPA] 2008). The objective of this collaborative field study was to evaluate a small groundwater treatment system to determine the effectiveness of ultraviolet (UV)/ozone treatment in removing MTBE from contaminated drinking water wells. A pilot‐scale advanced oxidation process (AOP) system was tested to evaluate the oxidation efficiency of MTBE and intermediates under field conditions. This system used ozone as an oxidizer in the presence of UV light at hydraulic retention times varying from 1 to 3 min. MTBE removal efficiencies approaching 97% were possible with this system, even with low retention times. The intermediate t‐butyl alcohol (TBA) was removed to a lesser extent (71%) under the same test conditions. The main intermediate formed in the oxidation process of the contaminated groundwater in these studies was acetone. The concentrations of the other anticipated intermediates t‐butyl formate (TBF), isopropyl alcohol (IPA), methyl acetate (MAc), and possible co‐occurring aromatics (BTEX) in the effluent were negligible.  相似文献   

12.
Non‐uniform distribution of biomass and the accumulation of excess biomass at the inlet of a unidirectional flow biotrickling filter (UF‐BTF) may lead to severe operating problems including increasing airflow resistance in packed bed, clogging, and low contaminant removal efficiencies, even performance loss. Therefore, a flow‐directional‐switching biotrickling filter (FDS‐BTF) was designed to improve performance such as the maximum elimination capacity and elimination efficiency. Toluene was chosen as the unique carbon source for microorganism. The results indicated that the purification performance of FDS‐BTF was superior to UF‐BTF. The maximum elimination capacity of FDS‐BTF was up to 480 g/(m3 h), which was 17.1% higher than that of UF‐BTF. After a 50‐day continuous operation, FDS‐BTF attained the stable purification performance and the outlet concentrations of toluene could meet the emission standard with inlet concentrations ranging from 720 to 1100 mg/m3 for an empty bed residence time (EBRT) of 23.9 s. The average well color development in FDS‐BTF was higher than that in UF‐BTF. It indicated that FDS‐BTF could improve the metabolic activity, which may improve the uniform distribution of biomass along the length of packed bed. When two systems were shut down, 24 and 48 h, respectively, the time that FDS‐BTF and UF‐BTF needed to restore the former elimination efficiency after a shut down of 48 h were 3–4 and 9–10 h. These data indicated that the purification performance of FDS‐BTF was superior to UF‐BTF.  相似文献   

13.
A new tracer experiment (referred to as MADE‐5) was conducted at the well‐known Macrodispersion Experiment (MADE) site to investigate the influence of small‐scale mass‐transfer and dispersion processes on well‐to‐well transport. The test was performed under dipole forced‐gradient flow conditions and concentrations were monitored in an extraction well and in two multilevel sampler (MLS) wells located at 6, 1.5, and 3.75 m from the source, respectively. The shape of the breakthrough curve (BTC) measured at the extraction well is strongly asymmetric showing a rapidly arriving peak and an extensive late‐time tail. The BTCs measured at seven different depths in the two MLSs are radically different from one another in terms of shape, arrival times, and magnitude of the concentration peaks. All of these characteristics indicate the presence of a complex network of preferential flow pathways controlling solute transport at the test site. Field‐experimental data were also used to evaluate two transport models: a stochastic advection‐dispersion model (ADM) based on conditional multivariate Gaussian realizations of the hydraulic conductivity field and a dual‐domain single‐rate (DDSR) mass‐transfer model based on a deterministic reconstruction of the aquifer heterogeneity. Unlike the stochastic ADM realizations, the DDSR accurately predicted the magnitude of the concentration peak and its arrival time (within a 1.5% error). For the multilevel BTCs between the injection and extraction wells, neither model reproduced the observed values, indicating that a high‐resolution characterization of the aquifer heterogeneity at the subdecimeter scale would be needed to fully capture 3D transport details.  相似文献   

