首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing riverine pollutants have resulted in nutrient enrichment and deterioration of water quality in the coastal water of Guangxi Province, China. However, the quantitative relationship between nutrient loads and water quality responses, which is crucial for developing eutrophication control strategies, is not well studied. In this study, the riverine fluxes of nutrients were quan- tified and integrated with nutrient cycling and phytoplankton dynamics by using box models for Guangxi coastal bays. The model concepts and biogeochemical equations were the same; while most model parameters were specific for each bay. The parameters were calibrated with seasonal observations during 2006--2007, and validated with yearly averaged measurements in 2009. The gen-eral features of nutrient and phytoplankton dynamics were reproduced, and the models were proved feasible under a wide range of bay conditions. Dissolved inorganic nitrogen was depleted during the spring algal bloom in Zhenzhu Bay and Fangcheng Bay with relatively less nutrient inputs. Phosphorus concentration was high in spring, which decreased then due to continuous phytoplankton consumption. Chlorophyll-a concentration reached its annual maximum in summer, but was the minimum in winter. Eutrophication was characterized by both an increase in nutrient concentrations and phytoplankton biomass in Lianzhou Bay. Either about 80% re-duction of nitrogen or 70% reduction of phosphorus was required to control the algal bloom in Lianzhou Bay. Defects of the models were discussed and suggestions to the environmental protection of Guangxi coastal bays were proposed.  相似文献   

2.
The increasing riverine pollutants have resulted in nutrient enrichment and deterioration of water quality in the coastal water of Guangxi Province, China. However, the quantitative relationship between nutrient loads and water quality responses, which is crucial for developing eutrophication control strategies, is not well studied. In this study, the riverine fluxes of nutrients were quantified and integrated with nutrient cycling and phytoplankton dynamics by using box models for Guangxi coastal bays. The model concepts and biogeochemical equations were the same; while most model parameters were specific for each bay. The parameters were calibrated with seasonal observations during 2006–2007, and validated with yearly averaged measurements in 2009. The general features of nutrient and phytoplankton dynamics were reproduced, and the models were proved feasible under a wide range of bay conditions. Dissolved inorganic nitrogen was depleted during the spring algal bloom in Zhenzhu Bay and Fangcheng Bay with relatively less nutrient inputs. Phosphorus concentration was high in spring, which decreased then due to continuous phytoplankton consumption. Chlorophyll-a concentration reached its annual maximum in summer, but was the minimum in winter. Eutrophication was characterized by both an increase in nutrient concentrations and phytoplankton biomass in Lianzhou Bay. Either about 80% reduction of nitrogen or 70% reduction of phosphorus was required to control the algal bloom in Lianzhou Bay. Defects of the models were discussed and suggestions to the environmental protection of Guangxi coastal bays were proposed.  相似文献   

3.
An integrated methodology for eutrophication assessment,which integrates both water quality indicators(causative factors) and ecological response indicators(effect factors),is described.It is then applied to rank the eutrophication status of the years 2007 and 2008 in the southwest Bohai Sea.The assessment model identified that north Bohai Bay and west Laizhou Bay were the two areas with the most serious eutrophication problems in the southwest Bohai Sea.In addition,compared to that in the west Laizhou Bay,the eutrophication conditions in the north Bohai Bay was more serious in both years.Eutrophication problems such as harmful algal blooms(HABs) and low dissolved oxygen(DO) events in north Bohai Bay were frequent.The integrated method outmatched the currently used Chinese nutrient index method by definitely identifying areas with the most serious eutrophication problems,while the nutrient index method gave ambiguous results between the two years.Inclusion of both causative factors and effect factors,combining concentration,spatial coverage and frequency of indicators,as well as use of multi-season monitoring datasets in the methodology result in a more accurate,representative and useful assessment.  相似文献   

