首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A study has been made of the effects of varying the (uniform) grid resolution of a one-dimensional finite-difference numerical model of the dry convective boundary layer. The resolution of the inversion at the top of the boundary layer, and representation of the entrainment at the inversion, are found to influence the development of the momentum and buoyancy flux profiles. The modelled change in potential energy in a developing mixed layer is used to define a mixed layer scale, h m, which is found to vary systematically with resolution. The discretization errors (which can be large for resolutions poorer than a few tens of metres, particularly in the early stages of mixed-layer development) are quantified.  相似文献   

2.
The relationship between the super-low-level jet (LLJ) and inversion layer over an agroforest ecosystem on the Huang-Huai-Hai plain in the eastern China is studied by means of a time-independent K-closure model. It is found that the intensified inversion near the surface of a luxuriantly growing agrofor-est ecosystem leads to the formation and development of the LLJ, the more intense the inversion, the strong-er is the LLJ. The critical value of inversion intensity index for the LLJ formation is 0.75℃/ 100 m, which relates to the necessary geostraphic wind velocity of 6.0 to 10 m/ s at the top level of the model The numer-ical calculations show that the roughness length of the underlying surface has considerable effects on the LLJ structure.  相似文献   

3.
Stratocumulus-capped mixed layers derived from a three-dimensional model   总被引:22,自引:7,他引:22  
Results of a three-dimensional numerical model are analysed in a study of turbulence and entrainment within mixed layers containing stratocumulus with or without parameterized cloud-top radiative cooling. The model eliminates most of the assumptions invoked in theories of cloud-capped mixed layers, but suffers disadvantages which include poor resolution and large truncation errors in and above the capping inversion.For relatively thick mixed layers with relatively thick capping inversions, the cloud-top radiative cooling is found to be lodged mostly within the capping inversion when the cooling is confined locally to the upper 50 m or less of the cloud. It does not then contribute substantially towards increased buoyancy flux and turbulence within the well mixed layer just below.The optimal means of correlating the entrainment rate, or mixed-layer growth rate, for mixed layers of variable amounts of stratocumulus is found to be through functional dependence upon an overall jump Richardson number, utilizing as scaling velocity the standard deviation of vertical velocity existing at the top of the mixed layer (near the center of the capping inversion). This velocity is found to be a fraction of the generalized convective velocity for the mixed layer as a whole which is greater for cloud-capped mixed layers than for clear mixed layers.  相似文献   

4.
1.IntroductionWindprofilewiththerelevantlow--leveljet(LLJ)isoneofthemostimportantfactorsthatcharacterizethestructureoftheatmosphericboundarylayer.TheLLJswerereportedinEurope(SladkovicandKanter,1977;Krausetal.,1985),Africa(Anderson,1976;Hart,etal.,1978),NorthAmerica(Stull,1988;Arrittetal.,1997),Australia(MalcherandKraus,1983;Garratt,1985)andEastAsia(Wangetal.,1996;ChenandHsu,1997).DifferentinvestigatorsuseddifferentcriteriaforidentifyingtheLLJs.SomerequiredwindspeedgreaterthanaParti…  相似文献   

5.
南京城郊,乡村大气边界层内温度特征初步分析   总被引:1,自引:0,他引:1  
  相似文献   

6.
Summary Quasi-steady states of organized convection are studied in a two-dimensional nonhydrostatic primitive-equation numerical model. Uni-and multi-cellular patterns are identified in the presence of a low-level inversion, and discussed in relation to those obtained, by various authors, in the more traditional monotonic-sounding case. The stable layer near the ground is shown to be responsible for a configuration of flow normally not observed in cases of monotonic sounding and reminiscent of an orographically generated wave. Exploring the conditions conducive to quasi-steady convection it is found that in the presence of a low-level inversion, a strong shear of the wind component perpendicular to the squall line is required near the surface, deeper than that required in the absence of the inversion.With 10 Figures  相似文献   

7.
Data collected during July and August from the Arctic Ocean Experiment 2001 illustrated a common occurrence of specific-humidity (q) inversions, where moisture increases with height, coinciding with temperature inversions in the central Arctic boundary layer and lower troposphere. Low-level stratiform clouds and their relationship to temperature inversions are examined using radiosonde data and data from a suite of remote sensing instrumentation. Two low-level cloud regimes are identified: the canonical case of stratiform clouds, where the cloud tops are capped by the temperature inversion base (CCI—Clouds Capped by Inversion) and clouds where the cloud tops were found well inside the inversion (CII—Clouds Inside Inversion). The latter case was found to occur more than twice as frequently than the former. The characteristic of the temperature inversion is shown to have an influence on the cloud regime that was supported. Statistical analyses of the cloud regimes using remote sensing instruments suggest that CCI cases tend to be dominated by single-phase liquid cloud droplets; radiative cooling at the cloud top limits the vertical extent of such clouds to the inversion base height. The CII cases, on the other hand, display characteristics that can be divided into two situations—(1) clouds that only slightly penetrate the temperature inversion and exhibit a microphysical signal similar to CCI cases, or (2) clouds that extend higher into the inversion and show evidence of a mixed-phase cloud structure. An important interplay between the mixed-phase structure and an increased potential for turbulent mixing across the inversion base appears to support the lifetime of CII cases existing within the inversion layer.  相似文献   