14.
Remediation of the sites contaminated with organic contaminants, such as chlorobenzenes, remains a challenging issue. Electroosmotic flushing can be a promising approach which is based on mechanism of electrokinetic remediation for removal of organic contaminants from fluids in low‐permeability soil. To select an optimum surfactant that can effectively enhance electroosmotic flushing, three common surfactants, Triton X‐100 (EK2), Tween 80 (EK3), and a mixture of sodium dodecyl sulfate and Triton X‐100 (EK4) buffered with Na2HPO4/NaH2PO4 solution, were tested. The efficiency of each kind of surfactant was evaluated using a three‐dimensional box filled with a clayey soil spiked with 1,2,4‐trichlorobenzene, and compared with a test (EK1) without surfactant. The results demonstrated that the buffer solutions efficiently neutralized H+ and OH? produced by electrolysis. EK3 with Tween 80 added in the flushing solution reached the highest electroosmotic permeability of 10?4 cm2/v/s and achieved a notably high cumulative electroosmotic flow (EOF) of 5067 mL within 6 d, which was 6.3, 3.4, and 4.2 times higher than that in EK1, EK2, and EK4, respectively. There were 420 mL more cumulative EOF obtained after 50 h of electrical application in EK4 than in EK2. The introduction of nonreactive ions can increase the current, thereby benefiting the EOF. Both the higher pH caused by the buffer and the application of nonionic surfactants can make the zeta potential more negative, thereby increasing the EOF. Tween 80 can be recommended as the best flushing solution for removing organic contaminants from sites when electrokinetic remediation is applied.  相似文献   

15.
Water level monitoring provides essential information about the condition of aquifers and their responses to water extraction, land‐use change, and climatic variability. It is important to have a spatially distributed, long‐term monitoring well network for sustainable groundwater resource management. Community‐based monitoring involving citizen scientists provides an approach to complement existing government‐run monitoring programs. This article demonstrates the feasibility of establishing a large‐scale water level monitoring network of private water supply wells using an example from Rocky View County (3900 km2) in Alberta, Canada. In this network, community volunteers measure the water level in their wells, and enter these data through a web‐based data portal, which allows the public to view and download these data. The close collaboration among the university researchers, county staff members, and community volunteers enabled the successful implementation and operation of the network for a 5‐year pilot period, which generated valuable data sets. The monitoring program was accompanied by education and outreach programs, in which the educational materials on groundwater were developed in collaboration with science teachers from local schools. The methodology used in this study can be easily adopted by other municipalities and watershed stewardship groups interested in groundwater monitoring. As governments are starting to rely increasingly on local municipalities and conservation authorities for watershed management and planning, community‐based groundwater monitoring provides an effective and affordable tool for sustainable water resources management.  相似文献   

