首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical diffusion of Pb has been measured in K-feldspar (Or93) and plagioclase of 4 compositions ranging from An23 to An93 under anhydrous, 0.101 MPa conditions. The source of diffusant for the experiments was a mixture of PbS powder and ground feldspar of the same composition as the sample. Rutherford Backscattering (RBS) was used to measure Pb diffusion profiles. Over the temperature range 700–1050°C, the following Arrhenius relations were obtained (diffusivities in m2s-1):Oligoclase (An23): Diffusion normal to (001): log D = ( – 6.84 ± 0.59) – [(261 ± 13 kJ mol –1)/2.303RT]Diffusion normal to (010): log D = ( – 3.40 ± 0.50) – [(335 ± 11 kJ mol –1)/2.303RT]Andesine (An43): Diffusion normal to (001): log D = ( – 6.73 ± 0.54) – [(266 ± 12 kJ mol –1)/2.303RT] Diffusion normal to (010) appears to be only slightly slower than diffusion normal to (001) in andesine.Labradorite (An67): Diffusion normal to (001): log D = ( – 7.16 ± 0.61) – [(267 ± 13 kJ mol –1)/2.303RT] Diffusion normal to (010) is slower by 0.7 log units on average.Anorthite Diffusion normal to (010): log D = ( – 5.43 ± 0.48) – [(327 ± 11 kJ mol –1)/2.303RT]K-feldspar (Or93): Diffusion normal to (001): log D = ( – 4.74 ± 0.52) – [(309 ± 16 kJ mol –1)/2.303RT] Diffusion normal to (010): log D = ( – 5.99 ± 0.51) – [(302 ± 11 kJ mol –1)/2.303RT]In calcic plagioclase, Pb uptake is correlated with a reduction of Ca, indicating the involvement of PbCa exchange in chemical diffusion. Decreases of Na and K concentrations in sodic plagioclase and K-feldspar, respectively, are correlated with Pb uptake and increase in Al concentration (measured by resonant nuclear reaction analysis), suggesting a coupled process for Pb exchange in these feldspars. These results have important implications for common Pb corrections and Pb isotope systematics. Pb diffusion in apatite is faster than in the investigated feldspar compositions, and Pb diffusion rates in titanite are comparable to both K-feldspar and labradorite. Given these diffusion data and typical effective diffusion radii for feldspars and accessory minerals, we may conclude that feldspars used in common Pb corrections are in general less inclined to experience diffusion-controlled Pb isotope exchange than minerals used in U-Pb dating that require a common Pb correction.  相似文献   

2.
Carbonyl sulfide (COS) mixing ratioswere measured in the marine atmosphere and in airequilibrated with surface sea water during severalcruises in the North Sea and western NorthAtlantic. In April 1994, North Sea waters weresupersaturated with respect to the atmosphere,resulting in oceanic emissions of COS. Saturationratios varied between the equilibrium value of one inthe central North Sea and high values of >15 in theElbe Estuary. We observed weak diel cycles of surfacewater COS during a three day drift station. During theunderway parts of the cruise, diel COS variations weremasked by the high geographical variability of COSconcentrations in the German Bight. In August 1994, weobserved a pronounced diel cycle of COS off theFlorida coast with saturation ratios varying betweenthe equilibrium value of one in the early morning andmaximum values of four to five in the afternoon. InMarch 1995, we found COS supersaturation as well asextensive undersaturation in the western NorthAtlantic between Norfolk, VA, and Bermuda. Suchundersaturation in marine surface waters results inregional and seasonal uptake of atmospheric COS. Basedon our data and those of other researchers, weestimate the global oceanic COS net emission to bebetween 1.3 and 2.5 Gmol yr-1. This estimate is significantly smaller than previous ones which had notconsidered the possibility of COS uptake by theoceans. COS hydrolysis in the ocean has a significantinfluence on the atmospheric turnover time of COS,which we estimate to be 5.7 yr. This may contribute tothe lack of an observable increase in atmospheric COSlevels despite substantial anthropogenic emissions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The dehydration rate of hydrous rhyolitic glasses at 475–875 °C was measured by in situ infrared (IR) spectroscopy in order to determine the diffusion coefficient of water in rhyolitic glasses. The IR spectra of glass thin sections were obtained at 90-s intervals during 90 min at high temperatures, and the change in absorbance at 3550 cm–1 corresponding to total water was monitored. The diffusion coefficients obtained from dehydration rates of the rhyolitic glasses are considered to be averaged value over the water-concentration profile in the sample. The averaged apparent diffusion coefficients increase with the initial total water content from 0.20 m2 s–1 for 0.7 wt% to 0.37 m2 s–1 for 2.8 wt% at 700 °C. The apparent activation energy for the diffusion of total water decreases with increasing initial water content from 112 ± 6 kJ mol–1 for 0.7 wt% to 60 ± 17 kJ mol–1 for 4.1 wt%. Assuming a linear relation between the diffusion coefficient of total water and the total water content, the diffusion coefficients at each initial total water content were also determined. The diffusion coefficients of total water at the water contents of 0.7 and 1.9 wt% and at 0.1 MPa were best fitted by ln D=[(12.9 ± 0.8) – (111 500 ± 6400)/RT] and ln D=[(10.6 ± 0.4) – (86 800 ± 2800)/RT], respectively, and are in agreement with previous data (D in m2 s–1, T in K). The present in situ IR dehydration experiment is a rapid and effective method for the determination of water diffusivity at high temperatures.  相似文献   

