首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alfred Uchman   《Cretaceous Research》2007,28(6):980-1004
Twenty one ichnogenera and 30 ichnospecies are recognized in the Late Campanian – Maastrichtian Monte Antola Formation of Italy, most of them for the first time. They belong to a specific mixture of the Nereites and Ophiomorpha rudis ichnosubfacies of the Nereites ichnofacies. Composition and abundance of trace fossils vary from outcrop to outcrop. Chondrites intricatus, Ch. targionii, Nereites irregularis, Cladichnus fischeri and Trichichnus linearis are most common. Chondrites patulus, Ophiomorpha recta and “Spirophycusbicornis trace fossils are less common in outcrops, and the other trace fossils are rare or very rare. Generally, ichnogeneric diversity in Cretaceous–Cainozoic calcareous and mixed siliciclastic-calcareous flysch deposits is distinctly lower than in siliciclastic flysch. Significantly, the foremost pre-depositional forms are distinctly rare, probably due to preservational and depositional factors.  相似文献   

2.
Marco Bonini   《Tectonophysics》2009,474(3-4):723-735
The relations between earthquakes and the eruption of mud volcanoes have been investigated at the Pede–Apennine margin of the Northern Apennines and in Sicily. Some of these volcanoes experienced eruptions or increased activity in connection with historical seismic events, showing a good correlation with established thresholds of hydrological response (liquefaction) to earthquakes. However, the majority of eruptions have been documented to be independent of seismic activity, being mud volcanoes often not activated even when the earthquakes were of suitable magnitude and the epicentre at the proper distance for the triggering. This behaviour suggests that paroxysmal activity of mud volcanoes depends upon the reaching of a specific critical state dictated by internal fluid pressure, and implies that the strain caused by the passage of seismic waves can activate only mud volcanoes in near-critical conditions (i.e., close to the eruption). Seismogenic faults, such as the Pede–Apennine thrust, often structurally control the fluid reservoirs of mud volcanoes, which are frequently located at the core of thrust-related folds. Such an intimate link enables mud volcanoes to represent features potentially suitable for recording perturbations associated with the past and ongoing tectonic activity of the controlling fault system.  相似文献   

3.
Water inflows are a major challenge in tunnelling and particularly difficult to predict in geological settings consisting of heterogeneous sedimentary rock formations with complex tectonic structure. For a high-speed railway line between Bologna and Florence (Italy), a series of seven railway tunnels was drilled through turbiditic formations, ranging from pelitic rocks with thin arenitic layers over sequences including thick-bedded sandstone to calcareous rocks showing chemical dissolution phenomena (karstification). The tunnels were built as draining tunnels and caused significant impacts, such as drying of springs and base-flow losses at mountain streams. A comprehensive hydrological monitoring programme and four multi-tracer test were done, focusing on four sections of the tunnel system. The tracer tests delivered unprecedented data on groundwater flow and transport in turbiditic aquifers and made it possible to better characterize the differential impacts of tunnel drainage along a geological gradient. The impact radius is 200 m in the thin-bedded sequences but reaches 2.3–4.0 km in calcareous and thick-bedded arenitic turbidites. Linear flow velocities, as determined from the peaks of the tracer breakthrough curves, range from 3.6 m/day in the thin-bedded turbidites to 39 m/day in the calcareous rocks (average values from the four test sites). At several places, discrete fault zones were identified as main hydraulic pathways between impacted streams and draining tunnels. This case shows that ignoring the hydrogeological conditions in construction projects can cause terrible damage, and the study presents an approach to better predict hydraulic impacts of draining tunnels in complex sedimentary rock settings.  相似文献   

4.
Sulphide-bearing Ca-carbonate, Na-carbonate, Na-hydroxide, Na-chloride and Ca-sulphate waters from Northern Apennines were investigated in order to determine their main chemical and isotopic composition and draw inferences on water-rock interaction. 2H and 18O values suggest an origin mostly meteoric for the analysed waters but a well drilled in Miocenic sediments. The Na-carbonate and the Ca-sulphate waters are the most interesting geochemically. Na-carbonate type, which sometimes reaches extreme composition (Na/Ca up to 228, equivalent ratio), may have been derived through prolonged interaction of Ca-carbonate waters with rocks containing feldspar, montmorillonite and illite under calcite saturation/oversaturation; the high F and pH and the very low PCO 2 agree with prograde dissolution of silicates and lasting water-rock interaction. However, Ca–Na ion exchange, involving clays of marine origin, cannot be excluded in addition. The Ca-sulphate waters, occurring in Messinian gypsum-bearing sediments, are saturated in gypsum and calcite and exhibit very high total H2S (up to 219 mg dm-3) and PCO 2 (up to 0.32 bar). Mass balance of sulphate sulphur, sulphide sulphur and delta34S suggests sulphate – derived from gypsum – as source for H2S; CH4 and organic matter generate the reducing conditions and sulphate reduction is mediated by bacteria. One Na-chloride water from a well in Miocenic sediments has unusual composition, containing about 700 mgdm-3 of potential CaCl2 and having 2H and 18O (-47.5 and -4.9 respectively) which plot far from the meteoric water lines; probably it is derived by mixing of meteoric and formation waters. The Na-hydroxide water, with very high pH (11.2), is generated through protracted interaction of meteoric waters with ultramafites.  相似文献   

5.
The boundary area between the Apenninic fold‐and‐thrust belt and the crystalline Calabrian Arc, located around Sangineto in northern Calabria, has been investigated. New geological mapping in the Sant'Agata area has been performed on the Triassic successions traditionally attributed to the metasedimentary San Donato Unit. This, coupled with a reappraisal of the stratigraphy and tectonics of coeval successions present more to the south in the Cetraro Unit, results in a new reconstruction of the Triassic evolution of all the metasedimentary successions found in the region. Four informal stratigraphic units have been distinguished in the S. Agata area. The lowest one (Unit A) consists of well‐bedded metalimestones and bioturbated marly limestones that correlate with Ladinian–Carnian carbonates in nearby areas. A second unit (Unit B), never recognized before, contains a complex alternation of dolomites, phyllites and some meta‐arenites containing several beds of Cavernoso facies, attributed to the Carnian. They grade upward to platform and platform‐margin dolomites of Norian–Rhaetian age (Unit C) that in turn are replaced upward and laterally by a fourth unit (Unit D) consisting of well‐bedded, dark dolomites and metalimestones with marly interlayers locally found as resedimented large blocks in slope conglomerates. Unit D correlates with Rhaetian–Liassic beds in nearby areas. Several pieces of evidence of post‐metamorphic contractional tectonics, with 140°N and 30°N trends, are found together with evidence of SW‐directed extension. The siliciclastic Carnian beds of Unit B are correlated with the phyllites of Cetraro, formerly believed to be Middle Triassic; moreover, it is suggested that in the Cetraro area Unit C is almost totally replaced by Unit D. This demonstrates that the former distinction between the two tectonic units in the whole area has to be discarded. We have made a general palaeoenvironmental reconstruction which progresses laterally, during Ladinian–Carnian times, from (i) a coastal, mixed siliciclastic–carbonate–evaporitic area at Cetraro to (ii) a transitional carbonate shelf where siliciclastic input was only episodic, and finally to (iii) a bioconstructed margin which was later replaced by a steepened margin created by tectonic instability. Starting from the Norian, subsidence shifted toward the former coastal area where an intraplatform, restricted basin developed. The proposed stratigraphy corresponds closely to the Alpujarride units of the Betic Cordillera, Spain. Moreover, it is shown that strong affinities also exist, in terms of the structural framework, with the metamorphic units of Tuscany and Liguria. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Meso- and micro-structural studies of the well-exposed Balduini Thrust (Northern Apennines, Italy) indicate that the structure formed during a single folding event, contemporaneous with diagenesis, and is a zone comprising curved, en-échelon fault segments. The geometry of each segment is arcuate with pure compression at one end and right-lateral displacement along the other. The thrust developed during the Tortonian within a single mud-rich formation, the Upper Eocene–Upper Oligocene Scaglia Cinerea, but rheological variations within the unit led to differences in deformation style; zones of scaly fabric are discontinuous and calcite veins vary in abundance. The mesoscopic morphology of the veins and the distribution of calcium carbonate along the formation indicate variations in the distribution of fluids at the time of deformation, which affected both diagenesis and the structural response of the material. Systematic variations of mechanical properties within the thickness of the Scaglia Cinerea Formation account for the curvature of the propagating thrust. Together with the heterogeneity of the stress field, the confinement of the arcing thrust to this single, weak unit lead to repeated initiation of new fractures and hence segmentation of the propagating thrust. Geometric analysis of the calcite veins and their microscopic characters suggests that hydrofracturing was involved, with the Scaglia Cinerea Formation experiencing high fluid pressure followed by rapid water expulsion. The Balduini Thrust is therefore an example of a fluid-driven, refracted compound shear zone. The analysis presented here provides insights into the three-dimensional arrangement of fault zones and fluid-migration patterns during regional faulting.  相似文献   

7.
The controversial relationship between the orogenic segments of the Western Alps and the Northern Apennines is here explored integrating recently published 3D tomographic models of subduction with new and re-interpreted geological observations from the eclogitic domain of the Voltri Massif (Ligurian Alps, Italy), where the two belts joint each other. The Voltri Massif is here described as an extensional domain accommodating the opposing outward migration of the Alpine and Apennine thrust fronts, since about 30–35 Ma. Using tomographic images of the upper mantle and paleotectonic reconstructions, we propose that this extensional setting represents the surface manifestation of an along strike change in polarity of the subducted oceanic slab whose polarity changed laterally in space and in time. Our tectonic model suggests that the westward shift of the Alpine thrust front from the Oligocene onward was the consequence of the toroidal asthenospheric flow induced by the retreat of the Apenninic slab.  相似文献   

8.
Mantle peridotites of the External Liguride (EL) units (NorthernApennines) represent slices of subcontinental lithospheric mantleemplaced at the surface during early stages of rifting of theJurassic Ligurian Piemontese basin. Petrological, ion probeand isotopic investigations have been used to unravel the natureof their mantle protolith and to constrain the timing and mechanismsof their evolution. EL peridotites are dominantly fertile spinelIherzolites partly recrystallizfd in the plagiodase Iherzplitestability field Clinopyroxenes stable in thespinel-facies assemblagehave nearly fiat REE patterns (CeN/SmN=06–08) at (10–16)C1and high Na, Sr, Ti and Zr contents. Kaersutitic-Ti-pargasiticamphiboles also occur in the spinel-facies assemblage. TheirLREE-depleted REE spectra and very low Sr, Zr and Ba contentsindicate that they crystallized from hydrous fluids with lowconcentrations of incompatible elements. Thermometric estimateson the spinelfacies parageneses yield lithospheric equilibriumtemperatures in the range 1000–1100C, in agreement withthe stability of amphibole, which implies T<1100C. Sr andNd isotopic compositions, determined on carefully handpickedclinopyroxene separates, plot within the depleted end of theMORB field (87Sr/86Sr=070222–070263; 143Nd/144Nd=0513047–0513205)similar to many subcontinental orogenic spinel Iherzolites fromthe western Mediterranean area (e.g. Ivrea Zpne and Lanzfl N).The interpretation of the EL Iherzolites as subcontinental lithosphericmantle is reinforced by the occurrence of one extremely depletedisotopic composition (87Sr/86Sr=0701736; 143Nd/144Nd=0513543).Sr and Nd model ages, calculated assuming both CHUR and DM mantlesources, range between 24 Ga and 780 Ma. In particular, the12-Ga Sr age and the 780-Ma Nd age can be regarded as minimumages of differentiation. The transition from spinel-to plagioclase-faciesassemblage, accompanied by progressive deformation (from granularto tectonite-mylonite textures), indicate that the EL Iherzolitesexperienced a later, subsolidus decompressional evolution, startingfrom subcontinental lithospheric levels. Sm/Nd isochrons onplagioclase-clinopyroxene pairs furnish ages of 165 Ma. Thisearly Jurassic subsolidus decompressional history is consistentwith uplift by means of denudation in response to passive andasymmetric lithospheric extension. This is considered to bethe most suitable geodynamic mechanism to account for the exposureof huge bodies of subcontinental lithospheric mantle duringearly stages of opening of an oceanic basin. *Corresponding author. Present address: Dipartimento di Stienze della Terra, Univenit di Geneva, Corso Europa 26,16132 Genova, Italy  相似文献   