8.
通过分析2001—2012年上海市PM_(10)浓度(由API(Air Pollution Index)转化得到)的变化规律,构建了上海市PM_(10)浓度的遥感反演模型。结果表明:1)上海市PM_(10)浓度存在季节性变化,应分别建立遥感反演模型。2)分析MODIS气溶胶光学厚度(Aerosol Optical Depth,AOD)产品与PM_(10)浓度之间的相关性发现,AOD须经过垂直和湿度订正才可与PM_(10)建立较好的关系。3)结合垂直和湿度订正分别建立的上海市PM_(10)浓度春夏秋冬四季的遥感反演模型均通过了拟合度检验,其中春季模型采用指数函数、夏季和秋季模型采用二次多项式函数、冬季采用幂函数、全年采用二次多项式函数,利用此四季模型反演上海市PM_(10)浓度具有较高的可信度。  相似文献   

9.
The type of inversion discussed in this paper is essentially defined by subsidence, mixing due to thermally generated turbulent energy and a radiative flux difference at the inversion. A concept similar to that of Lilly (1968) is applied, assuming a well-mixed layer below the inversion and including advective and radiative processes.The characteristics of the inversion and of the whole PBL (e.g., height of inversion, height of cloud base, strength of inversion, flux-profiles) are investigated for their dependence on external parameters such as horizontal wind field divergence, advection, surface temperature excess, wind speed and surface temperature. This is done for steady-state conditions and gives considerable insight into the processes maintaining the type of inversion under consideration.A second goal is to present typical inversion structures, which can be found in certain climatic regions. The profiles of the state parameters and the energy-fluxes for the Trade-Wind region, the cold water area off the west-coast of California, the Norwegian Sea and the Arctic Ocean differ considerably.  相似文献   

10.
针对在研仪器——大气辐射超高光谱探测仪的临边探测模式,模拟计算了大气温度和水汽的权重函数。以此为基础,利用信息量和权重函数线性化方法,结合仪器的可探测亮温阈值0.3 K,计算并分析6种大气状态下,大气温度和水汽混合比廓线在不同反演精度条件下可获得的光谱通道数,在满足最佳光谱通道数200的要求下,理论上预估其反演精度。温度廓线整体反演精度为0.6 K,水汽混合比廓线反演精度可达到5%,但热带大气在16~20 km高度的水汽廓线反演精度仅为10%。反演精度预估,仅提供了一种全面认识仪器性能的方法,精度的确定还有赖于真实探测数据的获取和反演方法。  相似文献   

11.
A regional surface carbon dioxide (CO2) flux inversion system, the Tan-Tracker-Region, was developed by incorporating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical transport model to resolve fine-scale CO2 variability over East Asia. The proper orthogonal decomposition-based ensemble four-dimensional variational data assimilation approach (POD-4DVar) is the core algorithm for the joint assimilation framework, and simultaneous assimilations of CO2 concentrations and surface CO2 fluxes are applied to help reduce the uncertainty in initial CO2 concentrations. A persistence dynamical model was developed to describe the evolution of the surface CO2 fluxes and help avoid the “signal-to-noise” problem; thus, CO2 fluxes could be estimated as a whole at the model grid scale, with better use of observation information. The performance of the regional inversion system was evaluated through a group of single-observation-based observing system simulation experiments (OSSEs). The results of the experiments suggest that a reliable performance of Tan-Tracker-Region is dependent on certain assimilation parameter choices, for example, an optimized window length of approximately 3 h, an ensemble size of approximately 100, and a covariance localization radius of approximately 320 km. This is probably due to the strong diurnal variation and spatial heterogeneity in the fine-scale CMAQ simulation, which could affect the performance of the regional inversion system. In addition, because all observations can be artificially obtained in OSSEs, the performance of Tan-Tracker-Region was further evaluated through different densities of the artificial observation network in different CO2 flux situations. The results indicate that more observation sites would be useful to systematically improve the estimation of CO2 concentration and flux in large areas over the model domain. The work presented here forms a foundation for future research in which a thorough estimation of CO2 flux variability over East Asia could be performed with the regional inversion system.  相似文献   

