首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
The Altyn Tagh Fault (ATF) is a major boundaryfault on the northern margin of the Qinghai-TibetanPlateau and is also the longest sinistral strike-slip faultat a lithospheric scale in the Eurasian Plate. Its exis-tence has directly affected regional features of neotec-tonics, topography, geomorphology, Quaternary geol-ogy, recent crustal deformation, seismicity, climatechange and ecological environment for fauna and florain China[1—6]. The sinistral slip on the ATF and activethrusting-fo…  相似文献   

2.
王阎昭  王敏 《中国地震》2020,36(4):817-826
阿尔金断裂是中国大陆内部一条重要断裂带,对理解青藏高原的隆升演化和大陆构造变形过程均有重要意义,其滑动速率的争议也成为理解这一问题的关键。本文汇总了近年来关于阿尔金断裂滑动速率绝大部分究成果,包含了82°E~99°E范围内来自一般地质学、古地震和大地测量的结果,覆盖了几十年、千年和万年以上的时间尺度和整个阿尔金断裂带,形成对阿尔金断裂带滑动速率的时空变化特征的全面认识,迄今为止的研究结果均支持阿尔金断裂中西段具有(10±3) mm/a的滑动速率,自约93°E向东逐渐衰减,且随时间变化不大,由于测量方法导致的差异可能与一次大地震或地震高发期有关。  相似文献   

3.
阿尔金断裂的几何学和运动学特征对研究青藏高原构造演化和陆内地震机理非常重要。为定量科学研究较为薄弱的阿尔金南缘断裂东段的运动学参数,我们采用航卫片的解译、野外调查、地形测绘和年代学样品测试等多种方法对该段进行了初步研究。结果显示该段断裂主要以左旋走滑运动为主,且沿线存在较多的小位移,其位移空间分布的3个明显峰值分别为4.5m、8m和13m。根据河流阶地的左旋位移和相应的地貌面沉积年龄,得到晚第四纪以来阿尔金断裂东段的走滑速率约为2.7±0.9mm/a。基于所获得的定量参数,认为该段断裂向东以应变分解的形式将其应变量传递到相邻的逆冲断裂上。  相似文献   

4.
李满  肖骑彬  喻国 《地球物理学报》2020,63(11):4125-4143

阿尔金断裂带东段走滑速率沿断裂走向方向存在明显的流失现象,有关阿尔金断裂带的影响范围及走滑速率变化的机制需要有更多的深部结构证据来提供支撑.本文以阿尔金断裂带昌马段为窗口,获取了4条横穿阿尔金断裂带及相邻地区的大地电磁测深剖面.二维电性剖面显示在阿尔金断裂带北侧中上地壳以连续的高阻体为主,而南侧祁连山内部的深部电性结构在横向上有较为复杂的变化.这一点与区域构造背景相对应,即北侧的塔里木盆地东缘依然具有较好的整体性,南侧的祁连山是青藏高原北缘生长的最前端,变形强烈.在断裂带的结构特征上,阿尔金断裂带沿走向方向的切割深度在昌马盆地西侧发生了显著的降低,与阿尔金断裂带相对应的电性边界在这里向南偏移了约15 km,对应F18断裂,并与昌马盆地相接.祁连山北部的断裂带,包括昌马断裂、旱峡—大黄沟断裂总体呈现出低角度南倾的样式,切过高阻异常体的顶部.虽然昌马盆地可以起到连接断裂带的阶区的作用,将部分阿尔金断裂的走滑分量转移到盆地南侧的昌马断裂上,但是昌马断裂的走滑速率从西向东是增加的,东侧的走滑速率甚至大于阿尔金断裂沿走向方向的流失分量.我们认为在青藏高原北部主要断裂带的活动还是受印度—欧亚板块碰撞引起的远程挤压效应的影响,包括阿尔金断裂以及祁连山内部系列断层都处于斜向挤压应力环境.在这种基本构造模式下,阿尔金断裂、断裂F18、昌马盆地、昌马断裂构成了一个局部的走滑速率分解-转换-吸收体系,对局部应力状态产生影响.

  相似文献   

5.
李满  肖骑彬  喻国 《地球物理学报》1954,63(11):4125-4143
阿尔金断裂带东段走滑速率沿断裂走向方向存在明显的流失现象,有关阿尔金断裂带的影响范围及走滑速率变化的机制需要有更多的深部结构证据来提供支撑.本文以阿尔金断裂带昌马段为窗口,获取了4条横穿阿尔金断裂带及相邻地区的大地电磁测深剖面.二维电性剖面显示在阿尔金断裂带北侧中上地壳以连续的高阻体为主,而南侧祁连山内部的深部电性结构在横向上有较为复杂的变化.这一点与区域构造背景相对应,即北侧的塔里木盆地东缘依然具有较好的整体性,南侧的祁连山是青藏高原北缘生长的最前端,变形强烈.在断裂带的结构特征上,阿尔金断裂带沿走向方向的切割深度在昌马盆地西侧发生了显著的降低,与阿尔金断裂带相对应的电性边界在这里向南偏移了约15 km,对应F18断裂,并与昌马盆地相接.祁连山北部的断裂带,包括昌马断裂、旱峡—大黄沟断裂总体呈现出低角度南倾的样式,切过高阻异常体的顶部.虽然昌马盆地可以起到连接断裂带的阶区的作用,将部分阿尔金断裂的走滑分量转移到盆地南侧的昌马断裂上,但是昌马断裂的走滑速率从西向东是增加的,东侧的走滑速率甚至大于阿尔金断裂沿走向方向的流失分量.我们认为在青藏高原北部主要断裂带的活动还是受印度—欧亚板块碰撞引起的远程挤压效应的影响,包括阿尔金断裂以及祁连山内部系列断层都处于斜向挤压应力环境.在这种基本构造模式下,阿尔金断裂、断裂F18、昌马盆地、昌马断裂构成了一个局部的走滑速率分解-转换-吸收体系,对局部应力状态产生影响.  相似文献   

6.
The khondalite series, which are characterized by aluminum-rich gneisses (schists) consisting of sillimanite-garnet-biotite-monzonite gneiss, garnet-biotite-monzonite gneiss, graphite-sillimanite-biotite schist, and garnet-amphibole two-pyroxene granulites occurring as lenses and layers within gneisses (schists), were discovered in Tula area of western segment of Altyn Tagh. The petrology and geochemistry indicate that the protoliths of aluminum-rich gneisses (schists) are aluminum-rich pelitic and pelitic arenaceous sedimentary rocks, the protoliths of basic granulites are continental tholeiitic basalts. Therefore, the khondalite series may be produced at continental margin. They had suffered granulitic facies metamorphism with peak temperatures of 700-850℃ and pressures of 0.8-1.2 GPa. The U-Pb and Pb-Pb isotopic dating of zircons provided the ages of 447-462 Ma representing the ages of peak granulitic metamorphism. The U-Pb dating of detrital zircons from aluminum-rich gneisses yielded older upper intercept ages which reflect the times of older materials derived from source rocks of the gneiss protoliths.  相似文献   

7.
Because of the significance to the formation and evolution of the Tibetan plateau, the displacement and slip rate of the Altyn Tagh fault have been topics full of disputation. Scientists who hold different opinions on the evolution of Tibet insist on different slip rates and displacements of the fault zone. In the article, study is focused on the late Quaternary slip rate of the Altyn Tagh fault west of the Cherchen River (between 85°E and 85°45'E). On the basis of high resolution SPOT images of the region, three sites, namely Koramlik, Aqqan pasture and Dalakuansay, were chosen for field investigation. To calculate the slip rate of the fault, displacement of terraces was measured on SPOT satellite images or in situ during fieldwork and thermo-luminescence (TL) dating method was used. To get the ages of terraces, samples of sand were collected from the uppermost sand beds that lie just under loess. The method for calculating slip rate of fault is to divide the displacement of terrace risers by the age of its neighboring lower terrace. The displacement of rivers is not considered in this article because of its uncertainties. At Koramlik, the slip rate of the Altyn Tagh fault is 11.6±2.6mm/a since 6.02±0.47ka B.P and 9.6±2.6mm/a since 15.76±1.19ka B.P. At Aqqan pasture, about 30km west of Koramlik, the slip rate is 12.1±1.9mm/a since 2.06±0.16 ka B.P. At Dalakuansayi, the slip rate of the fault is 12.2±3.0mm/a since 4.91±0.39ka B.P. Hence, we get the average slip rate of 11.4±2.5mm/a for the western part of the Altyn Tagh Fault since Holocene. This result is close to the latest results from GPS research.  相似文献   

8.
As a result of the left-lateral strike-slipping of the Altyn Tagh fault in Neotectonic period, a contra-rotational structure, namely the Zhaobishan vortex structure, has developed at the juncture of the main Altyn Tagh fault and the northern fringe fault of the Qilian Mountains.Preliminary analysis on the deformation and evolution of the Zhaobishan vortex structure. In combination with the previous data, suggests that the tectonic transform between the Altyn Tagh fault and the northern fringe fault of the Qilian Mountains attributes to the deformation of the rotational structure. The existence of a series of rotational structures along the Altyn Tagh fault and on the northeastern edge of the Qinghai-Xizang(Tibet) plateau indicate that as the substance in the northern Qinghal-Xizang (Tibet) plateau moves clockwise around the eastern tectonic knot of the Himalayas, rotational structures become the principal mode on the northern marginal zone of the Plateau of transforming and absorbing tectonic deformation.  相似文献   

9.
Abstract Drilling was carried out to penetrate the Nojima Fault where the surface rupture occurred associated with the 1995 Hyogo-ken Nanbu earthquake. Two 500 m boreholes were successfully drilled through the fault zone at a depth of 389.4 m. The drilling data show that the relative uplift of the south-east side of the Nojima Fault (south-west segment) was approximately 230 m. The Nojima branch fault, which branches from the Nojima Fault, is inferred to extend to the Asano Fault. From the structural contour map of basal unconformity of the Kobe Group, the vertical component of displacement of the Nojima branch–Asano Fault is estimated to be 260–310 m. Because the vertical component of displacement on the Nojima Fault of the north-east segment is a total of those of the Nojima Fault of the south-west segment and of the Nojima branch–Asano Fault, it is estimated to total to 490–540 m. From this, the average vertical component of the slip rate on the Nojima Fault is estimated to be 0.4–0.45 m/103 years for the past 1.2 million years.  相似文献   

10.
The Northern Zhongtiaoshan Fault is a major deep fault at the southern margin of the Yuncheng Basin. There have been few studies on the fault, and the historical earthquakes are few and weak. However, the intensity of activity on the fault should never be underestimated. Through interpretations of aerial images, topography measurements and excavation of trenches, this paper studied the fault distribution, the surface deformation and the activity of the normal fault south of Salt Lake near the city of Yuncheng. By tracing faults in the three trenches, it was found that there had been at least three large paleoseismic events, at 1–3.5, 3.6–4.4 and 7.4–8.8 ka BP. Employing 14 C dating, we determined the same gravel layers in the uplifted side and downthrown side. Making differential Global Positioning System measurements of the vertical difference and topographic profile, we obtained the mean slip rate of the Northern Zhongtiaoshan Fault since 24.7 ka BP(0.75±0.05 mm/a). Using the results of relevant studies, we calculated the possible vertical fault displacement of one earthquake(2.35 m) and obtained the recurrence interval of characteristic earthquakes as 2940–3360 a after dividing the displacement by the mean slip rate.  相似文献   

11.
非连续介质力学方法中非连续变形分析(DDA)方法有利于分析分块运动特征,而非连续有限元方法(DFEM)能更细致地反映板块间相互作用。本文利用DDA和DFEM方法的各自优势,基于实测的308个GPS测站位移矢量,利用DDA方法提取了大陆边界位移信息;并以此边界位移条件建立了中国大陆的二维DFEM模型;利用该模型探讨了阿尔金断裂活动对整个大陆的地壳运动和构造变形方式的影响。  相似文献   

12.
The Qujiang Fault is one of the most seismically active faults in western Yunnan, China and is considered to be the seismogenic fault of the 1970 MS7.7 Tonghai earthquake. The Qujiang Fault is located at the southeastern tip of the Sichuan-Yunnan block. In this study, we examine the geometry, kinematics, and geomorphology of this fault through field observations and satellite images. The fault is characterized by dextral strike-slip movements with dip-slip components and can be divided into northwest and southeast segments according to different kinematics. The northwest segment shows right-lateral strike-slip with normal components, whereas it is characterized by dextral movements with the northeast wall thrusting over the opposite in the southeast segment. The offset landforms are well developed along the strike of the fault with displacements ranging from 3.7m to 830m. The Late Quaternary right-lateral slip rate was determined to be 2.3~4.0mm/a through dating and measuring on the offset features. The variation of the slip and uplift rates along the fault strike corresponds well to the fault kinematics segmentation: the slip rate on the northwest segment is above 3mm/a with an uplift rate of 0.6~0.8mm/a; however, influenced by the Xiaojiang Fault, the southeast segment shows apparent thrust components. The slip rate decreases to below 3.0mm/a with an uplift rate of 1.1mm/a, indicating different uplift between the northwest and southeast segments.  相似文献   

