首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
An extremely differentiated suite of unaltered volcanic rocks dredged from the Galapagos Spreading Center ranges in 18O from 5.7 to 7.1 At 95°W, low K-tholeiites, FeTi-basalts, andesites and rhyodacites were recovered. Their lithologic and major element geochemical variation can be accounted for by crystal fractionation of plagioclase, pyroxenes, olivine and titanomagnetite in the same proportions and amounts needed to model the 18O variation by simple Rayleigh fractionation. More complicated behaviour was observed in a FeTi-basalt suite from 85°W. This study shows that 90% fractionation only enriches the residual melt by about 1.2 in 18O. It also implies that the magma chambers along parts of the Galapagos Spreading Center were static and isolated such that extreme differentiation could occur.  相似文献   

2.
An experimental investigation of olivine morphology   总被引:1,自引:0,他引:1  
Olivine crystals can adopt ten types of shape. Experimental crystallization of eight rock melts shows that there is a systematic change from polyhedral or granular olivines hopper olivines branching olivines randomly oriented chain olivines parallel-growth chain olivines chain+lattice olivines plate or feather olivines, with increase in cooling rate and with increase in degree of supercooling. This sequence involves changes from complete to progressively less complete crystals and from equant habit to elongate bladed habit (c>ab) to tabular habit (ac b). The sequence is not affected by the phase relations of the melt. The larger the olivine content of a melt the slower the cooling rate at which a particular olivine shape grows, whereas the lower the melt viscosity, the greater the cooling rate. Irrespective of the melt composition, comparable crystal shapes grow at the same degrees of supercooling. By comparison of the shapes of olivine crystals in experiments with those in rocks of similar composition, it is possible to deduce the cooling rate through the olivine crystallization interval and the approximate degree of supercooling at which the olivine crystals nucleated and grew in the rocks. The various shapes of skeletal olivines in many picrites, olivine-rich basalts and the Archaean spinifex rocks are not due to rapid cooling, but to rapid olivine growth caused by the high normative olivine content of the magma.  相似文献   

3.
Diffusion rates of18O tracer in quartz ( c, 1 Kb H2O) and Amelia albite ( 001, 2 Kb H2O) have been measured, using Secondary Ion Mass Spectrometry (SIMS). A new technique involving hydrothermal deposition of labelled materials has removed the possibility of pressure solution-reprecipitation processes adversely affecting the experiments. Reported diffusion constants are:-quartz ( c), ,Q=98±7 KJ mol–1 (600–825° C, 1 Kb); Amelia albite ( 001), ,Q=85±7 KJ mol–1, (400–600° C, 2 Kb). Measured quartz18O diffusivities decrease discontinuously at the- transition, reflecting strong structural influences. The reported albite data agree with previously recorded studies, but-quartz data indicate significantly lower activation energies. Possible causes of this discrepancy, and some geological consequences, are noted.  相似文献   

4.
Summary High-grade gneisses from the Pulur complex in NE Turkey bear evidence for biotite-dehydration melting at 820°C and 0.7–0.8GPa, melt segregation and near-isothermal decompression to 0.4–0.5GPa. During further exhumation, the rocks underwent secondary pervasive rehydration at temperatures between 400 and 230°C and fluid pressures between 0.3 and 0.1GPa. Metamorphic peak conditions are dated at 331–327Ma, while hydrothermal retrogression occurred significantly later at 315–310Ma under static conditions. During the rehydration event, primary high-grade mineral assemblages including garnet, cordierite, sillimanite, spinel, biotite, plagioclase and ilmenite were extensively replaced by muscovite, paragonite, margarite, corundum, diaspore, chlorite, kaolinite, pumpellyite, prehnite, epidote, titanite, anatase, pyrite and chalcopyrite. Secondary mineral assemblages indicate that the infiltrating fluids were characterized by low fO2, very low XCO2 (<0.002), variable activities of Ca2+, K+, Na+ and H+ and relatively high activities of H2S and CH4. Quartz veins that might have acted as pathways for the fluids are rare. Ubiquitous veinlets consisting of (i) albite, (ii) chlorite+calcite+quartz or (iii) K-feldspar+calcite+quartz were formed after the pervasive rehydraton event by precipitation from aqueous solutions that were somewhat richer in CO2.  相似文献   

5.
A general model has been developed to calculate changes of 18O of minerals in addition to their composition and modal abundance in metamorphic systems. A complete set of differential equations can be written to describe any chemical system in terms of the variables dP, dT, dX, dM, and d18O (X, M, and 18O refer to the chemical composition, number of moles, and oxygen isotope composition of each phase respectively). This set is composed of the differentials of five subsets of equations: (1) conditions of heterogeneous equilibrium; (2) compositional stoichiometry for each mineral; (3) mass balance for each oxide component; (4) oxygen isotope partitioning between phases; (5) conservation of the oxygen isotope ratio of the system. The variance of the complete set of equations is 2, and changes of 18O, composition, and modal abundance for each mineral can be calculated for arbitrary changes of P and T. Applications to a typical pelitic bulk composition at amphibolite and lower granulite facies conditions suggest that for systems dominated by continuous reactions such as: (a) chlorite + quartz = garnet+H2O; (b) staurolite + biotite = garnet + muscovite + H2O; or (c) garnet + muscovite = sillimanite + biotite, isopleths of mineral 18O are nearly independent of pressure, and have a spacing of about 0.1 per 10–20°C. For nearly discontinuous reactions such as: (d) garnet + chlorite + muscovite = biotite + staurolite+H2O; (e) staurolite + muscovite = biotite + aluminosilicate + garnet+H2O; or (f) muscovite + quartz = sillimanite + K-feldspar+H2O, isopleths of mineral 18O have slopes more nearly parallel to endmember reaction boundaries and 18O of phases can have a greater temperature dependence (e.g., 0.1 per 2°C for reaction d). This behavior results from relatively large amounts of reaction progress for small changes of P or T. However, the calculated exhaustion of a reactant within 0.1–5°C ensures that the predicted effects of such reactions on mineral 18O will not exceed 0.25 for typical bulk compositions. Models that allow for fractional crystallization of garnet suggest that prograde garnet zoning in pelitic assemblages will be relatively smooth until staurolite becomes unstable. At higher temperatures, garnet may develop a step of as much as 0.6 in its core-rim zoning as a result of combined garnet resorption during the continuous reaction garnet + muscovite = sillimanite + biotite and repartitioning of the garnet rim composition to relatively heavy 18O. The models are insensitive to the degree to which garnet fractionally crystallizes and to the isotope fractionation factors used; only extreme changes in modal abundance or bulk composition for a given mineral assemblage can produce significant changes in the predicted trends. In the absence of infiltration, isotopic shifts resulting from net transfer reactions for minerals in typical amphibolite, eclogite, and lower granulite facies metapelites and metabasites are inferred from the models to be 1 or less for 150°C of heating.  相似文献   

6.
Summary Thermochemistry, morphology, optical properties and crystal structure of synthetic bayleyite, Mg2[UO2(CO3)3]·18H2O, monoclinic, have been studied. Incongruent melting at 55°, three steps of dehydration and two steps of decarboxylation have been found by thermochemic investigations. Morphology: Prisms along [001] with {100}, {110}, {210}, {001}, {401}, {021}, {211}, {111} and as the most important forms. Optical data:n =1.453,n =1.498,n =1.499, 2V x =16°,Y=b,X c=11°. Crystal structure: Space groupP21/a,a=26.560(3),b=15.256(2),c=6.505(1) Å, =92.90(1)°,Z=4,R=0.029 for 5126 independent reflections measured with MoK -radiation. The structure is built up from isolated Mg(H2O)6 octahedra, UO2(CO3)3 units and lattice water molecules, all held together by hydrogen bonds only.
Synthetischer Bayleyit, Mg2[UO2(CO3)3]·18H2O: Thermochemie, Kristallographie und Kristallstruktur
Zuseammenfasung Thermochemie, Morphologie, optische Eigenschaften und Kristallstruktur von Bayleyit, Mg2[UO2(CO3)3]·18H2O, monoklin, wurden anhand künstlich hergestellter Kristalle untersucht. Durch thermochemische Untersuchung wurden inkongruentes Schmelzen bei 55°, eine dreistufige Wasserabgabe sowie eine zweistufige CO2-Abgabe festgestellt. Morphologie: parallel zu [001] gestreckte Prismen mit {100}, {110}, {210}, {001}, {401}, {021}, {211}, {111}, und {311} als wichtigste Formen. Optische Daten:n =1.453,n =1.498,n =1.499, 2V x =16°,Y=b,X c=11°. Kristallstruktur: RaumgruppeP21/a,a=26.560(3),b=15.256(2),c=6.505(1) Å, =92.90(1)°,Z=4;R=0.029 für 5126 unabhängige, mit MoK -Strahlung gemessene Reflexe. Die Struktur enthält isolierte Mg(H2O)6-Oktaeder, UO2(CO3)3-Gruppen und freie Wassermoleküle, die ausschließlich durch Wasserstoffbrücken miteinander verknüpft sind.


With 4 Figures  相似文献   

7.
The phase relations in the Cu-Zn-S system were studied at temperatures ranging from 100 ° to 1050 °C with emphasis on the 500 ° and 800 °C isotherms. All experiments were performed in closed, evacuated silica tubes in which vapor always is a phase. Ternary phases did not appear in any of these experiments. At 800 °C tie-lines exist between cubic ZnS (sphalerite) and the digenite-chalcoite solid solution, between ZnS and three CuZn alloys (, , ) and between ZnS and ZnCu liquid containing from zero to about 30 wt % Cu. Only the cubic, sphalerite, form of ZnS was encountered in the present study. At 800 °C the solid solution of ZnS in Cu2S is 7.0 ± 1 wt % and the solid solution of Cu2S in ZnS is less than 1.0 wt %. At lower temperatures ZnS coexists with all other phases once they become stable, i.e., -CuZn (<598 °C), CuS (<507 °C), and blue-remaining covellite (<157 °C). At 500 °C the solid solution of ZnS in Cu2S is 1.5±0.5 wt % and that of Cu2S in ZnS is less than 0.1 wt %. The presence of ZnS depresses the temperature of the hexagonal cubic inversion in Cu2S by about 13 °C, but does not measurably affect the temperature of the monoclinic hexagonal inversion in Cu2S nor that of the cubic cubic inversion in Cu9S5. The coexistence in nature of sphalerite and copper-sulfides is discussed in light of the low temperature phase relations in the Cu-Zn-S system.
Zusammenfassung Die Phasengleichgewichtsredaktionen des Dreistoffsystems Cu-Zn-S wurden über einen weiten Temperaturbereich, nämlich von 100 °C bis zu 1050 °C und dabei besonders nachdrücklich die 500 ° und 800 °C-Isothermen, untersucht. Alle Experimente wurden in abgeschmolzenen und vorher evakuierten Quarzglasampullen durchgeführt, in welchen eine Dampfphase (vapor) stets gegenwärtig war. In keinem der Experimente war das Vorhandensein einer ternären Phase zu verzeichnen. Bei 800 °C verlaufen Konodenscharen vom kubischen ZnS (Zinkblende) zur Digenit-Kupferglanz-Mischkristallreihe, ferner Konoden zwischen ZnS und drei Cu-Zu-Legierungen (, , ) und zwischen ZnS und einer Zn-Cu-Schmelze von 0 bis ca. 30 Gew.-% Cu. In der hier vorliegenden Arbeit trat nur kubisches ZnS (Zinkblende) auf. Cu2S vermag bei 800 °C 7,0±1 Gew.-% ZnS in fester Lösung aufzunehmen, während die Löslichkeit von Cu2S in ZnS weniger als 1,0 Gew.-% beträgt. Mit zunehmender Temperaturerniedrigung koexistiert ZnS mit allen übrigen Phasen des Systems, sobald diese stabil werden, z. B. -CuZn (<598 °C), CuS (<507 °C) und blaubleibender Covellin (<157 °C). Bei 500 °C beträgt die Löslichkeit von ZnS in Cu2S nur noch 1,5±0,5 Gew.-% und die von Cu2S in ZnS weinger als 0,1 Gew.-%. Die Gegenwart von ZnS erniedright die Inversionstemperatur von hexagonalem kubischen Cu2S um etwa 13 °C, hat aber weder einen meßbaren Einfluß auf die Inversionstemperatur des monoklinen hexagonalen Cu2S noch auf die kubisch kubische Inversion des Cu9S5. Angeischts der im Cu-Zn-S-System ermittelten Phasenbeziehungen bei niedrigen Temperaturen werden die Koexistenz natürlicher Zinkblende mit Kupfersulfiden diskutiert.
  相似文献   

8.
Zusammenfassung Rooseveltit findet sich in der Oxidationszone der Lagerstätten San Francisco de los Andes und Cerro Negro de la Aguadita, in der Provinz San Juan, Argentinien, auf 30°22 S und 69°33 W. Er bildet sehr feinkörnige, weiß-graue, nach Bismuthinit pseudomorphe Aggregate. Die Brechungsindizes liegen zwischenn=2,10 und 2,30. Die Vickershärte beträgt 513 (4–5 der Mohs'schen Härteskala). Mittels Elektronenmikrosonde wurde folgende chemische Zusammensetzung bestimmt: As=21,5±1%, Bi=60,9±2%. Rooseveltit ist monoklin mita 0=6,878(1)Å, b0=7,163(1) Å, c0=6,735(1) Å, =104° 46±1, Z=4, calc.=6,94 g·cm–3, RaumgruppeP 21/n.Rooseveltit wurde nach drei verschiedenen Methoden synthetisiert. Die Pulverdiagramme der synthetischen Produkte stimmen mit dem des Minerals überein. Die Brechungsindizes wurden mitn =2,13(2) bzw. n=2,25(2) und die Dichte mit obs.=7,01 g·cm–3 bestimmt. Zellparameter: a0-6,882(1) Å, b0=7,164(1) Å, c0=6,734(1) Å, =104° 50,5±0,7, calc.=6,94 g·cm–3. Das synthetische Material schmilzt um 950°C. Selbst nach mehrstündigem Erhitzen auf 920°C läßt sich keine Veränderung im Pulverdiagramm des Minerals festellen.Es wird versucht, die natürliche Bildung des Rooseveltits zu erklären.
Rooseveltite from San Francisco de los Andes and Cerro Negro de la Aguadita, San Juan, Argentina
Summary Rooseveltite occurs in the weathering zone of the San Francisco de los Andes and Cerro Negro de la Aguadita mines, located in the San Juan Province, Argentina, at 30° 22S and 69° 33W. It appears in grey, finegrained aggregates pseudomorph after bismuthinite. Refraction index ranges fromn=2.10 to 2.30. The Vickers microhardness is 513 (4–5 of Mohs' scale). Chemical composition from electron micro probe measurements is As 21.5±1% and Bi 60.9±2%. Rooseveltite is monoclinic, with a0=6.878(1) Å, b0=7.163(1) Å, c0=6.735(1) Å, =104° 46±1, Z=4, calc.=6,94 g·cm–3, space groupP 21/n.The synthetic compound was prepared by three different methods. The powder pattern are the same as that of the mineral. Refraction index n=2.13(2) and n=2.25(2). The measured specific gravity is pobs.=7,01 g·cm–3. Cell parameters: a0=6.882(1) Å, b0=7.164(1) Å,c 0=6.734(1) Å, =104° 50.5±0.7, calc.=6,94 g·cm–3. The synthetic material melts at about 950°C. After heating to 920°C no variations were observed in the powder diagram of the mineral.It is tried to explain the formation of rooseveltite in natural environment.


Mit 2 Abbildungen  相似文献   

9.
The solubility of water in melts in the NaAlSi3O8–H2O system at high P and T was deduced from the appearance of quenched products and from water concentrations in the quenched glasses measured by ion probe, calibrated by hydrogen manometry. Starting materials were gels with sufficient water added to ensure saturation of the melts under the run conditions. Experiments were carried out for 10–30 h in an internally heated argon pressure vessel (eight at 1400° C and 0.2–0.73 GPa and three at 0.5 GPa and 900–1200° C) and for 1 h in a piston-cylinder apparatus (three at 1200° C, 1–1.3 GPa). No bubbles were observed in the glasses quenched at P<0.5 GPa or from T<1300° C at 0.5 GPa. Bubble concentration in glasses quenched from 1400° C was low at 0.5, moderate at 0.55 GPa and very high at 0.73 GPa and still higher in glasses quenched in the piston cylinder. Water concentration was measured in all glasses, except for the one at 0.55 GPa, for which it was only estimated, and for those at 0.73 GPa because bubble concentration was too high. Inferred water solubilities in the melt increase strongly with increasing P at 1400° C (from 6.0 wt% at 0.2 GPa to 15 at 0.55 GPa) and also with increasing T at 0.5 GPa (from 9.0 wt% at 900° C to 12.9 at 1400° C). The T variation of water solubility is fundamental for understanding the behaviour of melts on quenching. If the solubility decreases with T at constant P (retrograde solubility), bubbles cannot form by exsolution on isobaric quenching, whereas if the solubility is prograde they may do so if the cooling rate is not too fast. It is inferred from observed bubble concentrations and from our and previous solubility data that water solubility is retrograde at low P and prograde at and above 0.45 GPa; it probably changes with T from retrograde below to prograde above 900° C at 0.5 GPa. Moreover, the solubility is very large at higher pressures (possibly>30 wt% at 1.3 GPa and 1200° C) and critical behaviour is approached at 1.3 GPa and 1200° C. The critical curve rises to slightly higher P at lower T and intersects the three-phase or melting curve at a critical end point near 670° C and 1.5 GPa, above which albite coexists only with a supercritical fluid.  相似文献   

10.
Stability of titanian clinohumite: Experiments and thermodynamic analysis   总被引:2,自引:0,他引:2  
Reversed hydrothermal experiments on a natural titanoclinohumite [Ti-Cl; approximate formula Mg7.5FeTi0.5O16(OH)] show that it breaks down at 475°±11° C (3.5 kbar), 620°±11° C (14 kbar) and 675°±8° C (21 kbar) to the assemblage olivine +ilmenite+vapor. An internal-consistency analysis of the data yields r G s /0 (298 K, 1 bar)=36,760±3,326 cal (mole Ti-Cl)–1. r S s /0 (298 K, 1 bar)=34.14±5.91 cal deg–1(mole Ti-Cl)–1. Linear correlation coefficient r G–S 1.0. A solution model that accounts for TiO2-M(OH)2 and F-OH substitution shows that the results for our nearly F-free Ti-Cl are in reasonable agreement with the unreversed breakdown experiments of Mer-rill et al. (1972) on a F-bearing Ti-Cl.Because fluorine is necessary to stabilize Ti-Cl under mantle conditions, we suggest that Ti-Cl is much more likely to be a storage device for fluorine than for water in the mantle.  相似文献   

11.
We report the result of H2O-undersaturated melting experiments on charges consisting of a layer of powdered sillimanite-bearing metapelite (HQ36) and a layer of powdered tonalitic gneiss (AGC150). Experiments were conducted at 10 kbar at 900°, 925° and 950°C. When run alone, the pelite yielded 40 vol% strongly peraluminous granitic melt at 900°C while the tonalite produced only 5 vol% weakly peraluminous granitic melt. At 950°C, the pelite and the tonalite yielded 50 vol% and 7 vol% granitic melt, respectively. When run side by side, the abundance of melt in the tonalite was 10 times higher at all temperatures than when it was run alone. In the pelite, the melt abundance increased by 25 vol%. When run alone, biotite dehydration-melting in the tonalite yielded orthopyroxene and garnet in addition to granitic melt. When run side by side only garnet was produced in addition to granitic melt. Experiments of relatively short duration, however, also contained Al-rich orthopyroxene. We suggest that the large increase in melt fraction in the tonalite is mainly a result of increased activity of Al2O3 in the melt, which lowers the temperature of the biotite dehydration-melting reaction. In the pelite, the increase in the abundance of melt is caused by transport of plagioclase component in the melt from the tonalite-layer to the pelite-layer. This has the effect of changing the bulk composition of this layer in the direction of minimum-temperature granitic liquids. Our results show that rocks which are poor melt-producers on their own can become very fertile if they occur in contact with rocks that contain components that destabilize the hydrous phase(s) and facilitate dehydration-melting. Because of this effect, the continental crust may have an even greater potential for granitoid melt production than previously thought. Our results also suggest that many anatectic granites most likely contain contributions from two or more different source rocks, which will be reflected in their isotopic and geochemical compositions.  相似文献   

12.
In recent years, there have been numerous calibrations of the biotite-garnet Fe-Mg exchange geothermometer. The Eastern Lac Seul region of the English River subprovince, Ontario, provides an excellent field area in which to compare these calibrations.Trend surface analysis using the temperatures obtained from garnet cores and matrix biotites-showed almost identical trends in the eastern Lac Seul region regardless of the calibration used. The absolute temperatures and the precision of each calibration do, however, show large variation. Geothermometers based solely on lnKD were found to give more precise results than the calibrations that attempt to incorporate non-Fe-Mg components. The Perchuk and Lavrent'eva (1983) thermometer yields the most precise and accurate results. If a sufficient number of samples are collected over a region, it can be used to estimate metamorphic temperature trends to ±30° C. Metamorphism and migmatization of the English River subprovince occurred during the Kenoran orogeny, 2.68 b.y. ago. Our results show that a thermal anticline has been preserved, with temperatures of 600° C at the north and south contacts with Uchi and Wabigoon Greenstone belts, increasing to 725 °C at the center of the subprovince. A garnet-cordierite in isograd occurs at 650° C and an orthopyroxene in isogradat 700° C.  相似文献   

13.
The texture, distribution, and infiltration tendency of a quartz-albite melt in equilibrium with a synthetic, texturally-equilibrated quartzite was examined in a series of distribution and infiltration experiments at 1,250° C and 8 kbar hydrostatic pressure. Wetting angle measurements from melt distribution experiments show a dihedral angle () of 60 degrees, implying a quartz/quartz interfacial energy approximately 1.7 times the quartz/melt value. Because of this specific relationship between interfacial energies, the system can achieve its lowest surface free energy state with the melt either in pools or along grain edge intersections, possibly forming some interconnected channels. Stability of melt in pockets and along grain edge intersections was observed in a fourteen-day, dispersed-melt experiment, yet melt pools failed to disperse into the quartzite during infiltration experiments. Comparison of the observed dihedral angle with previously measured surface energy values for the melt and quartz shows excellent agreement, and also demonstrates that an aggregate of randomly orientated anisotropic grains acts approximately isotropically.While these experiments are not strictly applicable to real crustal systems, they do indicate that, at least in some felsic systems, the melt has no preference for uniform grainedge wetting relative to collection at grain corners or in large pools. This ambivalent behavior is attributable to the 60-degree wetting angle, which has been shown to separate systems in which melt tends to disperse in interconnected channels (<60°) from those in which melt tends to become isolated at grain corners (> 60°).  相似文献   

14.
Density measurements have been carried out on the melt system diopside-anorthite from room temperature to 1600° C at 1 atm, and from 1400° C to 1800° C at pressures up to 20 Kb. The densities were determined based on the dilatometric curve and density at 22° C for lowtemperatures, the double-bob Archimedean method for high-temperatures at 1 atm, and on the sinking and floating spheres method for high-pressure conditions.The results at 1 atm indicate that the thermal expansion coefficient of the glassy state is almost constant, while that of the liquid state decreases with increasing temperature. Density decreased with increasing anorthite content for both glassy and liquid states. Melts in the liquid-state mix ideally with respect to volume, while the glassy state exhibits a maximum excess volume at Di30An70. Density-pressure relations clearly show a density reversion between diopsiderich and anorthite-rich melts; the anorthite-rich melt becomes denser than diopside-rich melt at pressures above 8 kb.The free volumes of both the liquid and glassy states decreased with increasing anorthite content.Isothermal compressibilities and the hard-sphere diameter have been calculated based on the hard-sphere liquid model using thermal expansion coefficients and surface tension data. Calculated compressibilities for diopside-rich melt (Di:>Di60) agreed well with the experimental data, while calculated and observed compressibilities for anorthite-rich melt did not. This evidence indicates that diopside melt may be regarded as a discrete-melt composed of small constituent units (about 10 Å in average diameter) and much interstitial space, while anorthite melt is a three-dimensional network melt with little interstitial space. The critical composition Di60An40 is similar to that of the eutectic and corresponds to breaks between composition and other physical properties. It is proposed that the composition may reflect a kind of critical state in the substitution of the continuous structure of anorthite melt for the discrete structure of diopside melt. The critical state may be interpreted based on the site-percolation theory.  相似文献   

15.
The Brixen Quartzphyllite, basement of the Southern Alps (Italy), consists of metasediments which had suffered progressive deformation and low grade metamorphism (p max4 kbar, T max375±25° C) during the Palaeozoic. It has been excavated by pre-Permian erosion, buried again beneath a pile of Permo-mesozoic to Cainozoic sediments (estimated T max150° C), and is now exposed anew due to late Alpine uplift and erosion. The behavior of the K-Ar system of white micas is investigated, taking advantage of the narrow constraints on their thermal history imposed by the geological/stratigraphic reference systems.The six structurally and petrographically differing samples come from a single outcrop, whose position is roughly two kilometers beneath the Permian land-surface. White mica concentrates from five grain size fractions (<2 , 2–6 , 6–20 , 20–60 , 60–75 ) of each sample have been analyzed by the conventional K-Ar method, four selected concentrates additionally by the 40Ar/39Ar stepwise heating technique; furthermore, Ar content and isotopic composition of vein quartz were determined.The conventional ages of the natural grain size fractions (20–60 , 60–75) are in the range 316±8 Ma, which corresponds to the 40Ar/39Ar plateau age of 319.0±5.5 Ma within the error limits. The finer grain size fractions yield significantly lower ages, down to 233 Ma for fractions <2 . Likewise low apparent ages (down to 83 Ma) are obtained for the low temperature 40Ar/39Ar degassing steps.There is no correlation between microstructural generation of white mica prevailing in the sample and apparent age. This favours an interpretation of the 316±8 Ma values as cooling age; progressive deformation and metamorphism must be respectively older and their timing cannot be resolved by these methods. The data preclude any significant influence of a detrital mica component as well as of excess argon.The lower ages found for the fine grain-size fractions (respectively the low-T degassing steps) correspond to a near-surface period (p-T-minimum); the values are geologically meaningless. The effect is interpreted to result from partial Ar loss due to reheating during Mesozoic-Cainozoic reburial. A model based on diffusion parameters derived from the outgassing experiments and Dodson's (1979) equation yields a closure temperature of 284±40 °C for a cooling rate of 18° C/Ma. Furthermore, this model suggests that the observed argon loss of up to 5% may in fact have been induced by reheating to 150 °C for 50 Ma.  相似文献   

16.
Zusammenfassung Im Winnebachmigmatit (Ötztaler Alpen, Österreich) wurde ein frischer Gletscherschliff hinsichtlich seiner Bildungsbedingungen untersucht. Das Fehlen von Orthoklas im anatektisch neugebildeten Gestein spricht für Drucke über 3,2 kb zur Zeit der Anatexis. Die Temperatur der Anatexis ist durch das Auftreten von Gneis-Schollen im Migmatit mit ca. 680–685°C (4 kb) bestimmt. Mit Hilfe von Experimenten wurde versucht, den Grad der Anatexis und die Schmelzmengen zu rekonstruieren. Die größten Schmelzbereiche werden ca. 20°C betragen haben. Dabei entstand in den günstigsten Fällen 60–70% Schmelze im Gestein. In den meisten Fällen blieb während der Anatexis von den hellen Gemengteilen außer Quarz auch Plagioklas als kristalliner Rest übrig.
The anatexis of the Winnebachmigmatite (Ötztal Alps, Austria) illustrated by an outcrop
Summary Investigations on the conditions of formation of the Winnebachmigmatite were made on fresh rocks from an outcrop polished by glacial ice. The lack of orthoclase in the anatectically formed rock is interpreted to be due to a pressure more than 3.2 kb during the anatexis. The temperature of the anatexis is fixed at 680–685°C (4 kb) by unaltered gneiss-blocks within the migmatite. We have tried experimentally to reconstruct the degree of anatexis and the amount of melt. The largest temperature range of melting in this migmatite is considered to have been approximately 20°C. Thereby a maximum amount of melt of 60–70% was formed. Of the leucocratic minerals apart from quartz, some of the plagioclase remained also as crystalline residue.


Mit 7 Abbildungen  相似文献   

17.
During the Cretaceous and Tertiary periods the Pre-Saharan depression between Ouarzazate and Errachidia was an area of deposition in a spatially and chronologically highly differentiated pattern. The variable structural and tectonic history of this region in also reflected in its denudational development. Until the late Pliocene/early Pleistocene the western part (Ouarzazate basin) was a depositional basin for lacustrine and alluvial sediments. Pediment formation did not start before the Pleistocene period. In the central part of the depression (between Boumalne and Tinerhir) denudational activity on cuesta scarps started already in the late Miocene to early Pliocene as can be deduced from a new dating of the Foum el Kous volcano (2.9 my) and from Djebl Sarhro gravels on the crest of the Paleogene scarp. In the easternmost part of the depression (between Goulmima and Errachidia) there are no Neogene sediments, and the calculations of rates of scarp retreat demonstrate that scarp backwearing must have begun in the late Eocene. Thus the shift from depositional to erosional activity in the Pre-Saharan depression ranges from the late Eocene to the Pleistocene. This is at the same time an expression of its complex tectonic history.
Zusammenfassung Die präsaharische Senke zwischen Ouarzazate und Errachidia war während der Kreide und des Tertiärs ein Sedimentationsgebiet mit zeitlich und räumlich hoch differenzierten Fazies- und Mächtigkeitsabfolgen. Die variable strukturelle und tektonische Entwicklung dieser Zeit spiegelt sich wider in der nachfolgenden Abtragungsgeschichte. Der westliche Teil der Senke, das Becken von Ouarzazate, war bis zum späten Pliozän/frühen Pleistozän ein Ablagerungsbecken für limnische und alluviale Sedimente, bis im frühen Pleistozän die Genese von Pedimenten einsetzte. Im zentralen Teil der präsaharischen Senke zwischen Boumalne und Tinerhir begann die erosive Reliefentwicklung an Stufenhängen bereits im späten Miozän bis frühen Pliozän, wie sich aus einer absoluten Datierung des Ankaratrits des Foum el Kous (2,9 my) ableiten läßt, der sich in die zu dieser Zeit bereits existente Stufenvorlandzone ergoß. Eine untere Zeitmarke für die Entstehung der Schichtstufe stellen die von Süden vom Djebl Sarhro in die Senke hereintransportierten Schotter von Timadriouine dar. Im Ostteil der präsaharischen Senke zwischen Goulmima und Errachidia fehlen neogene Sedimente, und die Ermittlung von Stufenrückwanderungsraten für die Hamada de Meski zeigt, daß die Abtragung hier schon im späten Eozän eingesetzt haben muß. Der Wechsel von Sedimentations- zu subaerischen Abtragungsbedingungen reicht in der präsaharischen Senke vom frühen Pleistozän im Westen bis zum Eozän im Osten. Das ist auf geomorphologischer Grundlage ein Hinweis auf die komplexe strukturelle und tektonische Entwicklung dieser Region.

Résumé Au cours du Crétacé et du Tertiaire, la dépression présaharienne entre Ouarzazate et Errachidia a été un domaine de sédimentation marqué par de fortes variations de faciès et d'épaisseurs dans le temps et dans l'espace. L'histoire structurale et tectonique mouvementée de cette période se reflète également dans la dénudation qui a suivi. La partie ouest de la dépression (bassin d'Ouarzazate) a constitué jusqu'à la limite Plio-Pléistocène une aire de dépôt de sédiments lacustres et alluviaux; la formation de pédiments n'y a débuté qu'au Pléistocène. Dans la partie centrale de la dépression, entre Boumalne et Tinerhir, l'érosion en cuestas a débuté dès le Miocène supérieur/Pliocène inférieur, comme l'indique une datation récente à 2,9 Ma de l'ankaratrite du volcan Foum el Kous qui s'est écoulée en avant d'une cuesta qui existait déjà à ce moment. Une limite inférieure pour la formation des cuestas est fournie par les graviers de Timadriouine transportés dans la dépression depuis le sud à partir du Djebel Sarhro.Dans la partie orientale de la dépression présaharienne, entre Goulmina et Errachidia, les sédiments néogènes font défaut et l'évaluation de la vitesse de recul des fronts de cuestas montre que ce processus a dû commencer à l'Eocène supérieur. Ainsi, le passage de la sédimentation à l'activité érosive dans la dépression pré-saharienne varie du Pléistocène inférieur à l'ouest, à l'Eocène à l'est. C'est là, à partir de données géomorphologiques, une indication de l'histoire structurale et tectonique complexe de cette région.

- Ouarzazate Errachidia , , , . . , Ouarzazate / ; . Boumalne Tinerhir () , , Foum el Kous (2,9 Ma), . Timadriouine Djebl Sarhro . Goulmina Errachidia Hamada de Meski , , , . , . .
  相似文献   

18.
Optically visible Albite glide twins in a peristerite (An9Or1.6), identified from their tapering shape and relationship to grain boundaries, were studied by transmission electron microscopy. Near the tips in sections a, the microstructure consists of small (400 nm long) lensshaped Albite twins centred exclusively on the oligoclase lamellae. The lenses extend partly outwards into the two adjacent low albite lamellae and induce strong inhomogeneous strain. Where the lenses are closer together, they form, depending on the sense of shear, nearly linear left or right-stepping en échelon arrays, with overlap of the strain fields. Slightly farther in from the tip, the twin domains coalesce to form continuous pinch-and-swell lamellae, being always thicker in the oligoclase. Because of Si,Al order, only elastic glide pseudotwins are possible in low albite. In oligoclase glide pseudotwins may be mechanically stable (metastable relative to Si,Al order) and may deviate only slightly from true twins. Pseudotwins develop first in the oligoclase, propagate dynamically by jumping across the intervening albite lamellae, extend lengthways and thicken sideways and finally coalesce. They are stabilized by diffusion-controlled inversion of Si,Al order giving rise to true twins described in a companion paper.C.R.P.G. contribution 799  相似文献   

19.
Peak metamorphic temperatures for the coesite-pyrope-bearing whiteschists from the Dora Maira Massif, western Alps were determined with oxygen isotope thermometry. The 18O(smow) values of the quartz (after coesite) (18O=8.1 to 8.6, n=6), phengite (6.2 to 6.4, n=3), kyanite (6.1, n=2), garnet (5.5 to 5.8, n=9), ellenbergerite (6.3, n=1) and rutile (3.3 to 3.6, n=3) reflect isotopic equilibrium. Temperature estimates based on quartz-garnet-rutile fractionation are 700–750 °C. Minimum pressures are 31–32 kb based on the pressure-sensitive reaction pyrope + coesite = kyanite + enstatite. In order to stabilize pyrope and coesite by the temperature-sensitive dehydration reaction talc+kyanite=pyrope+coesite+H2O, the a(H2O) must be reduced to 0.4–0.75 at 700–750 °C. The reduced a(H2O) cannot be due to dilution by CO2, as pyrope is not stable at X(CO2)>0.02 (T=750 °C; P=30 kb). In the absence of a more exotic fluid diluent (e.g. CH4 or N2), a melt phase is required. Granite solidus temperatures are 680 °C/30 kb at a(H2O)=1.0 and are calculated to be 70°C higher at a(H2O)=0.7, consistent with this hypothesis. Kyanite-jadeite-quartz bands may represent a relict melt phase. Peak P-T-f(H2O) estimates for the whiteschist are 34±2 kb, 700–750 °C and 0.4–0.75. The oxygen isotope fractionation between quartz (18O=11.6) and garnet (18O=8.7) in the surrounding orthognesiss is identical to that in the coesitebearing unit, suggesting that the two units shared a common, final metamorphic history. Hydrogen isotope measurements were made on primary talc and phengite (D(SMOW)=-27 to-32), on secondary talc and chlorite rite after pyrope (D=-39 to -44) and on the surrounding biotite (D=-64) and phengite (D=-44) gneiss. All phases appear to be in nearequilibrium. The very high D values for the primary hydrous phases is consistent with an initial oceanicderived/connate fluid source. The fluid source for the retrograde talc+chlorite after pyrope may be fluids evolved locally during retrograde melt crystallization. The similar D, but dissimilar 18O values of the coesite bearing whiteschists and hosting orthogneiss suggest that the two were in hydrogen isotope equilibrium, but not oxygen isotope equilibrium. The unusual hydrogen and oxygen isotope compositions of the coesite-bearing unit can be explained as the result of metasomatism from slab-derived fluids at depth.  相似文献   

20.
Experimental data are used to model the transformation rate of polycrystalline aragonite (grain diameter 80 m) to calcite. Optimized values for nucleation and growth rates were obtained by numerically fitting the overall transformation rates from 280° to 380°C and 0.10 MPa to an expression for a grain-boundary-nucleated and interface-controlled transformation. The nucleation rate is 4–5 orders of magnitude faster than for calcite nucleated within aragonite grains, and the growing in rate is slower below 300°C than for calcite growing in aragonite single crystals. The activation enthalpy for growth in polycrystalline aggregate is 247kJ/mol compared to 163 kJ/mol for growth in single crystals. Permanent deformation of the phases limits the elastic strain energy due to the 7% volume change and reduces the coherency of the calcite/aragonite interace. Theoretical expressions are used to extrapolate the data for nucleation and growth to other temperatures, and data from 0.10 to 400 MPa are used to evaluate the effect of pressure on the grain-boundary nucleation rate. Because of permanent deformation of the phases, the effective strain energy for nucleation is 0.55 kJ/mol, which is less than a quarter of the value for purely elastic deformation. These data are used to predict the percent transformation for various P-T-t paths; without heating during uplift partial preservation of aragonite in dry blueschist facies rocks can occur if the calcite stability field is entered at 235° C, and the kinetic data are also consistent with published P-T-t paths which include heating during uplift. The predicted percent transformation is relatively insensitive to variations in the initial grain size of the aragonite, but strongly dependent on the effective strain energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号