12.
A regional surface carbon dioxide(CO_2) flux inversion system, the Tan-Tracker-Region, was developed by incorporating an assimilation scheme into the Community Multiscale Air Quality(CMAQ) regional chemical transport model to resolve fine-scale CO_2 variability over East Asia. The proper orthogonal decomposition-based ensemble four-dimensional variational data assimilation approach(POD-4 DVar) is the core algorithm for the joint assimilation framework, and simultaneous assimilations of CO_2 concentrations and surface CO_2 fluxes are applied to help reduce the uncertainty in initial CO_2 concentrations. A persistence dynamical model was developed to describe the evolution of the surface CO_2 fluxes and help avoid the "signal-to-noise" problem; thus, CO_2 fluxes could be estimated as a whole at the model grid scale, with better use of observation information. The performance of the regional inversion system was evaluated through a group of single-observation-based observing system simulation experiments(OSSEs). The results of the experiments suggest that a reliable performance of Tan-Tracker-Region is dependent on certain assimilation parameter choices, for example, an optimized window length of approximately 3 h, an ensemble size of approximately 100, and a covariance localization radius of approximately 320 km. This is probably due to the strong diurnal variation and spatial heterogeneity in the fine-scale CMAQ simulation, which could affect the performance of the regional inversion system. In addition, because all observations can be artificially obtained in OSSEs, the performance of Tan-Tracker-Region was further evaluated through different densities of the artificial observation network in different CO_2 flux situations. The results indicate that more observation sites would be useful to systematically improve the estimation of CO_2 concentration and flux in large areas over the model domain. The work presented here forms a foundation for future research in which a thorough estimation of CO_2 flux variability over East Asia could be performed with the regional inversion system.  相似文献   

13.
宫明晓  马艳  付业理  李华 《气象科技》2019,47(5):740-746
本文通过对比检验2013年1月至2016年6月ASCAT卫星反演风场与青岛浮标海岛站实测10m风场资料,开展ASCAT卫星反演风场在青岛沿海的适用评估。结果表明:ASCAT反演风速整体偏大,风向偏左,但整体偏差均较小。ASCAT反演风场和浮标海岛站实测风场的风速和风向的整体偏差分别为1.6m/s和-9.6°,说明ASCAT反演风场在青岛沿岸有很好的适用性,比EC再分析资料能更细致地反映青岛沿岸的风场空间分布。从风速分级比较来看,风速越弱,卫星反演风速越接近站点实测风速,反演结果越好,而风向反演结果则反之。风速和风向的反演效果皆是晚上比早晨好。并且季节变化对风速反演效果影响不大,但是对风向反演效果有一定的影响,秋冬季节风向反演结果好于春夏季节。最后,对ASCAT反演风速分别进行线性回归订正、综合误差、风速等级误差和升降轨误差订正,发现线性回归订正结果最佳。  相似文献   

14.
利用MICAPS气象信息综合分析处理系统的历史气象资料,根据大雾形成的物理机制,对2008-2010年发生在中国典型区域大雾天气个例中主要影响因子进行分析,得出7个有利于区域大雾产生的因子。结果表明:7个因子中,逆温层厚度为20-200 hPa;地面温度露点差多小于1 ℃,前一日多小于3℃;近地面湿空气厚度0.05-0.70 km;逆温层极值点0 ℃线是雾淞产生特征线;地面偏南风风速为2-6 m·s-1;气温为-15.0~20.0 ℃,其中,-5.0~5.0 ℃占比例最大,0 ℃线是大雾发生的特征线;变性或减弱的高气压。7个因子均有12-24 h的超前特征,经过叠加,构成了“大雾落区基本概念模型”。根据模型建立了大雾落区预报业务系统。理论检验表明,区域大雾预报时效可提前到12-24 h,24 h区域大雾预报准确率为87.5 %。  相似文献   

15.
In an inversion-capped planetary boundary layer (PBL), the structure of the turbulent fluxes as well as the height of the inversion are determined by the interaction of turbulent mixing in the PBL, large-scale subsidence above the PBL and radiational cooling. Here the sensitivity of the inversion height and of the turbulent fluxes due to radiational processes is investigated with the aid of a three-layered model for a well mixed PBL. For an example of the Trade-Wind region, the inversion height (i.e., the difference between surface pressure and pressure at the inversion level) varies between 46 and 257 mb and the surface flux of moist static energy between 417 and 99 W m-2, if the (mean) radiative net flux divergence for both the inversion and the well-mixed layer is changed over a reasonable range of values. None of the parameterization schemes existing in the literature is able to describe these radiational effects in an appropriate way. This is due to the fact that these parameterizations are either not or not flexibly enough linked to the thermodynamical model parameter. Therefore the demand for an adequate parameterization of the radiational influence in a well-mixed PBL under a subsidence inversion is obvious.  相似文献   