4.
Crystals of hydronium jarosite were synthesized by hydrothermal treatment of Fe(III)–SO4 solutions. Single-crystal XRD refinement with R1=0.0232 for the unique observed reflections (|Fo| > 4F) and wR2=0.0451 for all data gave a=7.3559(8) Å, c=17.019(3) Å, Vo=160.11(4) cm3, and fractional positions for all atoms except the H in the H3O groups. The chemical composition of this sample is described by the formula (H3O)0.91Fe2.91(SO4)2[(OH)5.64(H2O)0.18]. The enthalpy of formation (Hof) is –3694.5 ± 4.6 kJ mol–1, calculated from acid (5.0 N HCl) solution calorimetry data for hydronium jarosite, -FeOOH, MgO, H2O, and -MgSO4. The entropy at standard temperature and pressure (So) is 438.9±0.7 J mol–1 K–1, calculated from adiabatic and semi-adiabatic calorimetry data. The heat capacity (Cp) data between 273 and 400 K were fitted to a Maier-Kelley polynomial Cp(T in K)=280.6 + 0.6149T–3199700T–2. The Gibbs free energy of formation is –3162.2 ± 4.6 kJ mol–1. Speciation and activity calculations for Fe(III)–SO4 solutions show that these new thermodynamic data reproduce the results of solubility experiments with hydronium jarosite. A spin-glass freezing transition was manifested as a broad anomaly in the Cp data, and as a broad maximum in the zero-field-cooled magnetic susceptibility data at 16.5 K. Another anomaly in Cp, below 0.7 K, has been tentatively attributed to spin cluster tunneling. A set of thermodynamic values for an ideal composition end member (H3O)Fe3(SO4)2(OH)6 was estimated: Gof= –3226.4 ± 4.6 kJ mol–1, Hof=–3770.2 ± 4.6 kJ mol–1, So=448.2 ± 0.7 J mol–1 K–1, Cp (T in K)=287.2 + 0.6281T–3286000T–2 (between 273 and 400 K).  相似文献   

5.
Within the KUSTOS program (Coastal Mass and Energy Fluxes-the Land-Sea Transition in the Southeastern North Sea) 28 to 36 German Bight stations were seasonally surveyed (summer 1994, spring 1995, winter 1995–1996) for light conditions, dissolved inorganic nutrient concentrations, chlorophylla (chla), and photosynthesis versus light intensity (P:E) parameters. Combining P:E curve characteristics with irradiance, attenuation, and chlorophyll data resulted in seasonal estimates of the spatial distribution of total primary production. These data were used for an annual estimate of the total primary production in the Bight. In winter 1996 the water throughout the German Bight was well mixed. Dissolved inorganic nutrient concentrations were relatively high (nitrogen [DIN], soluble reactive phosphorus [SRP], and silicate [Si]: 23, 1, and 10 μM, respectively). Chla levels generally were low (< 2 μg l−1) with higher concentrations (4–16 μg l−1) in North Frisian coastal waters. Phytoplankton was limited by light. Total primary production averaged 0.2 g C m−2 d−1. Two surveys in April and May 1995 captured the buildup of a strong seasonal thermo-cline accompained by the development of a typical spring diatom bloom. High nutrient levels in the mixed layer during the first survey (DIN, SRP, and Si: 46, 0.45, and 11 μM, respectively) decreased towards the second survey (DIN, SRP, and Si: 30.5, 0.12, and 1.5 μM, respectively) and average nutrient ratios shifted further towards highly imbalanced values (DIN:SRP: 136 in survey 1, 580 in survey 2; DIN:Si: 13.5 in survey 1, 96 in survey 2). Chla ranged from 2 to 16 μg l−1 for the first survey and rose to 12–50 μg l−1 in the second survey. Phytoplankton in nearshore areas continued to be light limited during the second survey, while data from the stratified regions in the open German Bight indicates SRP and Si limitation. Total primary production ranged from 4.0 to 6.3 g C m−2 d−1. During summer 1994 a strong thermal stratification was present in the German Bight proper and shallow coastal areas showed unusually warm (up to 22°C), mixed waters. Chla concentrations ranged from 2 to 18 μg l−1. P:E characteristics were relatively high despite the low nutrient regime (DIN, SRP, and Si: 2, 0.2, and 1.5 μM, respectively), resulting in overall high total primary production values with an average of 7.7 g C m−2 d−1. Based on the seasonal primary production estimates of the described surveys a budget calculation yielded a total annual production of 430 g C m−2 yr−1 for the German Bight.  相似文献   

