首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is a well known fact that rock mass properties influence the process of fragmentation considerably. Model blasts and field investigations were carried out to find the effects of rock mass quality and joint orientation on tunnel blasting. Propagation of shock waves are partially restricted by joint planes. It was observed that the blast results (i.e., average fragment size and depth and cross-sectional area of the broken zone) were considerably influenced by joint orientation. Accordingly, it has been concluded that loading equipment with a larger capacity and deeper blast holes are required in formations with joint planes perpendicular to the tunnel axis. The number of blast holes, however, should be greater when joints are parallel to the tunnel axis. Furthermore, the powder factor (kg/m3) has been found to be directly related to rock mass quality (Q). Optimisation of pull, powder factor and overbreak is required in the case of weak formations with joints perpendicular to the tunnel axis. The use of contour blasting technique seems to be essential in poor and fair rock masses to minimise the overbreak, reduce the support cost and improve the stability of the opening.  相似文献   

2.
Air gap in an explosive column has long been applied in open-pit blasting as a way of reducing explosive charge, vibration, fly rock and improve fragment size. In conventional blasting a greater amount of explosive energy is lost in the generation of oversize fragments. Oversize fragments reduces loading and hauling efficiencies of equipment which requires secondary blasting. