首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present colour–magnitude diagrams for two rich (≈104 M) Large Magellanic Cloud star clusters with ages ≈107 yr, constructed from optical and near-infrared data obtained with the Hubble Space Telescope . These data are part of an HST project to study LMC clusters with a range of ages. In this paper we investigate the massive star content of the young clusters, and determine the cluster ages and metallicities, paying particular attention to Be-star and blue-straggler populations and evidence of age spreads. We compare our data with detailed stellar-population simulations to investigate the turn-off structure of ≈25 Myr stellar systems, highlighting the complexity of the blue-straggler phenomenon.  相似文献   

2.
Using the MegaCam imager on the Canada–France–Hawaii Telescope, we have resolved individual stars in the outskirts of the nearby large spiral galaxy M81 (NGC 3031) well below the tip of the red giant branch of metal-poor stellar populations over  ∼60 × 58 kpc2  . In this paper, we report the discovery of new young stellar systems in the outskirts of M81. The most prominent feature is a chain of clumps of young stars distributed along the extended southern H  i tidal arm connecting M 81 and NGC 3077. The colour–magnitude diagrams of these stellar systems show plumes of bright main sequence stars and red supergiant stars, indicating extended events of star formation. The main sequence turn-offs of the youngest stars in the systems are consistent with ages of ∼40 Myr. The newly reported stellar systems show strong similarities with other known young stellar systems in the debris field around M81, with their properties best explained by these systems being of tidal origin.  相似文献   

3.
The mass of unresolved young star clusters derived from spectrophotometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for. We quantify this effect for a large set of cluster parameters, including variations in the stellar initial mass function (IMF), the intrinsic cluster mass, and mean mass density. Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive a scheme to recover the real cluster mass given measured half-light radius, one-dimensional velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent mass through the parameter η. When we compute η for rich star clusters, we find non-monotonic evolution in time when the IMF stretches beyond a critical cut-off mass of  25.5 M  . We also monitor the rise of colour gradients between the inner and outer volume of clusters: we find trends in time of the stellar IMF power indices overlapping well with those derived for the Large Magellanic Cloud cluster NGC 1818 at an age of 30 Myr. We argue that the core region of massive Antennae clusters should have suffered from much segregation despite their low ages. We apply these results to a cluster mass function, and find that the peak of the mass distribution would appear to observers shifted to lower masses by as much as 0.2 dex. The star formation rate derived for the cluster population is then underestimated by from 20 to 50 per cent.  相似文献   

4.
We present   UBV  I c   CCD photometry of the young open cluster Be 59 with the aim to study the star formation scenario in the cluster. The radial extent of the cluster is found to be ∼10 arcmin (2.9 pc). The interstellar extinction in the cluster region varies between   E ( B − V ) ≃ 1.4  to 1.8 mag. The ratio of total-to-selective extinction in the cluster region is estimated as  3.7 ± 0.3  . The distance of the cluster is found to be  1.00 ± 0.05 kpc  . Using near-infrared (NIR) colours and slitless spectroscopy, we have identified young stellar objects (YSOs) in the open cluster Be 59 region. The ages of these YSOs range between <1 and ∼2 Myr, whereas the mean age of the massive stars in the cluster region is found to be ∼2 Myr. There is evidence for second-generation star formation outside the boundary of the cluster, which may be triggered by massive stars in the cluster. The slope of the initial mass function, Γ, in the mass range  2.5 < M /M≤ 28  is found to be  −1.01 ± 0.11  which is shallower than the Salpeter value (−1.35), whereas in the mass range  1.5 < M /M≤ 2.5  the slope is almost flat. The slope of the K -band luminosity function is estimated as  0.27 ± 0.02  , which is smaller than the average value (∼0.4) reported for young embedded clusters. Approximately 32 per cent of Hα emission stars of Be 59 exhibit NIR excess indicating that inner discs of the T Tauri star (TTS) population have not dissipated. The Midcourse Space Experiment (MSX) and IRAS-HIRES images around the cluster region are also used to study the emission from unidentified infrared bands and to estimate the spatial distribution of optical depth of warm and cold interstellar dust.  相似文献   