6.
Fluoride-hydroxyl exchange equilibria between phlogopite-pargasite and phlogopite-tremolite mineral pairs were experimentally determined at 1,173K, 500 bars and 1,073–1,173 K, 500 bars respectively. The distribution of fluorine between phlogopite and pargasite was found to favor phlogopite slightly, G ex . (1,173 K)=–1.71 kJ anion–1, while in the case of phlogopite-tremolite, fluorine was preferentially incorporated in the mica, G ex . (1,073)=– 5.67 kJ anion–1 and G ex . (1,173K)=–5.84 kJ anion–1. These results have yielded new values of entropy and Gibbs energy of formation for fluortremolite, S f =–2,293.4±16.0JK–1 mol–1 and G f = –11,779.3±25.0 kJ mol–1, respectively. In addition, F-OH mineral exchange equilibria support a recent molten oxide calorimetric value for the Gibbs energy of fluorphlogopite, G f =–6,014.0±7.0 kJ mol–1, which is approximately 40 kJ mol–1 more exothermic than the tabulated value.This work performed in part at Sandia National Laboratories supported by the U.S. Department of Energy, DOE, under contract number DE-AC04-76DP00789  相似文献   

7.
A three-dimensional model for contaminant transport resulting from the dissolution of multicomponent nonaqueous phase liquid (NAPL) pools in three-dimensional saturated subsurface formations is developed. The solution is obtained numerically by a finite-difference scheme, and it is suitable for homogeneous porous media with unidirectional interstitial velocity. Each dissolved component may undergo first-order decay and may sorb under local equilibrium conditions. It is also assumed that the dissolution process is mass transfer limited. The nonaqueous phase activity coefficients of the NAPL pool components are evaluated at each time step. The model behavior is illustrated through a synthetic example with a NAPL pool consisting of a mixture of TCA (1,1,2-trichloroethane) and TCE (trichloroethylene). The numerical solution presented in this work is in good agreement with a recently developed analytical solution for the special case of a single component NAPL pool. The results indicate the importance of accounting for the necessary changes in the organic phase activity which significantly affects the equilibrium aqueous solubility.Notation C liquid phase solute concentration (solute mass/liquid volume) (M L–3) - C s single component aqueous saturation concentration (solubility) (M L–3) - C w equilibrium aqueous solubility (M L–3) - D molecular diffusion coefficient (L2 t –1) - D e effective molecular diffusion coefficient (L2 t –1) - D x longitudinal hydrodynamic dispersion coefficient (L2 t –1) - D y lateral hydrodynamic dispersion coefficient (L2 t –1) - D z hydrodynamic dispersion coefficient in the vertical direction (L2 t –1) - I() integer mode arithmetic operator - k local mass transfer coefficient (Lt –1) - k * average mass transfer coefficient (Lt –1) - L length - l x ,l y pool dimensions inx andy directions (L) - ll x ,l y x andy Cartesian coordinates of the pool origin (L) - M number of moles remaining in a pool (moles) - M initial number of moles (moles) - n finite-difference scheme time level - R retardation factor (dimensionless) - t time (t) - U x average interstitial velocity (Lt –1) - x, y, z spatial Cartesian coordinates (L) - X dimensionless mole fraction - dimensionless activity coefficient - w viscosity of water (=0.8904 cp at 25°C) - decay coefficient (t –1) - * tortuosity ( 1) - i,j, k finite-difference scheme grid indicators - p component number indicator - P total number of components - s pure single component - o nonaqueous phase - w aqueous phase  相似文献   