13.
We investigate the late Quaternary active deformation along the Jordan Valley segment of the left-lateral Dead Sea Fault and provide new insights on the behaviour of major continental faults. The 110-km-long fault segment shows systematic offsets of drainage systems surveyed at three sites along its southern section. The isotopic dating of six paleoclimatic events yields a precise chronology for the onset of six generations of gully incisions at 47.5 ka BP, 37.5 ka BP, 13 ka BP, 9 ka BP, 7 ka BP, and 5 ka BP. Additionally, detailed mapping and reconstructions provide cumulative displacements for 20 dated incisions along the fault trace. The individual amounts of cumulative slip consistently fall into six distinct classes. This yields: i) an average constant slip rate of 4.7 to 5.1 mm/yr for the last 47.5 kyr and ii) a variable slip rate ranging from 3.5 mm/yr to 11 mm/yr over 2-kyr- to 24-kyr-long intervals. Taking into account that the last large earthquake occurred in AD 1033, we infer 3.5 to 5 m of present-day slip deficit which corresponds to a Mw  7.4 earthquake along the Jordan Valley fault segment. The timing of cumulative offsets reveals slip rate variations critical to our understanding of the slip deficit and seismic cycle along major continental faults.  相似文献   

14.
GPS揭示的郯庐断裂带中南段闭锁及滑动亏损   总被引:1,自引:0,他引:1       下载免费PDF全文
利用华北地区2009-2014年GPS水平运动速度场数据,采用块体负位错模型反演了郯庐断裂带中南段断层深部滑动速率、断层闭锁程度分布、断层滑动亏损速率分布及地震矩积累率,结合地表应变率分布,对郯庐断裂带中南段深、浅部形变、应变特征以及华北地区的地壳形变模式进行了分析.结果表明:郯庐断裂中南段的北端主要为右旋走滑特性,南端则表现为右旋走滑兼拉张性运动,断层滑动速率在0.9 mm·a-1至1.2 mm·a-1,且沿断层走向由北至南逐次增大.断层闭锁程度分布沿走向分布不均一,断层闭锁深度由最北端的27 km增加到中段的32 km,至最南端变为5 km,断层闭锁最深处与1668年郯城MS8.5震中位置相对应.断层滑动亏损速率沿走向由0.9 mm·a-1增加到1.2 mm·a-1,沿倾向由地表至深部逐渐减小为0 mm·a-1.地震矩积累率在郯庐断裂带中南段郯城附近较大,而地表对应区域为第二应不变分量的低值区.华北地区地壳变形以块体运动为主,块体内部应变及断层闭锁产生的负位错效应次之;郯庐断裂带中南段断层形变沿走向呈条带状分布,形变宽度单侧小于50 km,形变量不超过1 mm·a-1,且上盘形变略大于下盘.  相似文献   

15.
The Yilan‐Yitong Fault Zone (YYFZ) is considered to be the key branch of the Tancheng‐Lujiang Fault Zone (TLFZ) in northeastern China. Although the Mesozoic and early Cenozoic deformation of the YYFZ has been studied intensively over the past century, few estimates of slip rate and recurrence interval of large earthquakes in the late Quaternary, which are the two most important parameters for understanding the potential seismic hazard of this crucial structure, were obtained. Based on integrated interpretations of high resolution satellite images and detailed geologic and geomorphic mapping, linear landforms were identified, including fault scarps and troughs, along the Shangzhi segment of the YYFZ, which exceeds 25 km in length. Synthesized results of trench excavations and differential GPS measurements of terrace surfaces indicate that two events (E1, E2) occurred along the Shangzhi segment during the late Holocene, which resulted in 3.2 ±0.1 m of total vertical co‐seismic displacement with clear features of thrust motion. 14C dating of samples suggests that event E1 occurred between 440 ±30 years BP and 180 ±30 years BP and that event E2 occurred between 4 090 ±30 years BP and 3 880 ±30 years BP, which indicates that the minimum vertical slip rate of the Shangzhi segment of the YYFZ has been approximately 0.8 ±0.03 mm/year during the late Holocene. Constraints from paleo events and the slip rate suggest that the average recurrence interval of major earthquakes on the YYFZ is 3 800 ±200 years. Historical documents in Korea show that event E1 possibly corresponds to the earthquake that occurred in AD 1810 (the Qing Dynasty in Chinese history) in the Ningguta area, which had surface‐wave magnitude (Ms) of 6.8–7.5. Studies of kinematics show that the right‐lateral strike‐slip with a reverse component has been dominant along the YYFZ during the late Holocene.  相似文献   