5.
Recent observational studies of intermediate-age star clusters (SCs) in the Large Magellanic Cloud (LMC) have reported that a significant number of these objects show double main-sequence turn-offs (DMSTOs) in their colour-magnitude diagrams (CMDs). One plausible explanation for the origin of these DMSTOs is that the SCs are composed of two different stellar populations with age differences of ∼300 Myr. Based on analytical methods and numerical simulations, we explore a new scenario in which SCs interact and merge with star-forming giant molecular clouds (GMCs) to form new composite SCs with two distinct component populations. In this new scenario, the possible age differences between the two different stellar populations responsible for the DMSTOs are due largely to secondary star formation within GMCs interacting and merging with already-existing SCs in the LMC disc. The total gas masses being converted into new stars (i.e. the second generation of stars) during GMC-SC interaction and merging can be comparable to or larger than the masses of the original SCs (i.e. the first generation of stars) in this scenario. Our simulations show that the spatial distributions of new stars in composite SCs formed from GMC-SC merging are more compact than those of stars initially in the SCs. We discuss both advantages and disadvantages of the new scenario in explaining fundamental properties of SCs with DMSTOs in the LMC and in the Small Magellanic Cloud (SMC). We also discuss the merits of various alternative scenarios for the origin of the DMSTOs.  相似文献   

6.
Emission-line stars in young open clusters are identified to study their properties, as a function of age, spectral type and evolutionary state. 207 open star clusters were observed using the slitless spectroscopy method and 157 emission stars were identified in 42 clusters. We have found 54 new emission-line stars in 24 open clusters, out of which 19 clusters are found to house emission stars for the first time. About 20 per cent clusters harbour emission stars. The fraction of clusters housing emission stars is maximum in both the 0–10 and 20–30 Myr age bin (∼40 per cent each). Most of the emission stars in our survey belong to Classical Be class (∼92 per cent) while a few are Herbig Be stars (∼6 per cent) and Herbig Ae stars (∼2 per cent). The youngest clusters to have Classical Be stars are IC 1590, NGC 637 and 1624 (all 4 Myr old) while NGC 6756 (125–150 Myr) is the oldest cluster to have Classical Be stars. The Classical Be stars are located all along the main sequence (MS) in the optical colour–magnitude diagrams (CMDs) of clusters of all ages, which indicates that the Be phenomenon is unlikely due to core contraction near the turn-off. The distribution of Classical Be stars as a function of spectral type shows peaks at B1–B2 and B6–B7 spectral types. The Be star fraction [N(Be)/N(B+Be)] is found to be less than 10 per cent for most of the clusters and NGC 2345 is found to have the largest fraction (∼26 per cent). Our results indicate there could be two mechanisms responsible for the Classical Be phenomenon. Some are born Classical Be stars (fast rotators), as indicated by their presence in clusters younger than 10 Myr. Some stars evolve to Classical Be stars, within the MS lifetime, as indicated by the enhancement in the fraction of clusters with Classical Be stars in the 20–30 Myr age bin.  相似文献   

7.
Recent images taken with the Hubble Space Telescope ( HST ) of the interacting disc galaxies NGC 4038/4039 (the Antennae) reveal clusters of many dozens and possibly hundreds of young compact massive star clusters within projected regions spanning about 100 to 500 pc. It is shown here that a large fraction of the individual star clusters merge within a few tens to a hundred Myr. Bound stellar systems with radii of a few hundred parsecs, masses ≲ 109 M⊙ and relaxation times of 1011 − 1012 yr may form from these. These spheroidal dwarf galaxies contain old stars from the pre-merger galaxy and much younger stars formed in the massive star clusters, and possibly from later gas accretion events. The possibility that star formation in the outer regions of gas-rich tidal tails may also lead to superclusters is raised. The mass-to-light ratio of these objects is small, because they contain an insignificant amount of dark matter. After many hundred Myr such systems may resemble dwarf spheroidal satellite galaxies with large apparent mass-to-light ratios, if tidal shaping is important.  相似文献   

8.
We present a CCD photometric and mass function study of nine young Large Magellanic Cloud star clusters, namely NGC 1767, 1994, 2002, 2003, 2006, SL 538, NGC 2011, 2098 and 2136. BV RI data, reaching down to   V ∼ 21  mag, were collected from the 3.5-m NTT/EFOSC2 in subarcsec seeing conditions. For NGC 1767, 1994, 2002, 2003, 2011 and 2136, broad-band photometric CCD data are presented for the first time. Seven of the nine clusters have ages between 16 and 25 Myr, and the other two have ages of  32 ± 4 Myr  (NGC 2098) and  90 ± 10 Myr  (NGC 2136). For the seven youngest clusters, the age estimates based on a recent model and the integrated spectra are found to be systematically lower (∼10 Myr) than the present estimates. In the mass range  ∼2–12 M  , the mass function slopes for eight out of nine clusters were found to be similar, with the value of γ ranging from  −1.90 ± 0.16  to  −2.28 ± 0.21  . For NGC 1767 the slope is flatter, with  γ=−1.23 ± 0.27  . Mass segregation effects are observed for NGC 2002, 2006, 2136 and 2098. This is consistent with the findings of Kontizas and colleagues for NGC 2098. The presence of mass segregation in these clusters could be an imprint of the star formation process, as their ages are significantly smaller than their dynamical evolution time. The mean mass function slope of  γ=−2.22 ± 0.16  derived for a sample of 25 young (≤100 Myr) dynamically unevolved Large Magellanic Cloud stellar systems provides support for the universality of the initial mass function in the intermediate-mass range  ∼2–12 M  .  相似文献   

9.
Stellar photometry derived from the INT/WFC Photometric Hα Survey (IPHAS) of the Northern Galactic plane can be used to identify large, reliable samples of A0–A5 stars. For every A-type star, so identified, it is also possible to derive individual reddening and distance estimates, under the assumption that most selected objects are on or near the main sequence, at a mean absolute r ' magnitude of 1.5–1.6. This study presents the method for obtaining such samples and shows that the known reddenings and distances to the open clusters NGC 7510 and NGC 7790 are successfully recovered. A sample of over 1000 A-type stars is then obtained from IPHAS data in the magnitude range  13.5 < r ' < 20  from the region of sky including the massive northern OB association Cyg OB2. An analysis of these data reveals a concentration of ∼200 A stars over an area about a degree across, offset mainly to the south of the known 1–3 Myr old OB stars in Cyg OB2: their dereddened r ' magnitudes fall in the range 11.8–12.5. These are consistent with a ∼7 Myr old stellar population at distance modulus DM = 10.8, or with an age of ∼5 Myr at DM = 11.2. The number of A-type stars found in this clustering alone is consistent with a lower limit to the cluster mass of  ∼104 M  .  相似文献   

10.
The study of young stellar populations has revealed that most stars are in binary or higher order multiple systems. In this study, the influence on the stellar initial mass function (IMF) of large quantities of unresolved multiple massive stars is investigated by taking into account the stellar evolution and photometrically determined system masses. The models, where initial masses are derived from the luminosity and colour of unresolved multiple systems, show that even under extreme circumstances (100 per cent binaries or higher order multiples), the difference between the power-law index of the mass function (MF) of all stars and the observed MF is small (≲0.1). Thus, if the observed IMF has the Salpeter index  α= 2.35  , then the true stellar IMF has an index not flatter than  α= 2.25  . Additionally, unresolved multiple systems may hide between 15 and 60 per cent of the underlying true mass of a star cluster. While already a known result, it is important to point out that the presence of a large number of unresolved binaries amongst pre-main-sequence stars induces a significant spread in the measured ages of these stars even if there is none. Also, lower mass stars in a single-age binary-rich cluster appear older than the massive stars by about 0.6 Myr.  相似文献   