8.
The mineral paragonite, NaAl2[AlSi3O10 (OH)]2, has been synthesized on its own composition starting from a variety of different materials. Indexed powder data and refined cell parameters are given for both the 1M and 2M1 polymorphs obtained. The upper stability limit of paragonite is marked by its breakdown to albite + corundum + vapour. The univariant equilibria pertaining to this reaction have been established by reversing the reaction at six different pressures, the equilibrium curve running through the following intervals: 1 kb: 530°–550° C 2 kb: 555°–575° C 3 kb: 580°–600° C 5kb: 625°–640° C 6 kb: 620°–650° C 7 kb: 650°–670° C.Comparison with the upper stability limit of muscovite (Velde, 1966) shows that paragonite has a notably lower thermal stability thus explaining the field observation that paragonite is absent in many higher grade metamorphic rocks in which muscovite is still stable.The enthalpy and entropy of the paragonite breakdown reaction have been estimated. Since intermediate albites of varying structural states are in equilibrium with paragonite, corundum and H2O along the univariant equilibrium curve, two sets of data pertaining to the entropy of paragonite (S 298 0 ) as well as the enthalpy ( H f,298 0 ) and Gibbs free energy ( G f,298 0 ) of its formation were computed, assuming (1) high albite and (2) low albite as the equilibrium phase. The values are: (1) (2) S 298 0 67.8±3.9 cal deg–1 gfw–1 63.7±3.9 cal deg–1 gfw–1 H f,298 0 –1417.9±2.7 kcal gfw–1 –1420.2±2.6 kcal gfw–1 G f,298 0 –1327.4±4.0 kcal gfw–1 –1328.5±4.0 kcal gfw–1.Adapted from a part of the author's Habilitationsschrift accepted by the Ruhr University, Bochum (Chatterjee, 1968).  相似文献   

9.
The Vulsinian lavas are dominated by a suite of undersaturated leucite-bearing basic to intermediate compositions. The remaining lavas are mainly oversaturated and have shoshonitic affinities. One hundred and thirty-five samples have been analysed for major elements and most for 20 trace elements. Twenty-seven lavas have been analysed for REE. They are all perpotassic (for the undersaturated lavas: K2O/Na2O=2–8) and have very high LIL element concentrations, (e.g. Rb=400–800 ppm, Th=25–150 ppm, REE/REEcho=c.200, (LREE/HREE)cho=c.20) even in the most basic rocks.The undersaturated lavas appear to be interrelated by fractional crystallization of cpx±olivine (from 14 to 11 wt.% CaO), cpx+leu±plg±mica (from 11 to 8 wt.% CaO), cpx+leu+plg+apa+magnetite±mica (from 8 to 5 wt.% CaO), and additional sanidine (or hyalophane)±haüyne (from 5 to 3 wt.% CaO). The saturated lavas and the few slightly undersaturated shoshonite basalts are thought to be evolved from the undersaturated magma(s) by crustal contamination or mixing with silica-rich magmas. The parental Vulsinian magma having: Mg-value=c.73, Cr=300–700 ppm, Ni=100–125 ppm, Sc= 40–50 ppm, Fo89–92, Di77–97 approximates a primary, mantle-derived liquid. Enrichment in LIL elements (incl. REE) and LREE/HREE suggest a small degree of partial melting from fertile mantle; whereas the low concentrations of Na, Ti and P suggest larger degrees of partial melting. This indicates that either the primary magma or the parental mantle was metasomatized by a fluid, which previously equilibrated with subducted continental material. This model agrees with published high 18O, high 87Sr/86Sr and low 143Nd/144Nd.  相似文献   

10.
High temperature oxide melt solution calorimetry was used to study the energy associated with dislocations in quartz by comparing undeformed and deformed single crystals of synthetic quartz. Samples were deformed at 698 K, 1000–1500 MPa at a strain rate of 10–5 sec–1. Two sets of calorimetric measurements were made: (i) using a Pt capsule as a container for powdered sample, and (ii) using pellets made from sample powder without any container. For the first set of measurements, the undeformed sample with a dislocation density of enthalpy is sum of heat content H 973-H 295 and enthalpy of solution in molten lead borate at 973 K of 39.22 ± 1.00 kJ mol–1, while the sample deformed in the dislocation creep regime with a dislocation density of 6 × 1010 to 1 × 1011 cm–2 gave an enthalpy of 38.59 ± 0.78 kJ mol–1. For the second set of measurements the measured enthalpy of the undeformed sample was 38.87 ± 0.31 kJ mol–1, and that of a deformed sample with a dislocation density of 3 × 1010 to 1 × 1011 cm–2 was 38.24 ± 0.58 kJ mol–1.The present study and previous theoretical calculations and estimates are consistent and suggest that the energy associated with dislocations in quartz is 0.6 ± 0.6 kJ mol–1 for a dislocation density of 1011 cm–2; a precise value is difficult to determine because of the overlapping errors. These results indicate that for geologically realistic dislocation densities, the maximum excess energy due to dislocations would be 0.5 kJ mol–1 for most minerals; the exact value would depend on the Burgers vector as well as the shear modulus.  相似文献   

11.
The univariant reaction governing the upper stability of heulandite (CaAl2Si7O18·6H2O), heulandite=laumontite+3 quartz+2H2O (1), has been bracketed through reversal experiments at: 155±6° C, 1000 bar; 175±6° C, 1500 bar; and 180±8° C, 2000 bar. Reversals were established by determining the growth of one assemblage at the expense of the other, using both XRD and SEM studies. The standard molal entropy of heulandite is estimated to be 783.7±16 J mol–1 K–1 from the experimental brackets. Predicted standard molal Gibbs free energy and enthalpy of formation of heulandite are –9722.3±6.3 kJ mol–1 and –10524.3±9.6 kJ mol–1, respectively. The reaction (1), together with the reaction, stilbite=laumontite+3 quartz+3 H2O, defines an invariant point at which a third reaction, stilbite=heulandite+ H2O, meets. By combining the present experimental data with past work, this invariant point is located at approximately 600 bar and 140° C. Heulandite, which is stable between the stability fields of stilbite and laumontite, can occur only at pressures higher than that of the invariant point, for = P total.These results are consistent with natural parageneses in low-grade metamorphic rocks recrystallized in equilibrium with an aqueous phase in which is very close to unity.  相似文献   

12.
High-grade iron mineralisation (>65%Fe) in the North Deposit occurs as an E-W trending synclinal sheet within banded iron formation (BIF) of the Early Proterozoic Dales Gorge Member and consists of martite-microplaty hematite ore. Three hypogene alteration zones between unmineralised BIF and high-grade iron ore are observed: (1) distal magnetite-siderite-iron silicate, (2) intermediate hematite-ankerite-magnetite, and (3) proximal martite-microplaty hematite-apatite alteration zones. Fluid inclusions trapped in ankerite within ankerite-hematite veins in the hematite-ankerite-magnetite alteration zone revealed mostly H2O–CaCl2 pseudosecondary and secondary inclusions with salinities of 23.9±1.5 (1, n=38) and 24.4±1.5 (1, n=66) eq.wt.% CaCl2, respectively. Pseudosecondary inclusions homogenised at 253±59.9°C (1, n=34) and secondary inclusions at 117±10.0°C (1, n=66). The decrepitation of pseudosecondary inclusions above 350°C suggests that their trapping temperatures are likely to be higher (i.e. 400°C). Hypogene siderite and ankerite from magnetite-siderite-iron silicate and hematite-ankerite-magnetite alteration zones have similar oxygen isotope compositions, but increasingly enriched carbon isotopes from magnetite-siderite-iron silicate alteration (–8.8±0.7, 1, n=17) to hematite-ankerite-magnetite alteration zones (–4.9±2.2, 1, n=17) when compared to the dolomite in the Wittenoom Formation (0.9±0.7, 1, n=15) that underlies the deposit. A two-stage hydrothermal-supergene model is proposed for the formation of the North Deposit. Early 1a hypogene alteration involved the upward movement of hydrothermal, CaCl2-rich brines (150–250°C), likely from the carbonate-rich Wittenoom Formation (13C signature of 0.9±0.7, 1, n=15), within large-scale folds of the Dales Gorge Member. Fluid rock reactions transformed unmineralised BIF to magnetite siderite-iron silicate BIF, with subsequent desilicification of the chert bands. Stage 1b hypogene alteration is characterised by an increase in temperature (possibly to 400°C), depleted 13C signature of –4.9±2.2 (1, n=17), and the formation of hematite-ankerite-magnetite alteration and finally the crystallisation of microplaty hematite. Late Stage 1c hypogene alteration involved the interaction of low temperature (~120°C) basinal brines with the hematite-ankerite-magnetite hydrothermal assemblage leaving a porous martite-microplaty hematite-apatite mineral assemblage. Stage 2 supergene enrichment in the Tertiary resulted in the removal of residual ankerite and apatite and the weathering of the shale bands to clay.Editorial handling: B. Lehmann  相似文献   