4.
Throughout the world, the coastal zones of many countries are used increasingly for aquaculture in addition to other activities such as waste disposal. These activities can cause environmental problems and health problems where they overlap. The interaction between aquaculture and waste disposal, and their relationship with eutrophication are the subjects of this paper. Sewage discharge without adequate dispersion can lead to nutrient elevation and hence eutrophication which has clearly negative effects on aquaculture with the potential for toxic blooms. Blooms may be either toxic or anoxia-causing through the decay process or simply clog the gills of filter-feeding animals in some cases. With the development of aquaculture, especially intensive aquaculture, many environmental problems appeared, and have resulted in eutrophication in some areas. Eutrophication may destroy the health of whole ecosystem which is important for sustainable aquaculture. Sewage discharge may also cause serious public health problems. Filter-feeding shellfish growing in sewage-polluted waters accumulate micro-organisms, including human pathogenic bacteria and viruses, and heavy metal ion, presenting a signiticant health risk. Some farmed animals may also accumulate heavy metals from sewage. Bivalves growing in areas affected by toxic algae blooms may accumulate toxins (such as PSP, DSP) which can be harmful to human beings.  相似文献   

5.
Blooms of some pico/nanophytoplankton have occurred frequently along the Qinhuangdao coast since 2009, and it is necessary to identify the critical environmental factors inducing them. In this study, variations in the physical and nutrient characteristics of the seawater were analyzed following the development of local blooms in 2013. The local environmental characteristics were also compared with those of the Changjiang River estuary, China, and the Long Island estuaries in the USA, which are also prone to blooms of special algal species. In Qinhuangdao the local water temperature varied seasonally and rose above 15°C in 2013 early summer, coincident with the water discoloration. The salinity was more than 28 with a variation range of 3 throughout the year. Our results suggest that the physical conditions of the Qinhuangdao coastal area were suitable for the explosive proliferation of certain pico/nanophytoplankton, e.g. Aureococcus anophageff erens. The water supporting the bloom was not in a condition of serious eutrophication, but there were relatively high concentrations of reduced nitrogen(especially ammonium), which acted as an important nitrogen source for the pico/nanophytoplankton bloom. There was also a large gap between total nitrogen(TN) and dissolved inorganic nitrogen(DIN). Although the phosphate concentration was relatively low, there was no evidence of phosphorus limitation to the growth of pico/nanophytoplankton during bloom events.  相似文献   

6.
The Taihu Lake,a large shallow lake in the floodplain of the Changjiang(Yangtze) River in the eastern China,is faced with challenging ecological problems resulting from eutrophication,which has affected the regional freshwater supply of a large population.Although efforts have been made to assess the nutrient evolution histories in the northern bays,little is known regarding nutrient histories in different parts across the entire lake basin.In this paper,we present nutrient histories for different parts of the lake based on chironomid transfer functions applied to four short cores obtained from the northern,western and eastern regions of the lake.The chironomid-inferred total phosphorus(CI-TP) concentrations were compared with the phosphorus concentrations obtained by using instrumental and sedimentary data.The results suggest that trophic evolution histories were asynchronous throughout the lake during the past decades in response to different ecological regimes controlled by the nutrient input,wind direction and shoreline topography.The restoration of aquatic plants may be an effective option for the management of lake rehabilitation to ′natural′ conditions.Given the multiple factors controlling the biotic communities in such a large and complex lake,combined analyses among the multi-proxies encountered in the sediments are necessary for comprehensive insight into paleolimnological studies.The spatial heterogeneity in the ecological trajectories within this complicated ecosystem suggests that different management practices should be undertaken for specific lake zones in the Taihu Lake.  相似文献   

7.
Monitoring algal blooms by optical remote sensing is limited by cloud cover.In this study,synthetic aperture radar(SAR) was deployed with the aim of monitoring cyanobacteria-dominant algal blooms in Taihu Lake in cloudy weather.The study shows that dark regions in the SAR images caused by cyanobacterial blooms damped the microwave backscatter of the lake surface and were consistent with the regions of algal blooms in quasi-synchronous optical images,confirming the applicability of SAR for detection of surface blooms.Low backscatter may also be associated with other factors such as low wind speeds,resulting in interference when monitoring algal blooms using SAR data alone.After feature extraction and selection,the dark regions were classified by the support vector machine method with an overall accuracy of 67.74%.SAR can provide a reference point for monitoring cyanobacterial blooms in the lake,particularly when weather is not suitable for optical remote sensing.Multi-polarization and multi-band SAR can be considered for use in the future to obtain more accurate information regarding algal blooms from SAR data.  相似文献   

8.
Eutrophication has become a serious concern in many lakes, resulting in cyanobacterial blooms. However, the mechanism and pathways of cyanobacteria decline are less understood. To identify and define the growth and decline of Microcystis blooms in Taihu Lake of China, and to illuminate the destination of surface floating blooms, we investigated the biomass distribution and variations in colony size, morphology, and floating velocity from October 2008 to September 2009. The results showed that the Microcystis bloom declined in response to biomass decrease, colony disaggregation, buoyancy reduction, and increased phytoplankton biodiversity, and these indicative parameters could be applied for recognition of the development phases of the bloom. Three major decline pathways were proposed to describe the bloom decline process, colony disaggregation (Pathway Ⅰ), colony settlement (Pathway Ⅱ), and cell lysis in colonies (Pathway Ⅲ). We proposed a strategy to define the occurrence and decline of Microcystis blooms, to evaluate the survival state under different stress conditions, and to indicate the efficiency of controlling countermeasures against algal blooms.  相似文献   

9.
An annual investigation on phytoplankton communities was conducted to reveal the effects of nutrients on phytoplankton assemblages in Lake Taihu,East China. A total of 78 phytoplankton taxa were identified. Phytoplankton biomass was higher in the northern part of the lake than in the southern part. Cyanobacteria and Bacillariophyta alternated dominance in the northern area,where algal blooms often appear,and co-dominated in the southern area. In the northern part,the proportions of cyanobacteria and Bacillariophyta varied significantly in total biovolume,both along the phosphorus(P) gradient,and between total nitrogen levels(≤3 mg/L and 3 mg/L TN). The proportions of cyanobacteria and Bacillariophyta had no signif icant variations in total biovolume along P and N(nitrogen) gradients in the southern part. Correlation analysis and CCA results revealed that P was the key factor regulating phytoplankton community structure. Nitrogen was also important for the phytoplankton distribution pattern. It was concluded that nutrient structure was heterogeneous in space and shaped the distribution pattern of phytoplankton in the lake. Both exogenous P and internally sourced Prelease needs to be considered. N reduction should be considered simultaneously with P control to efficiently reduce eutrophication and algal blooms.  相似文献   

10.
Cyanobacterial blooms occur frequently in lakes due to eutrophication. Although a number of models have been proposed to forecast algal blooms, a good and applicable method is still lacking. This study explored a simple and effective mathematical-ecological model to evaluate the growth status and predict the population dynamics of Microcystis blooms. In this study, phytoplankton were collected and identified from 8 sampling sites in Chaohu Lake every month from July to October, 2010. The niche breadth and niche overlap of common species were calculated using standard equations, and the potential relative growth rates of Microcystis were calculated as a weighted-value of niche overlap. In July, the potential relative growth rate was 2.79 (a.u., arbitrary units) but then rapidly declined in the following months to -3.99 a.u. in September. A significant correlation (R=0.998, P<0.01) was found in the model between the net-increase in biomass of Microcystis in the field and the predicted values calculated by the niche model, we concluded that the niche model is suitable for forecasting the dynamics of Microcystis blooms. Redundancy analysis indicated that decreases in water temperature, dissolved oxygen and total dissolved phosphorus might be major factors underlying bloom decline. Based on the theory of community succession being caused by resource competition, the growth and decline of blooms can be predicted from a community structure. This may provide a basis for early warning and control of algal blooms.  相似文献   

11.
The dinoflagellate Alexandrium minutum is often associated with harmful algal blooms (HABs). This species consists of many strains that differ in their ability to produce toxins but have similar morphology, making identification difficult. In this study, species-specific rRNA probes were designed for whole-cell fluorescence in situ hybridization (FISH) to distinguish A. minutum from two phylogenetic clades. We acquired the complete SSU to LSU rDNA sequences (GenBank accession numbers JF906989-JF906999) of 11 Alexandrium strains and used these to design rRNA targeted oligonucleotide probes. Three ribotype-specific probes, M-GC-1, M-PC-2, and M-PC-3, were designed. The former is specific for the GC clade ("Global clade") of A. minutum, the majority of which have been found non-toxic, and the latter two are specific for the PSP (paralytic shellfish poisoning)-producing PC clade ("Pacific clade"). The specificity of these three probes was confirmed by FISH. All cells in observed fields of view were fluorescently labeled when probes and target species were incubated under optimized FISH conditions. However, the accessibility of rRNA molecules in ribosomes varied among the probe binding positions. Thus, there was variation in the distribution of positive signals in labeled cells within nucleolus and cytosol (M-GC-1, M-PC-3), or just nucleolus (M-PC-2). Our results provide a methodological basis for studying the biogeography and population dynamics of A. minutum, and providing an early warning of toxic HABs.  相似文献   