11.
We study the stellar mass assembly of the Spiderweb galaxy  (MRC 1138−262)  , a massive   z = 2.2  radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties are determined by fitting stellar population models to their rest-frame ultraviolet to optical spectral energy distributions. We find that within 150 kpc of the radio galaxy the stellar mass is centrally concentrated in the radio galaxy, yet most of the dust-uncorrected, instantaneous star formation occurs in the surrounding low-mass satellite galaxies. We predict that most of the galaxies within 150 kpc of the radio galaxy will merge with the central radio galaxy by   z = 0  , increasing its stellar mass by up to a factor of ≃2. However, it will take several hundred Myr for the first mergers to occur, by which time the large star formation rates are likely to have exhausted the gas reservoirs in the satellite galaxies. The tidal radii of the satellite galaxies are small, suggesting that stars and gas are being stripped and deposited at distances of tens of kpc from the central radio galaxy. These stripped stars may become intracluster stars or form an extended stellar halo around the radio galaxy, such as those observed around cD galaxies in cluster cores.  相似文献   

12.
In this study we present the results from realistic N -body modelling of massive star clusters in the Magellanic Clouds. We have computed eight simulations with   N ∼ 105  particles; six of these were evolved for at least a Hubble time. The aim of this modelling is to examine in detail the possibility of large-scale core expansion in massive star clusters, and search for a viable dynamical origin for the radius–age trend observed for such objects in the Magellanic Clouds. We identify two physical processes which can lead to significant and prolonged cluster core expansion – mass-loss due to rapid stellar evolution in a primordially mass-segregated cluster, and heating due to a retained population of stellar mass black holes, formed in the supernova explosions of the most massive cluster stars. These two processes operate over different time-scales and during different periods of a cluster's life. The former occurs only at early times and cannot drive core expansion for longer than a few hundred Myr, while the latter typically does not begin until several hundred Myr have passed, but can result in core expansion lasting for many Gyr. We investigate the behaviour of each of these expansion mechanisms under different circumstances – in clusters with varying degrees of primordial mass segregation, and in clusters with varying black hole retention fractions. In combination, the two processes can lead to a wide variety of evolutionary paths on the radius–age plane, which fully cover the observed cluster distribution and hence define a dynamical origin for the radius–age trend in the Magellanic Clouds. We discuss in some detail the implications of core expansion for various aspects of globular cluster research, as well as the possibility of observationally inferring the presence of a significant population of stellar mass black holes in a cluster.  相似文献   

13.
The radial distribution of globular clusters in galaxies is always less peaked to the centre than that of the halo stars. Extending previous work to a sample of Hubble Space Telescope globular cluster systems in ellipticals, we evaluate the number of clusters potentially lost to the galactic centre as the integrals of the difference between the observed globular cluster system distribution and the underlying halo light profile. In the sample of galaxies examined it is found that the initial populations of globular clusters may have been ∼30 per cent to 50 per cent richer than now. If these 'missing' globular clusters have decayed and have been partly destroyed in the very central galactic zones, they have carried there a significant quantity of mass that, plausibly, contributed to the formation and feeding of a massive object therein. It is relevant to note that the observed correlation between the core radius of the globular cluster system and the parent galaxy luminosity can be interpreted as a result of evolution.  相似文献   

14.
Evolutionary synthesis of stellar populations: a modular tool   总被引:1,自引:0,他引:1  
A new tool for the evolutionary synthesis of stellar populations is presented, which is based on three independent matrices, giving respectively (1) the fuel consumption during each evolutionary phase as a function of stellar mass, (2) the typical temperatures and gravities during such phases, and (3) the colours and bolometric corrections as functions of gravity and temperature. The modular structure of the code allows one easily to assess the impact on the synthetic spectral energy distribution of the various assumptions and model ingredients, such as, for example, uncertainties in stellar evolutionary models, the mixing length, the temperature distribution of horizontal branch stars, asymptotic giant branch mass loss, and colour–temperature transformations. The so-called 'AGB phase transition' in Magellanic Cloud clusters is used to calibrate the contribution of the thermally pulsing asymptotic giant branch phase to the synthetic integrated luminosity. As an illustrative example, solar-metallicity ( Y  = 0.27, Z  = 0.02) models, with ages ranging between 30 Myr and 15 Gyr and various choices for the slope of the initial mass function, are presented. Synthetic broad-band colours and the luminosity contributions of the various evolutionary stages are compared with Large Magellanic Cloud and Galactic globular cluster data. In all these cases, a good agreement is found. Finally, the evolution is presented of stellar mass-to-light ratios in the bolometric and U B V R K passbands, in which the contribution of stellar remnants is accounted for.  相似文献   