9.
10.
11.
Abstract Mineralogical and petrological studies of Triassic Verrucano metasediments of the Northern Apennines are reported. The widespread occurrence of Al-silicates allows the delineation of four metamorphic zones with increasing metamorphic grade: (1) kaolinite zone (well Perugia 2, Umbria); (2) kaolinite-pyro-phyllite zone (Monte Argentario and part of the Verrucano of the Monticiano-Roccastrada area and Monti Leoni); (3) pyrophyllite zone (Monti Pisani, Iano, Monti Leoni, the Monticiano-Roccastrada area and some wells in the Larderello region); (4) kyanite zone (Massa area and some wells in the Larderello area).
The four metamorphic zones correspond to temperatures ranging from 300°C to about 450°C. On the basis of the Si content of muscovite and geological arguments, pressures of between 3 and 5 kbar are estimated. The metamorphic zones are located more or less parallel to the bent north-west-south-east trending structural zonation of the Northern Apennines, with the concave side towards the Tyhrrenian Sea.
During the Alpine orogeny, the Verrucano metasediments underwent three folding phases each of which has produced an axial plane schistosity (S1, S2, S3). During the first folding phase the Verrucano sediments were buried increasingly deeply within the crust from east to west. The climax of Alpine metamorphism was attained prior to the second folding phase with crystallization of porphyroblasts of kyanite and chloritoid in a central area located between Massa and Larderello. The inferred paleo-temperature distribution pattern resembles an asymmetric thermal high defined by the kyanite zone, and surrounded by the pyrophyllite zone. A similar pattern is still present in the Tuscan crust, as indicated by a series of geothermal anomalies passing through the Northern Apennines.  相似文献   

12.
Abstract

In the Northern Apennines, the External Liguride (EL) units are interpreted as derived from the domain that joined the Ligure–Piemontese oceanic basin to the Adriatic plate continental margin. The EL units can be divided into two different groups according to the lithostratigraphic features of the basal complexes underlying the Upper Cretaceous–Lower Tertiary carbonate flysch (e.g. Helminthoid flysch). The first group includes the western successions characterized by Santonian–Campanian sedimentary melanges where slide blocks of lherzolitic mantle, gabbros, basalts, granulites, continental granitoids are represented. The second group is represented by the eastern successions where the Cenomanian–Campanian basal complexes mainly consist of sandstones and conglomerates where the mafic and ultramafic rocks are scarce or completely lacking. Their original substrate is represented by the Middle Triassic to Lower Cretaceous, mainly platform carbonate deposits, found as slices at the base of the eastern successions.

The stratigraphic features shown by the basal complexes allow the reconstruction of their source area that is assumed to be also representative for the pre-Upper Cretaceous setting. The proposed reconstruction suggests the occurrence in the EL domain of two distinct domains. The eastern domain was characterized by a thinned and faulted continental crust belonging to the Adriatic continental margin. The western domain was instead floored by subcontinental mantle associated with lower and upper continental crust, representing the ocean–continent transition. This setting is interpreted as the result of the opening of the Ligure–Piemontese oceanic basin by passive rifting, mainly developed by simple shear, asymmetric extension of the continental crust. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

13.
《Geodinamica Acta》2001,14(5):307-320
In the Northern Apennines, the External Liguride (EL) units are interpreted as derived from the domain that joined the Ligure–Piemontese oceanic basin to the Adriatic plate continental margin. The EL units can be divided into two different groups according to the lithostratigraphic features of the basal complexes underlying the Upper Cretaceous–Lower Tertiary carbonate flysch (e.g. Helminthoid flysch). The first group includes the western successions characterized by Santonian–Campanian sedimentary melanges where slide blocks of lherzolitic mantle, gabbros, basalts, granulites, continental granitoids are represented. The second group is represented by the eastern successions where the Cenomanian–Campanian basal complexes mainly consist of sandstones and conglomerates where the mafic and ultramafic rocks are scarce or completely lacking. Their original substrate is represented by the Middle Triassic to Lower Cretaceous, mainly platform carbonate deposits, found as slices at the base of the eastern successions.The stratigraphic features shown by the basal complexes allow the reconstruction of their source area that is assumed to be also representative for the pre-Upper Cretaceous setting. The proposed reconstruction suggests the occurrence in the EL domain of two distinct domains. The eastern domain was characterized by a thinned and faulted continental crust belonging to the Adriatic continental margin. The western domain was instead floored by subcontinental mantle associated with lower and upper continental crust, representing the ocean–continent transition. This setting is interpreted as the result of the opening of the Ligure–Piemontese oceanic basin by passive rifting, mainly developed by simple shear, asymmetric extension of the continental crust.  相似文献   

