首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Future weak lensing surveys will directly probe the density fluctuation in the Universe. Recent studies have shown how the statistics of the weak lensing convergence field is related to the statistics of collapsed objects. Extending earlier analytical results on the probability distribution function of the convergence field, we show that the bias associated with the convergence field can be directly related to the bias associated with the statistics of underlying overdense objects. This will provide us with a direct method to study the gravity-induced bias in galaxy clustering. Based on our analytical results, which use the hierarchical Ansatz for non-linear clustering, we study how such a bias depends on the smoothing angle and the source redshift. We compare our analytical results with ray-tracing experiments through N -body simulations of four different realistic cosmological scenarios, and find a very good match. Our study shows that the bias in the convergence map strongly depends on the background geometry and hence can help us in distinguishing different cosmological models in addition to improving our understanding of the gravity-induced bias in galaxy clustering.  相似文献   

2.
Weak lensing surveys are expected to provide direct measurements of the statistics of the projected dark matter distribution. Most analytical studies of weak lensing statistics have been limited to quasi-linear scales as they relied on perturbative calculations. On the other hand, observational surveys are likely to probe angular scales less than 10 arcmin, for which the relevant physical length-scales are in the non-linear regime of gravitational clustering. We use the hierarchical ansatz to compute the multipoint statistics of the weak lensing convergence for these small smoothing angles. We predict the multipoint cumulants and cumulant correlators up to fourth order and compare our results with high-resolution ray-tracing simulations. Averaging over a large number of simulation realizations for four different cosmological models, we find close agreement with the analytical calculations. In combination with our work on the probability distribution function, these results provide accurate analytical models for the full range of weak lensing statistics. The models allow for a detailed exploration of cosmological parameter space and of the dependence on angular scale and the redshift distribution of source galaxies. We compute the dependence of the higher moments of the convergence on the parameters Ω and Λ.  相似文献   

3.
We present and test a new method for the reconstruction of cosmological initial conditions from a full-sky galaxy catalogue. This method, called ZTRACE, is based on a self-consistent solution of the growing mode of gravitational instabilities according to the Zel'dovich approximation and higher order in Lagrangian perturbation theory. Given the evolved redshift-space density field, smoothed on some scale, ZTRACE finds, via an iterative procedure, an approximation to the initial density field for any given set of cosmological parameters; real-space densities and peculiar velocities are also reconstructed. The method is tested by applying it to N -body simulations of an Einstein–de Sitter and an open cold dark matter universe. It is shown that errors in the estimate of the density contrast dominate the noise of the reconstruction. As a consequence, the reconstruction of real-space density and peculiar velocity fields using non-linear algorithms is little improved over those based on linear theory. The use of a mass-preserving adaptive smoothing, equivalent to a smoothing in Lagrangian space, allows an unbiased (although noisy) reconstruction of initial conditions, as long as the (linearly extrapolated) density contrast does not exceed unity. The probability distribution function of the initial conditions is recovered to high precision, even for Gaussian smoothing scales of ∼5  h −1 Mpc, except for the tail at δ ≥1. This result is insensitive to the assumptions of the background cosmology.  相似文献   

4.
We present the results of weak gravitational lensing statistics in four different cosmological N -body simulations. The data have been generated using an algorithm for the three-dimensional shear, which makes use of a variable softening facility for the N -body particle masses, and enables a physical interpretation for the large-scale structure to be made. Working in three dimensions also allows the correct use of the appropriate angular diameter distances.
Our results are presented on the basis of the filled-beam approximation in view of the variable particle softening scheme in our algorithm. The importance of the smoothness of matter in the Universe for the weak lensing results is discussed in some detail.
The low-density cosmology with a cosmological constant appears to give the broadest distributions for all the statistics computed for sources at high redshifts. In particular, the range in magnification values for this cosmology has implications for the determination of the cosmological parameters from high-redshift type Ia supernovae. The possibility of determining the density parameter from the non-Gaussianity in the probability distribution for the convergence is discussed.  相似文献   