12.
The environmental problems in the Bohai Sea have become more serious in the last decade. High nutrient concentration contributes much to it. A Sino-German cooperation program has been carried out to improve the understanding of the ecosystem by observations and modelling. A three-dimensional ecosystem model, coupled with a physical transport model, is adopted in this study. The simulation for the year 1982 is validated by the data collected in 1982/1983. The simulated annual mean nutrient concentrations are in good agreement with observations. The nutrient concentrations in the Bohai Sea, which are crucial to the algal growth, are high in winter and low in summer. There are depletion from spring to summer and eleva-tion from autumn to winter for nutrients. The nutrients‘ deple tion is a response to the consumption of the phytoplankton bloom in spring. Internal recycle and external compensation affect the nutrient cycle. Their contributions to the nutrient budgets are discussed based on the simulated results. Production and respiration are the most important sink and source of nutrients. The process of photosynthesis consumes 152 kilotons-P and 831.1 kilotons-N while respiration releases 94.5 kilotons-P and 516.6 kilotons-N in the same period. The remineralization of the detritus pool is an important source of nutrient regeneration. It can compensate 23 percent of the nutrient consumed by the production process. The inputs of phosphates and nitrogen from rivers are 0.55 and 52.7 kilotons respectively. The net nutrient budget is 3.05 kilotons-P and 31.6 kilotons-N.  相似文献   

13.
Vast grasslands are found in the walnut-fruit forest region of southern Kyrgyzstan,Middle Asia.Located above the worldwide unique walnutfruit forests and used for grazing,they play a pivotal role in the mixed mountain agriculture of local farmers.Accordingly,these pastures are subject to an increasing utilization pressure reflecting the changing political and social conditions in the transformation process from a Soviet republic to an independent state.A first detailed analysis of mountain pasture vegetation in the Ferghana Range answers the following questions:What are the main plant community types among Kyrgyzstan’s mountain pastures? What are the main environmental gradients that shape their species composition? Which phytogeographical distribution types are predominant? How does grazing affect community composition and species richness in these grasslands? Species composition was classified by cluster analysis;underlying environmental gradients were explored using DCA.A dataset of 395 relevés was used for classification,and a subset of 79 relevés was used in a DCA to analyze the correlation between vegetation,environment,and grazing impact.The investigated pastures were classified into four distinctive plant communities.The site factors altitude,heat load,inclination and grazing impact were found to be the major determinants of the vegetation pattern.A significant overlap between floristic composition and structural and spatial properties was shown.The majority of the species pool consisted of Middle Asian endemics and Eurosiberian species.However,disturbance-tolerant species played a significant role with respect to species composition and coverage of the herbaceous layer in vast areas of southern Kyrgyzstan’s mountain pastures.In general,an intense grazing impact is clearly reflected by both species composition and structural variables of plant communities.The highly diverse and unique ecosystem is modified by an increasing utilization pressure.In order to maintain vital processes and functioning of this valuable ecosystem-in both economical and ecological terms-,it is indispensable to adopt appropriate pasture management strategies.  相似文献   

14.
Ruxi River is a tributary of the Three Gorges Reservoir. This study examined the temporal and spatial dynamics in particle size characteristics and the associated nutrients and contaminants of the fluvial suspended and deposited sediments along the Ruxi River. Temporal variations in the particle size distribution of the suspended sediment are controlled mainly by differences in sediment source during different seasons. Total organic carbon(TOC), total nitrogen(TN) and total phosphorous(TP) in the 62μm fraction of the suspended sediment exhibit considerably higher concentrations in spring,indicating high probability of algal blooms in the backwater areas. Downstream trends in the nutrient contents of 62 μm deposited sediments imply the greatest potential for eutrophication in the backwater ends, where highest nutrient concentrations were detected. Assessment of metal contamination shows that the sediments deposited in the water-level fluctuation zone were moderately to strongly contaminated by Cadmium(Cd), with a considerably high potential ecological risk. The findings reported have emphasized the impacts of reservoir impoundment on aquatic and/or terrestrial environment in this region. More information on physical, chemical and biological processes of sediment and sediment-associated materials are needed for developing environmentally and ecologically sound policies of water and sediment management.  相似文献   