14.
We present a comprehensive study of the recent and active tectonics of the external part of the Northern Apennines (Italy) by using morphotectonic, geological–structural, and stratigraphic analysis, compared with the current seismicity of the region. This analysis suggests that the external part of the Northern Apennines is characterised by presence of three major systems of Quaternary compressive structures corresponding to (1) the Apenninic watershed, (2) the Apennines–Po Plain margin (pede-Apenninic thrust front), and (3) the Emilia, Ferrara, and Adriatic Fold systems buried below the Po Plain. Geological data and interpreted seismic sections indicate a roughly N–S Quaternary deformation direction, with rates <2.5 mm/year. The shortening decreased since the Pliocene, when our data indicate compression in a NNW–SSE direction and rates up to 7 mm/year. The trend and kinematics of the structures affecting the Apennines–Po Plain margin and the Po Plain subsoil fit well the pattern of the current seismicity of the area, as well as recent GPS and geodetic levelling data, pointing to a current activity of these thrust systems controlled by an overall compressive stress field. Close to the Apenninic watershed, earthquake focal mechanisms indicate that shallow extension is associated to deep compression. The extensional events may be related to a secondary extensional stress field developing on the hangingwall of the thrust system affecting the Apenninic watershed; alternatively, this thrust system may have been recently deactivated and overprinted by active normal faulting. Deeper compressive events are related to the activity of both a major basement thrust that connects at surface with the pede-Apenninic thrust front and a major Moho structure.  相似文献   

15.
Much of our understanding of submarine sediment‐laden density flows that transport very large volumes (ca 1 to 100 km3) of sediment into the deep ocean comes from careful analysis of their deposits. Direct monitoring of these destructive and relatively inaccessible and infrequent flows is problematic. In order to understand how submarine sediment‐laden density flows evolve in space and time, lateral changes within individual flow deposits need to be documented. The geometry of beds and lithofacies intervals can be used to test existing depositional models and to assess the validity of experimental and numerical modelling of submarine flow events. This study of the Miocene Marnoso Arenacea Formation (Italy) provides the most extensive correlation of individual turbidity current and submarine debris flow deposits yet achieved in any ancient sequence. One hundred and nine sections were logged through a ca 30 m thick interval of time‐equivalent strata, between the Contessa Mega Bed and an overlying ‘columbine’ marker bed. Correlations extend for 120 km along the axis of the foreland basin, in a direction parallel to flow, and for 30 km across the foredeep outcrop. As a result of post‐depositional thrust faulting and shortening, this represents an across‐flow distance of over 60 km at the time of deposition. The correlation of beds containing thick (> 40 cm) sandstone intervals are documented. Almost all thick beds extend across the entire outcrop area, most becoming thinly bedded (< 40 cm) in distal sections. Palaeocurrent directions for flow deposits are sub‐parallel and indicate confinement by the lateral margins of the elongate foredeep. Flows were able to traverse the basin in opposing directions, suggesting a basin plain with a very low gradient. Small fractional changes in stratal thickness define several depocentres on either side of the Verghereto (high) area. The extensive bed continuity and limited evidence for flow defection suggest that intrabasinal bathymetric relief was subtle, substantially less than the thickness of flows. Thick beds contain two distinct types of sandstone. Ungraded mud‐rich sandstone intervals record evidence of en masse (debrite) deposition. Graded mud‐poor sandstone intervals are inferred to result from progressive grain‐by‐grain (turbidite) deposition. Clast‐rich muddy sandstone intervals pinch‐out abruptly in downflow and crossflow directions, in a fashion consistent with en masse (debrite) deposition. The tapered shape of mud‐poor sandstone intervals is consistent with an origin through progressive grain‐by‐grain (turbidite) deposition. Most correlated beds comprise both turbidite and debrite sandstone intervals. Intrabed transitions from exclusive turbidite sandstone, to turbidite sandstone overlain by debrite sandstone, are common in the downflow and crossflow directions. This spatial arrangement suggests either: (i) bypass of an initial debris flow past proximal sections, (ii) localized input of debris flows away from available sections, or (iii) generation of debris flows by transformation of turbidity currents on the basin plain because of seafloor erosion and/or abrupt flow deceleration. A single submarine flow event can comprise multiple flow phases and deposit a bed with complex lateral changes between mud‐rich and mud‐poor sandstone.  相似文献   