16.
Riparian vegetation is known to exert a number of mechanical and hydrologic controls on bank stability. In particular, plant roots provide mechanical reinforcement to a soil matrix due to the different responses of soils and roots to stress. Root reinforcement is largely a function of the strength of the roots crossing potential shear planes, and the number and diameter of such roots. However, previous bank stability models have been constrained by limited field data pertaining to the spatial and temporal variability of root networks within stream banks. In this paper, a method is developed to use root‐architecture data to derive parameters required for modeling temporal and spatial changes in root reinforcement. Changes in root numbers over time were assumed to follow a sigmoidal curve, which commonly represents the growth rates of organisms. Regressions for numbers of roots crossing potential shear planes over time showed small variations between species during the juvenile growth phase, but extrapolation led to large variations in root numbers by the time the senescent phase of the sigmoidal growth curve had been reached. In light of potential variability in the field data, the mean number of roots crossing a potential shear plane at each year of tree growth was also calculated using data from all species and an additional sigmoidal regression was run. After 30 years the mean number of roots predicted to cross a 1 m shear plane was 484, compared with species‐specific curves whose values ranged from 240 roots for black willow trees to 890 roots for western cottonwood trees. In addition, the effect of spatial variations in rooting density with depth on stream‐bank stability was modeled using the bank stability and toe erosion model (BSTEM). Three root distributions, all approximating the same average root reinforcement (5 kPa) over the top 1 m of the bank profile, were modeled, but with differing vertical distributions (concentrated near surface, non‐linear decline with depth, uniform over top meter). It was found that stream‐bank FS varied the most when the proportion of the failure plane length to the depth of the rooting zone was greatest. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The use of in‐field analysis of vapor‐phase samples to provide real‐time volatile organic compound (VOC) concentrations in groundwater has the potential to streamline monitoring by simplifying the sample collection and analysis process. A field validation program was completed to (1) evaluate methods for collection of vapor samples from monitoring wells and (2) evaluate the accuracy and precision of field‐portable instruments for the analysis of vapor‐phase samples. The field program evaluated three vapor‐phase sample collection methods: (1) headspace samples from two locations within the well, (2) passive vapor diffusion (PVD) samplers placed at the screened interval of the well, and (3) field vapor headspace analysis of groundwater samples. Two types of instruments were tested: a field‐portable gas chromatograph (GC) and a photoionization detector (PID). Field GC analysis of PVD samples showed no bias and good correlation to laboratory analysis of groundwater collected by low‐flow sampling (slope = 0.96, R2 = 0.85) and laboratory analysis of passive water diffusion bag samples from the well screen (slope = 1.03; R2 = 0.96). Field GC analysis of well headspace samples, either from the upper portion of the well or at the water‐vapor interface, resulted in higher variability and much poorer correlation (consistently biased low) relative to laboratory analysis of groundwater samples collected by low‐flow sample or passive diffusion bags (PDBs) (slope = 0.69 to 0.76; R2 = 0.60 to 0.64). These results indicate that field analysis of vapor‐phase samples can be used to obtain accurate measurements of VOC concentrations in groundwater. However, vapor samples collected from the well headspace were not in equilibrium with water collected from the well screen. Instead, PVD samplers placed in the screened interval represent the most promising approach for field‐based measurement of groundwater concentrations using vapor monitoring techniques and will be the focus of further field testing.  相似文献   

18.
19.
Control of BTEX Migration Using a Biologically Enhanced Permeable Barrier   总被引:2,自引:0,他引:2  
A permeable barrier system. consisting of a line of closely spaced wclls. was installed perpendicular to ground water flow to control the migration of a dissolved hydrocarhon plume. The wells were charged wiih concrete briquets that release oxygen and nitrate at a controlled rate. enhancing aerobic bio-degradation in the downgradient aquifer.
Laboratory batch reactor experiments were conducted to identify concrete mixtures that slowly released oxygcn over an extended time period. Concretes prepared with urea hydrogen peroxide were unsatisfactory, while concretes prepared with calcium peroxide and a proprietary formalation of magnesium peroxide (ORC®) gradually released oxygen at a steadily declining rate. The 21 percent MgO2 conerete cylinders and briquets released oxygen at measurable rates for up to 300 days, while the 14 percent CaO2 briquets were exhausted by 100 days.
A full-scale permeable barrier system using ORC was constructed at a gasoline-spill site. During the first 242 days of operation. total BTFX decreased from 17 to 3.4 mg/L. and dissolved oxygen increased from 0.4 to 1.8 mg/L. during transport through the barrier. Over time, BTEX treatment efficiencies declined. indicating the barrier system had becomc less effective in releasing oxygen and nutrients to the highly contaminated portion of the aquifer. Point dilution tests and sediment analyses performed at the conclusion of the project indicated that ihc aquifer in the vicinity of the remediation wells had been clogged by precipitation with iron minerals. This clogging is believed to result from high pH from the concrete and oxygen released by ihc ORC. Oxygen-releasing permeable barriers and other aerobic bioremediation processes should be used with caution in aquifers with high levels of dissolved iron.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号