15.
The freshwater cyanobacterium, Cylindrospermopsis raciborskii (Wo?oszyńska) Seenayya and Subba Raju is a common species in lakes and reservoirs globally. In some areas of the world it can produce cyto- and hepatotoxins (cylindrospermopsins, saxitoxins), making blooms of this species a serious health concern for humans. In the last 10-15 years, there has been a considerable body of research conducted on the ecology, physiology and toxin production of this species and this paper reviews these studies with a focus on the cylindrospermopsin (CYN)-producing strains. C. raciborskii has low light requirements, close to neutral buoyancy, and a wide temperature tolerance, giving it the capacity to grow in many lentic waterbodies. It also has a flexible strategy with respect to nitrogen (N) utilisation; being able to switch between utilising fixed and atmospheric N as sources of N fluctuate. Additionally this species has a high phosphate (DIP) affinity and storage capacity. Like many cyanobacteria, it also has the capacity to use dissolved organic phosphorus (DOP). Changes in nutrient concentrations, light levels and temperature have also been found to affect production of the toxin CYN by this species. However, optimal toxin production does not necessarily occur when growth rates are optimal. Additionally, different strains of C. raciborskii vary in their cell quota of CYN, making it difficult to predict toxin concentrations, based on C. raciborskii cell densities. In summary, the ecological flexibility of this organism means that controlling blooms of C. raciborskii is a difficult undertaking. However, improved understanding of factors promoting the species and toxin production by genetically capable strains will lead to improved predictive models of blooms.  相似文献   

16.
Many nature reserves are established to protect the habitat needs of particular endangered species of interest but their effec-tiveness for protecting other species is questionable.In this study,this effectiveness was evaluated in a nature reserve network located in the Qinling Mountains,Shaanxi Province,China.The network of reserves was established mainly for the conservation of the giant panda,a species considered as a surrogate for the conservation of many other endangered species in the region.The habitat suitability of nine protected species,including the giant panda,was modeled by using Maximum Entropy(MAXENT) and their spatial congruence was analyzed.Habitat suitability of these species was also overlapped with nature reserve boundaries and their management zones(i.e.,core,buffer and experimental zones).Results show that in general the habitat of the giant panda constitutes a reasonable surrogate of the habitat of other protected species,and giant panda reserves protect a relatively high proportion of the habitat of other protected species.Therefore,giant panda habitat conservation also allows the conservation of the habitat of other protected species in the region.However,a large area of suitable habitat was excluded from the nature reserve network.In addition,four species exhibited a low proportion of highly suitable habitat inside the core zones of nature reserves.It suggests that a high proportion of suitable habitat of protected species not targeted for conservation is located in the experimental and buffer zones,thus,is being affected by human activities.To increase their conservation effectiveness,nature reserves and their management zones need to be re-examined in order to include suitable habitat of more endangered species.The procedures described in this study can be easily implemented for the conservation of many endangered species not only in China but in many other parts of the world.  相似文献   

17.
In late May 2016, a cyanobacterial harmful algal bloom(cHAB) was detected in the Maumee River, the largest tributary to Lake Erie, the southernmost lake of the Laurentian Great Lakes system. Testing on 31 May identified Planktothrix agardhii as the dominant cyanobacterium with cell abundance exceeding 1.7×10~9 cells/L and total microcystins(MC) reaching 19 μg/L MC-LR equivalents, a level over 10-fold higher than the 2015 revised U.S. Environmental Protection Agency(EPA) national health advisory levels for drinking water exposure to adults. Low river discharge coincident with negligible precipitation through the latter half of May coincided with an 80% decline in river turbidity that likely favored bloom formation by a low-light adapted P. agardhii population. Also contributing to the c HAB were high initial nutrient loads and an increase of the river temperature from 13℃ to 26℃ over this same period. The bloom persisted through 5 June with microcystins exceeding 22 μg/L MC-LR equivalents at the bloom peak. By 6 June, the river had returned to its muddy character following a rain event and sampling on 7 June detected only low levels of toxin(0.6 μg/L) at public water systems located near the bloom origin. The elevated toxin production associated with this early onset bloom was without precedent for the Maumee River and an unique attribute of the c HAB was the high proportion of potentially-toxic genotypes. Whereas Planktothrix spp. is common in lotic environments, and has been previously detected in the Maumee, blooms are not commonly reported. This early onset, microcystin-producing c HAB provided a rare opportunity to glean insights into environmental factors that promote bloom development and dominance by Planktothrix in lotic environments.  相似文献   