13.
The eclogite-facies metasedimentary rocks in the Münchberg gneiss complex (T=630±30° C/P17–24 kbar) locally contain CO2–N2-rich fluid inclusions of extremely low molar volumes (32 cm3/mol) in quartz. These fluid compositions are mainly found in rocks intercalated with calcsilicate bands. Densities were determined from low-temperature phase transitions like stable or metastable homogenization (L+VL), partial homogenization (S+L+VS+L) and the transition S+LL (L = liquid, V = vapour, S = solid). The high fluid densities are in agreement with eclogite-facies pressure and temperature and subsequent amphibolite facies. CO2–N2 inclusions were not observed in adjacent eclogites nor in non-calcareous metasediments. These rock types contain predominantly H2O-rich inclusions correlating with amphibolite-facies conditions. The variation of fluid composition with lithological differences indicates local fluid gradients and speaks against a pervasive fluid flow during eclogite-facies metamorphism.  相似文献   

14.
M. Doi  G. Warren  M.E. Hodson   《Applied Geochemistry》2005,20(12):2207-2216
Ochre is an unwanted waste product that accumulates in wetlands and streams draining abandoned coal and metal mines. A potential commercial use for ochre is to remediate As contaminated soil. Arsenic contaminated soil (605 mg kg−1) was mixed with different ochres (A, B and C) in a mass ratio of 1:1 and shaken in 20 mL of deionised water. After 72 h As concentration in solution was ca. 500 μg kg−1 in the control and 1–2.5 μg kg−1 in the ochre treated experiments. In a second experiment soil:ochre mixtures of 0.05–1:1 were shaken in 20 mL of deionised water for 24 h. For Ochres A and C, as solution concentration was reduced to ca. 1 μg kg−1 by 0.2–1:1 ochre:soil mixtures. For Ochre B, as concentration only reached ca. 1 μg kg−1 in the 1:1 ochre:soil mix. Sorption of As was best modelled by a Freundlich isotherm using As sorption per mass of goethite in the ochre (log K = 1.64, n = 0.79, R2 = 0.76, p 0.001). Efficiency of ochre in removing As from solution increased with increasing total Fe, goethite, citrate dithionite extractable Fe and surface area.  相似文献   

15.
Reversed univariant hydrothermal phase-equilibrium reactions, in which a redox reaction occurs and is controlled by oxygen buffers, can be used to extract thermochemical data on minerals. The dominant gaseous species present, even for relatively oxidizing buffers such as the QFM buffer, are H2O and H2; the main problem is to calculate the chemical potentials of these components in a binary mixture. The mixing of these two species in the gas phase was assumed by Eugster and Wones (1962) to be ideal; this assumption allows calculation of the chemical potentials of the two components in a binary gas mixture, using data in the literature. A simple-mixture model of nonideal mixing, such as that proposed by Shaw (1967), can also be combined with the equations of state for oxygen buffers to permit derivation of the chemical potentials of the two components. The two mixing models yield closely comparable results for the more oxidizing buffers such as the QFM buffer. For reducing buffers such as IQF, the nonideal-mixing correction can be significant and the Shaw model is better.The procedure of calculation of mineralogical thermochemical data, in reactions where hydrogen and H2O simultaneously appear, is applied to the experimental data on annite, given by Wones et al. (1971), and on almandine, given by Hsu (1968). For annite the results are: Standard entropy of formation from the elements, S f 0 (298, 1)=–283.35±2.2 gb/gf, S 0 (298, 1) =+92.5 gb/gf. G f 0 (298, 1)=–1148.2±6 kcal, and H f 0 (298, 1)=–1232.7±7 kcal. For almandine, the calculation takes into account the mutual solution of FeAl2O4 (Hc) in magnetite and of Fe3O4 (Mt) in hercynite and the temperature dependence of this solid solution, as given by Turnock and Eugster (1962); the calculations assume a regular-solution model for this binary spinel system. The standard entropy of formation of almandine, S f,A 0 (298, 1) is –272.33±3 gb/gf. The third law entropy, S 0 (298, 1) is +68.3±3 gb/gf, a value much less than the oxide-sum estimate but the deviation is nearly the same as that of grossularite, referring to a comparable set of oxide standard states. The Gibbs free energy G f,A 0 (298, 1) is –1192.36±4 kcal, and the enthalpy H f,A 0 (298, 1) is –1273.56±5 kcal.Publication authorized by the Director, U. S. Geological Survey.  相似文献   