5.
Many recent studies have demonstrated that scaling arguments, such as the so-called hierarchical ansatz, are extremely useful in understanding the statistical properties of weak gravitational lensing. This is especially true on small angular scales (i.e. at high resolution), where the usual perturbative calculations of matter clustering no longer apply. We build on these studies in order to develop a complete picture of weak lensing at small smoothing angles. In particular, we study the full probability distribution function, bias and other multipoint statistics for the 'hot spots' of the convergence field induced by weak lensing, and relate these to the statistics of overdense regions in the underlying mass distribution. It is already known that weak lensing can constrain the background geometry of the Universe, but we further show that it can also provide valuable information about the statistics of collapsed objects and the physics of collisionless clustering. Our results are particularly important for future observations which will, at least initially, focus on small smoothing angles.  相似文献   

6.
Markov chain Monte Carlo (MCMC) techniques are now widely used for cosmological parameter estimation. Chains are generated to sample the posterior probability distribution obtained following the Bayesian approach. An important issue is how to optimize the efficiency of such sampling and how to diagnose whether a finite-length chain has adequately sampled the underlying posterior probability distribution. We show how the power spectrum of a single such finite chain may be used as a convergence diagnostic by means of a fitting function, and discuss strategies for optimizing the distribution for the proposed steps. The methods developed are applied to current cosmic microwave background and large-scale structure data interpreted using both a pure adiabatic cosmological model and a mixed adiabatic/isocurvature cosmological model including possible correlations between modes. For the latter application, because of the increased dimensionality and the presence of degeneracies, the need for tuning MCMC methods for maximum efficiency becomes particularly acute.  相似文献   

7.
8.
In the context of cold dark matter (CDM) cosmological models, we have simulated images of the brightness temperature fluctuations in the cosmic microwave background (CMB) sky owing to the Sunyaev–Zel'dovich (S–Z) effect in a cosmological distribution of clusters. We compare the image statistics with recent ATCA limits on arcmin-scale CMB anisotropy. The S–Z effect produces a generically non-Gaussian field and we compute the variance in the simulated temperature-anisotropy images, after convolution with the ATCA beam pattern, for different cosmological models. All the models are normalized to the 4-yr COBE data. We find an increase in the simulated-sky temperature variance with increase in the cosmological density parameter Ω0. A comparison with the upper limits on the sky variance set by the ATCA appears to rule out our closed-universe model: low-Ω0 open-universe models are preferred. The result is independent of any present day observations of σ 8.  相似文献   

9.
We present a new calculation for the evolution of the one-point probability distribution function (PDF) of the cosmological density field based on an exact statistical treatment. Using the Chapman–Kolmogorov equation and second-order Eulerian perturbation theory we propagate the initial density distribution into the non-linear regime. Our calculations yield the moment generating function, allowing a straightforward derivation of the skewness of the PDF to second order. We find a new dependence on the initial perturbation spectrum. We compare our results with other approximations to the one-point PDF, and with N -body simulations. We find that our distribution accurately models the evolution of the one-point PDF of dark matter.  相似文献   

10.
Owing to gravitational instability, an initially Gaussian density field develops non-Gaussian features as the Universe evolves. The most prominent non-Gaussian features are massive haloes, visible as clusters of galaxies. The distortion of high-redshift galaxy images because of the tidal gravitational field of the large-scale matter distribution, called cosmic shear, can be used to investigate the statistical properties of the large‐scale structure (LSS) . In particular, non-Gaussian properties of the LSS will lead to a non-Gaussian distribution of cosmic-shear statistic. The aperture mass ( M ap) statistics, recently introduced as a measure for cosmic shear, is particularly well suited for measuring these non-Gaussian properties. In this paper we calculate the highly non-Gaussian tail of the aperture mass probability distribution, assuming Press–Schechter theory for the halo abundance and the 'universal' density profile of haloes as obtained from numerical simulations. We find that for values of M ap much larger than its dispersion, this probability distribution is closely approximated by an exponential, rather than a Gaussian. We determine the amplitude and shape of this exponential for various cosmological models and aperture sizes, and show that wide-field imaging surveys can be used to distinguish between some of the currently most popular cosmogonies. Our study here is complementary to earlier cosmic-shear investigations, which focused more on two- and three-point statistical properties.  相似文献   