18.
Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive soils under different loads, and its testing error is verified. With this instrument,direct shear tests were performed on samples experiencing 0-6 cycles under vertical loads of 0 kPa,5 kPa, 15 kPa, and 30 k Pa. The results found that this instrument provides a new method for evaluating the effects of wetting–drying cycles on soils, and this method represents actual engineering conditions more accurately than do preexisting methods. It accurately controls the water content within 1% while simulating the specified loads at different soil depths.Cohesion is significantly affected by wetting–drying cycles, while the friction angle is not as sensitive to these cycles. Decrease in shear strength can be attributed to the fissures in soils caused by wetting–drying cycles. The existence of vertical loads effectively restricts shrinkage fissuring and cohesion attenuation, consequently inhibiting the attenuation of shear strength.  相似文献   

19.
Fractal dimensions of flocs between clay particles and HAB organisms   总被引:1,自引:0,他引:1  
The impact of harmful algal blooms (HABs) on public health and related economics have been increasing in many coastal regions of the world. Sedimentation of algal cells through flocculation with clay particles is a promising strategy for controlling HABs. Previous studies found that removal efficiency (RE) was influenced by many factors, including clay type and concentration, algal growth stage, and physiological aspects of HAB cells. To estimate the effect of morphological characteristics of the aggregates on HAB cell removal, fractal dimensions were measured and the RE of three species of HAB organism, Heterosigma akashiwo, Alexandrium tamarense, and Skeletonema costatum, by original clay and modified clay, was determined. For all HAB species, the modified clay had a higher RE than original clay. For the original clay, the two-dimensional fractal dimension (D2) was 1.92 and three-dimensional fractal dimension (D3) 2.81, while for the modified clay, D2 was 1.84 and D3 was 2.50. The addition of polyaluminum chloride (PACl) lead to a decrease of the repulsive barrier between clay particles, and resulted in lower D2 and D3. Due to the decrease of D3, and the increase of the effective sticking coefficient, the flocculation rate between modified clay particles and HAB organisms increased, and thus resulted in a high RE. The fractal dimensions of flocs differed in HAB species with different cell morphologies. For example, Alexandrium tamarense cells are ellipsoidal, and the D3 and D2 of flocs were the highest, while for Skeletonema costatum, which has filamentous cells, the D3 and D2 of flocs were the lowest.  相似文献   

20.
Nutrient limitation is known to inhibit growth and metabolism and to alter elemental stoichiometric ratios in phytoplankton. In this study, physiological changes in Thalassirosira weissflogii were measured under different dissolved inorganic phosphate (DIP) regimes in semi-continuous cultures to revisit the utility of the Redfield ratio for assessing nutrient limitation. The results showed that cell size increased with decreasing DIP availability. In the P-depleted treatment (f/2-P) the cell size was 1.48 times larger than that in the P-limited (f/100) treatment and 2.67 times larger than that in the P-saturated treatment (f/2 and f/10). The fucoxanthin to chlorophyll a ratio (Fuco/chl a) was relatively stable (about 0.3) in P-saturated cultures and was 10 times higher than that in P-limited and P-depleted cultures. During the experimental period, the photosynthetic efficiency index, ?F/Fm′, was relatively stable at ~0.50 in the P-saturated cultures, but quickly declined with decreasing DIP availability. Although cellular P content showed a significant difference between the P-saturated culture (1.6 pg/cell) and the P-limited culture (0.7 pg/cell), the N/P ratio in T. weissflogii did not show a trend with DIP availability and fluctuated slightly around 25. Our results suggest that cell division in T. weissflogii is not strictly size-gated but is probably regulated by a biochemical, and hence, an elemental stoichiometric ratio threshold, and that deviation of the cellular N/P ratio from the Redfield ratio is not a reliable indicator of algal nutrient stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号