16.
Hornblende- and clinopyroxene-phyric lamprophyre dykes exposed in the Roaring River Complex, Superior Province are alkaline, nepheline-normative, basaltic compositions (>50 wt% SiO2), that range from primitive to fractionated [Mg/(Mg + total Fe)=0.66–0.40; Ni=200–35 ppm], and which have high abundances of light rare earth elements (REE) [(Ce/Yb)n=16–26, Cen=60–300; n = chondrite normalized], Sr (870–1,800 ppm), P2O5 (0.4–1.3 wt%), and Ba (150–900 ppm). Crystal fractionation of the lamprophyres produced coeval gabbro and clinopyroxenite cumulate bodies. A whole-rock Sm–Nd isochron for lamprophyres and gabbro-pyroxenite yields a crystallization age of 2,667±51 Ma Ma (I=0.50929±0.0004; Nd = + 2.3 0.7). Whole-rock Sr isotope data are scattered, but suggest an initial 87Sr/86Sr ratio of 0.7012, similar to bulk Earth. The elevated levels of light REEs and Sr in the lamprophyres were not due to crustal contamination or mixing with contemporaneous monzodioritic magmas, but a result of partial melting of a mantle source which was enriched in these and other large-ion-lithophile elements (LILEs) shortly before melting. The lamprophyres were contemporaneous with mantle-derived, high-Mg, LILE-enriched monzodiorite to granodiorite of the Archean sanukitoid suite. Both suites have concave-downward light REE profiles, suggesting that depleted mantle was common to their source regions, but the higher light REE abundances, higher Ba/La ratios, and lower Nd values (+1.3±0.3) of the parental monzodiorites suggest a more enriched source. The lamprophyres and high-Mg monzodiorites were derived from a mineralogically and compositionally heterogeneous, LILE-enriched mantle lithosphere that may have been part of a mantle wedge above a subducting plate in an arc environment.  相似文献   

17.
Late Neoproterozoic (ca. 580 Ma), high-K, mafic-intermediate rocks represent voluminous bimodal magmatism in the Borborema Province, northeast Brazil. These rocks show the following chemical signatures that reflect derivation from a subduction-modified lithospheric mantle source: (1) enrichment in large ion lithophile elements (Rb, Ba, K, Th) and light rare-earth elements (REE) (La/YbCN=11–70), (2) pronounced negative Nb anomalies, and (3) radiogenic Sr (0.71202–0.7059) and unradiogenic Nd (Nd from −9.3–−20.1) isotopic compositions. TDM model ages suggest that modification of the lithospheric mantle source (metasomatised garnet lherzolite) may have occurred in the Paleoproterozoic during the Transamazonian/Eburnean tectonics that affected the region. Interaction with asthenospheric fluids is believed to have partially melted this enriched source in the Neoproterozoic, probably as a result of asthenosphere-derived fluid percolation in the Brasiliano/Pan-African shear zones that controlled the emplacement of these mafic-intermediate magmas. The involvement of this asthenospheric component is supported by the nonradiogenic Pb isotopic ratios (206Pb/204Pb=16–17.3, 207Pb/204Pb=15.1–15.6, 208Pb/204Pb=36–37.5), which contrast with the enriched Sr and Nd compositions and thereby suggest the decoupling of Rb–Sr, Sm–Nd, and U–Pb systems at the time of intrusion of the mafic-intermediate magmas in the crust.  相似文献   

18.
Available experimental data on mixing of disordered C2/c clinopyroxenes in the system diopside-jadeite-hedenbergite-acmite are reviewed and evaluated. Because the methods used to determine jadeite activity suffer from severe uncertainty at high jadeite mol fractions, these data cannot be used to infer asymmetry in the jadeite-diopside or the jadeite-hedenbergite solid solutions. If the measurement uncertainties are taken into account, a single parameter (regular, or reciprocal energy) suffices to describe the mixing properties of these two solid solutions. It is argued that a two-site entropy of mixing satisfies the experiments and is consistent with the C2/c disordered nature of the solid solutions; the data in the range 600–1300° C are consistent with a temperature-independent interaction energy, implying no discernible excess entropy. The available experimental data imply W=26±2 kJ mol–1 for jd-di, and W=25±3 kJ mol–1 for jd-hd, solid-solutions. Landau theory for a tricritical phase transformation (C2/c-P2/n) is in good agreement with the calorimetrically determined disordering enthalpy, and may be used to derive a simple expression for the activities in ordered omphacite solid solutions. The derived activities of jadeite at 600° C in ordered omphacites are remarkably close to those reported previously for short-range ordered pyroxenes. A simple model is presented for determining the activities of end-members in the system jadeite-diopside-hedenbergite-acmite.  相似文献   