16.
A linked-fault-element model is employed to invert for contemporary slip rates along major active faults in the Sichuan-Yunnan region (96°-108°E, 21°-35°N) using the least squares method. The model is based on known fault geometry, and constrained by a GPS-derived horizontal velocity field. Our results support a model attributing the eastward extrusion of the Tibetan Plateau driven mainly by the north-northeastward indentation of the Indian plate into Tibet and the gravitational collapse of the plateau. Resisted by a relatively stable south China block, materials of the Sichuan-Yunnan region rotate clockwise around the eastern Himalayan tectonic syntaxis. During the process the Garzê-Yushu, Xianshuihe, Anninghe, Zemuhe, Daliangshan, and Xiaojiang faults, the southwest extension of the Xiaojiang fault, and the Daluo-Jinghong and Mae Chan faults constitute the northeast and east boundaries of the eastward extrusion, with their left slip rates being 0.3-14.7, 8.9-17.1, 5.1 ± 2.5, 2.8 ± 2.3, 7.1 ± 2.1, 9.4 ± 1.2, 10.1 ± 2.0, 7.3 ± 2.6, and 4.9 ± 3.0 mm/a respectively. The southwestern boundary consists of a widely distributed dextral transpressional zone other than a single fault. Right slip rates of 4.2 ± 1.3, 4.3 ± 1.1, and 8.5 ± 1.7 mm/a are detected across the Nanhua-Chuxiong-Jianshui, Wuliangshan, and Longling-Lancang faults. Crustal deformation across the Longmenshan fault is weak, with short-ening rates of 1.4 ± 1.0 and 1.6 ± 1.3 mm/a across the Baoxing-Beichuan and Beichuan-Qingchuan segments. Northwest of the Longmenshan fault lies an active deformation zone (the Longriba fault) with 5.1±1.2 mm/a right slip across. Relatively large slip rates are detected across a few faults within the Sichuan-Yunnan block: 4.4±1.3 mm/a left slip and 2.7±1.1 mm/a shortening across the Litang fault, and 2.7±2.3 mm/a right-lateral shearing and 6.7±2.3 mm/a shortening across the Yunongxi fault and its surrounding regions. In conclusion, we find that the Sichuan-Yunnan region is divided into more than a dozen active micro-blocks by a large number of faults with relatively slow slip rates. The eastward extrusion of the Tibetan Plateau is absorbed and adjusted in the region mainly by these faults, other than a small number of large strike-slip faults with fast slip rates.  相似文献   

17.
作为青藏高原南东向“挤出逃逸”的重要通道,青藏高原东缘中南部具有大型走滑断裂广泛发育和地震活动强烈而频繁的特征.本文使用线性球面块体模型理论,在前人活动地块研究的基础上吸收新近研究成果,建立研究区三维块体几何模型,使用1999—2007年的GPS数据反演得到青藏高原东缘中南部主要活动断裂滑动速率.使用反演得到的滑动速率和最优断层闭锁深度估算了川滇菱形块体主要边界和其内部断裂的地震矩积累,并利用历史强震目录估算了地震矩释放,在比较两者差异的基础上得到了研究区地震矩亏损(未释放的地震矩)较大的断层和断层段,该结果可以作为研究区强震中长期危险性研究的参考.  相似文献   

18.
This paper draws on recent optically stimulated luminescence (OSL) dating to evaluate the long‐held assumption that dust accumulation rates in the Loess Plateau and the extent of active aeolian sand in the dunefields to the north have varied together over time, because both are controlled by the strength of the Asian monsoons and also possibly because the dunefields are proximal loess sources. The results show there is little evidence that high rates of loess accumulation coincided with well‐dated episodes of extensive dune activity in the Mu Us, Otindag, and Horqin dunefields, at 11–8 ka and 1–0 ka. Explanations for the apparent lack of coupling include local variation in the trapping of dust and post‐depositional preservation of the loess and dune sediments, in response to varying local environmental conditions. In addition, a substantial portion of the loess may be transported directly from source areas where dust emission has somewhat different climatic and geomorphic controls than aeolian sand activity within the dunefields. The results of this study cast doubt on the use of loess accumulation rate as a palaeoclimatic proxy at millennial timescale. The dunefield and loess stratigraphic records are interpreted as primarily recording changes in effective moisture at a local scale, but the timing of late Quaternary dune activity, along with a variety of other evidence, indicates that moisture changes in many of the drylands of northern China may not be in phase with precipitation in core regions of the Asian monsoons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号