15.
We carried out Washington system photometry of the intermediate-age Large Magellanic Cloud (LMC) star clusters NGC 2155 and SL 896 (LW 480). We derive ages and metallicities from the T 1 versus     colour–magnitude diagrams (CMDs). For the first time an age has been obtained for SL 896,     . For NGC 2155 we derive     . The two clusters basically define the lower age limit of the LMC age gap. In particular, NGC 2155 is confirmed as the oldest intermediate-age LMC cluster so far studied. The derived metallicities are     and     for NGC 2155 and SL 896, respectively. We also studied the CMDs of the surrounding fields, which have a dominant turn-off comparable to that of the clusters themselves, and similar metallicity, showing that one is dealing with an intermediate-age disc where clusters and field stars have the same origin. We inserted the present clusters in the LMC and Small Magellanic Cloud (SMC) age–metallicity relations, using a set of homogeneous determinations with the same method as in our previous studies, now totalling 15 LMC clusters and four SMC clusters, together with some additional values from the literature. The LMC and SMC age–metallicity relations appear to be remarkably complementary, since the SMC was actively star-forming during the LMC quiescent age gap epoch.  相似文献   

16.
Colour–magnitude diagrams (CMDs) are presented for the first time for 10 star clusters projected on to the Small Magellanic Cloud (SMC). The photometry was carried out in the Washington system C and T 1 filters allowing the determination of ages by means of the magnitude difference between the red giant clump and the main-sequence turnoff (MSTO), and metallicities from the red giant branch (RGB) locus. The clusters all have ages in the range 1.5–4 Gyr and metallicities between  −1.3 < [Fe/H] < −0.6  , with respective errors of ∼0.5 Gyr and 0.3 dex. This increases substantially the sample of intermediate-age clusters in the SMC with well-derived parameters. We combine our results with those for other clusters in the literature to derive as large and homogeneous a data base as possible (totalling 26 clusters) in order to study global effects. We find evidence for two peaks in the age distribution of SMC clusters, at ∼6.5 and 2.5 Gyr, in good agreement with previous hints involving smaller samples. The most recent peak occurs at a time that corresponds to a very close encounter between the Large Magellanic Cloud (LMC) and the SMC according to the recent dynamical models of Bekki et al. that they used to explain the enhancement of LMC clusters with this age. It appears cluster formation may have been similarly stimulated in the SMC by this encounter as well. We also find very good agreement between cluster ages and metallicities and the prediction from a bursting model from Pagel and Tautvaišienė with a burst that occurred 3 Gyr ago. These two lines of evidence together favour a bursting cluster formation history as opposed to a continuous one for the SMC.  相似文献   

17.
Direct N -body calculations are presented of the formation of Galactic clusters using GasEx , which is a variant of the code Nbody6 . The calculations focus on the possible evolution of the Orion nebula cluster (ONC) by assuming that the embedded OB stars explosively drove out 2/3 of its mass in the form of gas about 0.4 Myr ago. A bound cluster forms readily and survives for 150 Myr despite additional mass loss from the large number of massive stars, and the Galactic tidal field. This is the very first time that cluster formation is obtained under such realistic conditions. The cluster contains about 1/3 of the initial 104 stars, and resembles the Pleiades cluster to a remarkable degree, implying that an ONC-like cluster may have been a precursor of the Pleiades. This scenario predicts the present expansion velocity of the ONC, which will be measurable by upcoming astrometric space missions. These missions should also detect the original Pleiades members as an associated expanding young Galactic-field subpopulation. The results arrived at here suggest that Galactic clusters form as the nuclei of expanding OB associations.
The results have wide implications, also for the formation of globular clusters and the Galactic-field and halo stellar populations. In view of this, the distribution of binary orbital periods and the mass function within and outside the model ONC and Pleiades is quantified, finding consistency with observational constraints. Advanced mass segregation is evident in one of the ONC models. The calculations show that the primordial binary population of both clusters could have been much the same as is observed in the Taurus–Auriga star-forming region. The computations also demonstrate that the binary proportion of brown dwarfs is depleted significantly for all periods, whereas massive stars attain a high binary fraction.  相似文献   