11.
We provide a quantitative assessment of the probability distribution function of the concentration parameter of galaxy clusters. We do so by using the probability distribution function of halo formation times, calculated by means of the excursion set formalism, and a formation redshift-concentration scaling derived from results of N -body simulations. Our results suggest that the observed high concentrations of several clusters are quite unlikely in the standard Λ cold dark matter (ΛCDM) cosmological model, but that due to various inherent uncertainties, the statistical range of the predicted distribution may be significantly wider than commonly acknowledged. In addition, the probability distribution function of the Einstein radius of A1689 is evaluated, confirming that the observed value of  ∼45 ± 5 arcsec  is very improbable in the currently favoured cosmological model. If, however, a variance of ∼20 per cent in the theoretically predicted value of the virial radius is assumed, then the discrepancy is much weaker. The measurement of similarly large Einstein radii in several other clusters would pose a difficulty to the standard model. If so, earlier formation of the large-scale structure would be required, in accord with predictions of some quintessence models. We have indeed verified that in a viable early dark energy model large Einstein radii are predicted in as many as a few tens of high-mass clusters.  相似文献   

12.
We study the possibility of correctly identifying, from the smooth galaxy density field of the PSC z flux-limited catalogue, high-density regions (superclusters) and recovering their true shapes in the presence of a bias introduced by the coupling between the selection function and the constant radius smoothing. We quantify such systematic biases in the smoothed PSC z density field and after applying the necessary corrections we study supercluster multiplicity and morphologies using a differential geometry definition of shape. Our results strongly suggest that filamentary morphology is the dominant feature of PSC z superclusters. Finally, we compare our results with those expected in three different cosmological models and find that the Λ cold dark matter (CDM) model (ΩΛ=1−Ωm=0.7) performs better than Ωm=1 CDM models.  相似文献   

13.
We investigate the dependence of QSO Ly α absorption features on the temperature of the absorbing gas and on the amplitude of the underlying dark-matter fluctuations. We use high-resolution hydrodynamic simulations in cold dark matter dominated cosmological models. In models with a hotter intergalactic medium (IGM), the increased temperature enhances the pressure gradients between low- and high-density regions and this changes the spatial distribution and the velocity field of the gas. Combined with more thermal broadening, this leads to significantly wider absorption features in hotter models. Cosmological models with little small-scale power also have broader absorption features, because fluctuations on the scale of the Jeans length are still in the linear regime. Consequently, both the amplitude of dark-matter fluctuations on small scales and thermal smoothing affect the flux decrement distribution in a similar way. However, the b -parameter distribution of Voigt profile fits, obtained by deblending the absorption features into a sum of thermally broadened lines, is largely independent of the amount of small-scale power, but does depend strongly on the IGM temperature. The same is true for the two-point function of the flux and for the flux power spectrum on small scales. These three flux statistics are thus sensitive probes of the temperature of the IGM. We compare the values computed for our models and obtained from a HIRES spectrum of the quasar Q1422+231 and conclude that the IGM temperature at z ∼3.25 is fairly high, T 0≳15 000 K. The flux decrement distribution of the observed spectrum is fitted well by that of a ΛCDM model with that temperature.  相似文献   

14.
We present predictions for the one-point probability distribution and cumulants of the transmitted QSO flux in the high redshift Lyman- α forest. We make use of the correlation between the Lyman- α optical depth and the underlying matter density predicted by gravitational instability theory and seen in numerical hydrodynamic simulations. We have modelled the growth of matter fluctuations using the non-linear shear‐free dynamics, an approximation which reproduces well the results of perturbation theory for the cumulants in the linear and weakly non-linear clustering regime. As high matter overdensities tend to saturate in spectra, the statistics of the flux distribution are dominated by weakly non-linear overdensities. As a result, our analytic approach can produce accurate predictions, when tested against N -body simulation results, even when the underlying matter field has root-mean-square fluctuations larger than unity. Our treatment can be applied to either Gaussian or non-Gaussian initial conditions. Here we concentrate on the former case, but also include a study of a specific non-Gaussian model. We discuss how the methods and predictions we present can be used as a tool to study the generic clustering properties of the Lyman- α forest at high redshift. With such an approach, rather than concentrating on simulating specific cosmological models, we may be in a position to directly test our assumptions for the Gaussian nature of the initial conditions, and the gravitational instability origin of structure itself. In a separate paper we present results for two-point statistics.  相似文献   