16.
This paper describes a one-level variational adjustment process for producing mass-consistent surface winds in the Barrow Strait area, N.W.T. To achieve this result, the continuity equation is employed as a physical constraint. The variational technique adjusts mean winds (vertically averaged through the planetary boundary layer); therefore, a relationship is required between surface and mean winds. Use is made of existing velocity profiles, but interpolation may be used between surface and geostrophic winds. The model was found to be strongly dependent upon specification of boundary-layer height. Channeling effects are not readily seen until topography begins to protrude through the boundary layer. The model might thus be better suited to areas where shallow inversion layers are well defined. By application of the variational adjustment, errors in continuity are reduced by six orders of magnitude. Upon comparison of the variational technique with a diagnostic, one-level, primitive equation model, median errors between computed and observed surface winds were found to be comparable.  相似文献   

17.
A two-dimensional time-dependent Earth-atmosphere model is developed which can be applied to the study of a class of atmospheric boundary-layer flows which owe their origin to horizontal inhomogeneities with respect to surface roughness and temperature. Our main application of the model is to explore the governing physical mechanisms of nocturnal urban atmospheric boundarylayer flow.A case study is presented in which a stable temperature stratification is assumed to exist in the rural upwind area. It is shown through integration of the numerical model that as this air passes over a city, the heat is redistributed due to increased surface friction (and hence increased turbulent mixing). This redistribution of heat results in the formation of an urban heat island.Additional numerical integrations of the model are conducted to examine the dependence of induced perturbations on: (1) the upwind temperature inversion; (2) the geostrophic wind speed; and (3) urbanization. The results show a linear relationship between heat-island intensity and the rural temperature inversion with the heat island increasing in intensity as the upwind inversion becomes stronger; that the heat-island intensity close to the surface is inversely proportional to the geostrophic wind; and that the effects of anthropogenic heat cause an increase in the perturbation temperature with the perturbation extending to higher altitudes. From this study, we conclude that with an upwind temperature inversion, a city of any size should generate a heat island as a result of increased surface roughness. The heat-island intensity should increase with city size because of two factors: larger cities are usually aerodynamically rougher; and larger cities have a larger anthropogenic heat output.Research supported in part by NSF Grant GA-16822.  相似文献   

18.
The wind speed profile in a coastal marine environment is investigated with observations from the measurement program Rødsand, where meteorological data are collected with a 50 m high mast in the Danish Baltic Sea, about 11 km from the coast. When compared with the standard Monin—Obukhov theory the measured wind speed increase between 10 m and 50 m height is found to be systematically larger than predicted for stable and near-neutral conditions. The data indicate that the deviation is smaller for short (10–20 km) distances to the coast than for larger (>30 km) distances. The theory of the planetary boundary layer with an inversion lid offers a qualitative explanation for these findings. When warm air is advected over colder water, a capping inversion typically develops. The air below is constantly cooled by the water and gradually develops into a well-mixed layer with near-neutral stratification. Typical examples as well as scatter plots of the data are consistent with this explanation. The deviation of measured and predicted wind speed profiles is shown to be correlated with the estimated height and strength of the inversion layer.  相似文献   

19.
孙菲浩  郑南山  杜飞 《气象科技》2019,47(3):508-512
为提高地基反演大气可降水量中加权平均温度的计算精度和效率,以香港市域为例,根据2017年香港无线电探空资料,设计了一种以地面气压为基础的大气加权平均温度模型,并通过2014—2016年探空数据对该模型进行验证,分析表明该模型与探空数据得到的加权平均温度有良好的一致性,具有较高的精度。基于气压回归模型和气温回归模型对2017年7月香港地区进行地基反演大气可降水量,验证新建模型的水汽反演精度。结果表明,该模型能很好的满足地基反演大气可降水量的精度要求,相比于气温回归模型反演精度有了较好的提升。  相似文献   

20.
A marine stratocumulus model has been developed which has four major sub-models: (1) a one-dimensional version of the CSU cumulus model, (2) a partially-diagnostic higher-order turbulence model, (3) an atmospheric radiation model for both short-wave and long-wave radiation, and (4) a partial condensation scheme and cloud fractional parameterization. A set of numerical experiments have been performed to study the interactions among the turbulence, the long-wave radiation, the short-wave radiation, and the sub-grid condensation processes. The results indicate that surface sensible eddy heat flux and not radiative cooling is the major control on the rate of cloud-top entrainment. Cloud-top radiation cooling occurs principally within the upper part of the mixed layer. However, for the stratocumulus with numerous towers penetrated into the capping inversion, most of the long-wave radiation occurs within the capping inversion. It is found that cloud-top radiation cooling is balanced by turbulence transport of sensible heat from cloud-base levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号