18.
The observed properties of young star clusters, such as the core radius and luminosity profile, change rapidly during the early evolution of the clusters. Here we present observations of six young clusters in M51 where we derive their sizes using Hubble Space Telescope ( HST ) imaging and ages using deep Gemini-North spectroscopy. We find evidence for a rapid expansion of the cluster cores during the first 20 Myr of their evolution. We confirm this trend by including data from the literature of both Galactic and extragalactic embedded and young clusters, and possible mechanisms (rapid gas removal, stellar evolutionary mass loss and internal dynamical heating) are discussed. We explore the implications of this result, focussing on the fact that clusters were more concentrated in the past, implying that their stellar densities were much higher and relaxation times ( t relax) correspondingly shorter. Thus, when estimating if a particular cluster is dynamically relaxed (i.e. when determining if a cluster's mass segregation is due to primordial or dynamical processes), the current relaxation time is only an upper limit, with t relax likely being significantly shorter in the past.  相似文献   

19.
We present CCD photometry in the Washington system C and T 1 passbands down to   T 1∼ 22  in the fields of L35, L45, L49, L50, L62, L63 and L85, seven poorly studied star clusters in the inner region of the Small Magellanic Cloud (SMC). We measured T 1 magnitudes and   C − T 1  colours for a total of 114 826 stars distributed throughout cluster areas of 13.7 × 13.7 arcmin2 each. Cluster radii were estimated from star counts distributed throughout the entire observed fields. The seven clusters are generally characterized by a relatively small angular size and by a high field star contamination. We performed an in-depth analysis of the field star contamination of the colour–magnitude diagrams (CMDs), and statistically cleaned the cluster CMDs. Based on the best fits of isochrones computed by the Padova group to the  ( T 1,  C − T 1)  CMDs, we derive ages for the sample, assuming Z = 0.004, finding ages between 25 Myr and 1.2 Gyr. We then examined different relationships between positions in the SMC, age and metallicity of a larger sample of clusters including our previous work whose ages and metallicities are on the same scale used in this paper. We confirm previous results in the sense that the further a cluster is from the centre of the galaxy, the older and more metal poor it is, with some dispersion; although clusters associated with the Magellanic Bridge clearly do not obey the general trend. The number of clusters within ∼ 2° of the SMC centre appears to have increased substantially after ∼2.5 Gyr ago, hinting at a burst.  相似文献   

20.
The distribution of galaxy properties in groups and clusters holds important information on galaxy evolution and growth of structure in the Universe. While clusters have received appreciable attention in this regard, the role of groups as fundamental to formation of the present-day galaxy population has remained relatively unaddressed. Here, we present stellar ages, metallicities and α-element abundances derived using Lick indices for 67 spectroscopically confirmed members of the NGC 5044 galaxy group with the aim of shedding light on galaxy evolution in the context of the group environment.
We find that galaxies in the NGC 5044 group show evidence for a strong relationship between stellar mass and metallicity, consistent with their counterparts in both higher and lower mass groups and clusters. Galaxies show no clear trend of age or α-element abundance with mass, but these data form a tight sequence when fitted simultaneously in age, metallicity and stellar mass. In the context of the group environment, our data support the tidal disruption of low-mass galaxies at small group-centric radii, as evident from an apparent lack of galaxies below  ∼109 M  within ∼100 kpc of the brightest group galaxy. Using a joint analysis of absorption- and emission-line metallicities, we are able to show that the star-forming galaxy population in the NGC 5044 group appears to require gas removal to explain the ∼1.5 dex offset between absorption- and emission-line metallicities observed in some cases. A comparison with other stellar population properties suggests that this gas removal is dominated by galaxy interactions with the hot intragroup medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号