16.
17.
This paper investigates the role played by geomorphological and tectonic processes affecting a portion of an active mountain belt in causing the occurrence of different types of landslides developed in flysch bedrock. The adopted multidisciplinary approach (geomorphology, geology and geophysics) allowed to recognize in a portion of the Northern Apennines of Italy different types of landslides that developed in response to slope dynamics, in turn dependent on broader regional-scale tectonic processes. Sedimentary bed attitude, local tectonic discontinuities and lithology only partially influenced the type of landslides, which have been deeply affected by the activity of regional-scale antiform that controlled the hillslope geomorphic evolution in different ways. The growth of this structure and the tilting of its forelimb produced gently dipping slopes that approached the threshold angle that can cause the occurrence of (mainly) translational rockslides. Conversely, high-angle normal faulting parallel to the antiform axis (related to a later stage of activity of the antiform itself) strongly controlled the stream network evolution and caused the watercourses to deeply incise portions of their valleys. This incision produced younger steep valley slopes and caused the development of complex landslides (roto-translational slides-earth/debris flow). The results of the integrated study presented in this paper allowed to distinguish two main types of landslides whose development reflects the events that led to the geomorphological and geological evolution of the area. In this perspective, within the study area, landslides can be regarded and used as indicators of broader-scale recent tectonic processes.  相似文献   

18.
The Marnoso–arenacea basin was a narrow, northwest–southeast trending, foredeep of Middle–Late Miocene age bounded to the southwest by the Apennine thrust front. The basin configuration and evolution were strongly controlled by tectonics.

Geometrical and sedimentological analysis of Serravallian turbidites deposited within the Marnoso–arenacea foredeep, combined with palaeocurrent data (turbidite flow provenance, reflection and deflection), identify topographic irregularities in a basin plain setting in the form of confined troughs (the more internal Mandrioli sub-basin and the external S. Sofia sub-basin) separated by an intrabasinal structural high. This basin configuration was generated by the propagation of a blind thrust striking northwest to southeast, parallel to the main trend of the Apennines thrust belt.

Ongoing thrust-induced sea bed deformation, marked by the emplacement of large submarine landslides, drove the evolution of the two sub-basins. In an early stage, the growth and lateral propagation of a fault-related anticline promoted the development of open foredeep sub-basins that were replaced progressively by wedge-top or piggy-back basins, partially or completely isolated from the main foredeep. Meanwhile, the depocenter shifted to a more external position and the sub-basins were incorporated within an accretionary thrust belt.  相似文献   


19.
The aim of this paper is to analyze the reactivation mechanism of ancient earth flows, with a view to gleaning information that can subsequently be utilized to formulate a risk-reduction strategy. All considerations made herein are the result of direct experience and observation of actual events which have occurred over the past few decades in the Northern Apennines. Particular attention has been paid to the analysis of the evolution of landslides during actual reactivation, acknowledging a typical, recurring succession of events that precede the failure of the slope. The hazard assessment of these large landslide bodies, which are of slope scale, constitutes a thorny problem, especially in view of the inapplicability of traditional deterministic models such as limit equilibrium stability analysis. Nevertheless, a site-specific assessment of probability of reactivation of these large and ancient earth flows is fundamental to effective land-use planning.  相似文献   

20.
Sudoite, the di-trioctahedral chlorite with ideal composition (Mg2Al)(Al2)(Si3Al)O10(OH)8 is a widespread rock-forming mineral in meta-siltstones and psammites of the Verrucano sequence of the Northern Apennines. Sub-ellipsoidal aggregates, probably derived from muscovite clasts, consisting of sudoite, pyrophyllite and muscovite, are common; sudoite may also occur as thin blades in the rock matrix. The co-existence of sudoite, Ferich chloritoid and pyrophyllite, reported here for the first time, has been observed in specimens from the M. Argentario and Monticiano-Roccastrada areas. This three-phase assemblage, diagnostic of a specific metamorphic facies, may be a tool for detailed zonation of low-grade terranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号