19.
Australian Proterozoic gold-producing deposits, emplaced mainly at 1.55–2.00 Ga, are divided into the following categories: (1) iron oxide-dominated, brecciahosted, Cu-U±Au replacement deposits spatially associated with felsic intrusions (273t Au); (2) stratabound Au±Cu-bearing iron formations (152.4t Au); (3) unconformity-style U ±Cu/PGM/Au deposits (53t Au); (4) Iron oxide-dominated Au±Cu mineralisation hosted within elements of ductile deformation (146.7t Au); (5) Broken Hill and volcanic-hosted massive sulphides (150t Au); (6) iron-sulphide-dominated veins and replacement zones spatially related to felsic intrusions (150.7t Au), and (7) iron-sulphide-dominated veins and replacement zones spatially related to elements of regional deformation (159.9t Au). Categories (1) to (4) are mainly confined to Proterozoic rocks, constituting an association in which Au and Cu are commonly present together, with variable amounts of U, Bi, Co, W, Se, Te and REE. Most examples in categories 1–4 fall into either of two groups: Cu-Aumagnetite ±hematite types formed at relatively high temperature (300–450 °C), and Cu-U±Au-hematite types formed at 150–300 °C. We postulate that these ores formed from a common high salinity (15–35 wt. % NaCl equiv.), low total sulphur (aS = 10–3 to 10–2), high fO2 fluid-type, in which metal transport was dominated by chloride-complexing. The most effective method of metal deposition was fluid mixing, achieving a synchronous decrease in fO2 and temperature. This unusual oxidised fluid association was favoured in high heat-flow extensional settings containing oxidised and/or oxidised-evaporitic sedimentary sequences. The intrusion of oxidised fractionated granites, which are commonly temporally associated with metal emplacement, acted in some places to heat and focus basinal fluids, and in others was the ultimate source of metals.  相似文献   

20.
Zusammenfassung Rooseveltit findet sich in der Oxidationszone der Lagerstätten San Francisco de los Andes und Cerro Negro de la Aguadita, in der Provinz San Juan, Argentinien, auf 30°22 S und 69°33 W. Er bildet sehr feinkörnige, weiß-graue, nach Bismuthinit pseudomorphe Aggregate. Die Brechungsindizes liegen zwischenn=2,10 und 2,30. Die Vickershärte beträgt 513 (4–5 der Mohs'schen Härteskala). Mittels Elektronenmikrosonde wurde folgende chemische Zusammensetzung bestimmt: As=21,5±1%, Bi=60,9±2%. Rooseveltit ist monoklin mita 0=6,878(1)Å, b0=7,163(1) Å, c0=6,735(1) Å, =104° 46±1, Z=4, calc.=6,94 g·cm–3, RaumgruppeP 21/n.Rooseveltit wurde nach drei verschiedenen Methoden synthetisiert. Die Pulverdiagramme der synthetischen Produkte stimmen mit dem des Minerals überein. Die Brechungsindizes wurden mitn =2,13(2) bzw. n=2,25(2) und die Dichte mit obs.=7,01 g·cm–3 bestimmt. Zellparameter: a0-6,882(1) Å, b0=7,164(1) Å, c0=6,734(1) Å, =104° 50,5±0,7, calc.=6,94 g·cm–3. Das synthetische Material schmilzt um 950°C. Selbst nach mehrstündigem Erhitzen auf 920°C läßt sich keine Veränderung im Pulverdiagramm des Minerals festellen.Es wird versucht, die natürliche Bildung des Rooseveltits zu erklären.
Rooseveltite from San Francisco de los Andes and Cerro Negro de la Aguadita, San Juan, Argentina
Summary Rooseveltite occurs in the weathering zone of the San Francisco de los Andes and Cerro Negro de la Aguadita mines, located in the San Juan Province, Argentina, at 30° 22S and 69° 33W. It appears in grey, finegrained aggregates pseudomorph after bismuthinite. Refraction index ranges fromn=2.10 to 2.30. The Vickers microhardness is 513 (4–5 of Mohs' scale). Chemical composition from electron micro probe measurements is As 21.5±1% and Bi 60.9±2%. Rooseveltite is monoclinic, with a0=6.878(1) Å, b0=7.163(1) Å, c0=6.735(1) Å, =104° 46±1, Z=4, calc.=6,94 g·cm–3, space groupP 21/n.The synthetic compound was prepared by three different methods. The powder pattern are the same as that of the mineral. Refraction index n=2.13(2) and n=2.25(2). The measured specific gravity is pobs.=7,01 g·cm–3. Cell parameters: a0=6.882(1) Å, b0=7.164(1) Å,c 0=6.734(1) Å, =104° 50.5±0.7, calc.=6,94 g·cm–3. The synthetic material melts at about 950°C. After heating to 920°C no variations were observed in the powder diagram of the mineral.It is tried to explain the formation of rooseveltite in natural environment.


Mit 2 Abbildungen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号