15.
Dynamical dark energy (DE) is a viable alternative to the cosmological constant. Constructing tests to discriminate between Λ and dynamical DE models is difficult, however, because the differences are not large. In this paper we explore tests based on the galaxy mass function, the void probability function (VPF), and the number of galaxy clusters. At high z , the number density of clusters shows large differences between DE models, but geometrical factors reduce the differences substantially. We find that detecting a model dependence in the cluster redshift distribution is a significant challenge. We show that the galaxy redshift distribution is potentially a more sensitive characteristic. We do this by populating dark matter haloes in N -body simulations with galaxies using well-tested halo occupation distributions. We also estimate the VPF and find that samples with the same angular surface density of galaxies, in different models, exhibition almost model-independent VPF which therefore cannot be used as a test for DE. Once again, geometry and cosmic evolution compensate each other. By comparing VPFs for samples with fixed galaxy mass limits, we find measurable differences.  相似文献   

16.
The cloud-in-cloud problem is studied in the context of the extension to non-Gaussian density fields of the PS approach for the calculation of the mass function. As an example of a non-Gaussian probability distribution function (PDF), we consider the chi-square distribution with various degrees of freedom. We generate density fields in cubic boxes with periodic boundary conditions, and then determine the number of points considered collapsed at each scale through a hierarchy of smoothing windows. We find that the mass function we obtain differs from that predicted using the extended PS formalism, particularly for low values of σ and for those PDFs that differ most from a Gaussian.  相似文献   

17.
18.
The fraction of high-redshift sources which are multiply imaged by intervening galaxies is strongly dependent on the cosmological constant, and so can be a useful probe of the cosmological model. However its power is limited by various systematic (and random) uncertainties in the calculation of lensing probabilities, one of the most important of which is the dynamical normalization of elliptical galaxies. Assuming ellipticals' mass distributions can be modelled as isothermal spheres, the mass normalization depends on the velocity anisotropy, the luminosity density, the core radius and the area over which the velocity dispersion is measured. The differences in the lensing probability and optical depth produced by using the correct normalization can be comparable to the differences between even the most extreme cosmological models. The existing data are not sufficient to determine the correct normalization with enough certainty to allow lensing statistics to be used to their full potential. However, as the correct lensing probability is almost certainly higher than is usually assumed, upper bounds on the cosmological constant are not weakened by these possibilities.  相似文献   

19.
We present a study of numerical effects in dissipationless cosmological simulations. The numerical effects are evaluated and studied by comparing the results of a series of 643-particle simulations of varying force resolution and number of time-steps, performed using three of the N -body techniques currently used for cosmological simulations: the Particle–Mesh (PM), the Adaptive Particle–Particle–Particle–Mesh (AP3M) and the newer Adaptive Refinement Tree (ART) codes. This study can therefore be interesting both as an analysis of numerical effects and as a systematic comparison of different codes.
We find that the AP3M and the ART codes produce similar results given that convergence is reached within the code type. We also find that numerical effects may affect the high-resolution simulations in ways that have not been discussed before. In particular, our study revealed the presence of two-body scattering, the effects of which can be greatly amplified by inaccuracies in time integration. This process appears to affect the correlation function of matter, the mass function, the inner density of dark matter haloes and other statistics at scales much larger than the force resolution, although different statistics may be affected in a different fashion. We discuss the conditions for which strong two-body scattering is possible and discuss the choice of the force resolution and integration time-step. Furthermore, we discuss recent claims that simulations with force softening smaller than the mean interparticle separation are not trustworthy and argue that this claim is incorrect in general, and applies only to the phase-sensitive statistics. Our conclusion is that, depending on the choice of mass and force resolution and the integration time-step, a force resolution as small as 0.01 of the mean interparticle separation can be justified.  相似文献   

20.
Using the two-point Edgeworth series up to second order in the linear rms density fluctuation we construct the weakly non-linear conditional probability distribution function for the density field around an overdense region. This requires calculating the two-point analogues of the skewness parameter S 3. We test the dependence of the two-point skewness on distance from the peak for scale-free power spectra and Gaussian smoothing. The statistical features of such a conditional distribution are given as the values obtained within linear theory corrected by the terms that arise as a result of weakly non-linear evolution. The expected density around the peak is found to be always below the linear prediction while its dispersion is always larger than in the linear case. For large enough overdensities the weakly non-linear corrections can be more significant than the peak constraint introduced by Bardeen et al. We apply these results to the spherical model of collapse as developed by Hoffman & Shaham and find that in general the effect of weakly non-linear interactions is to decrease the scale from which a peak gathers mass and therefore also the mass itself. In the case of an open universe this results in steepening of the final profile of the virialized proto-object.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号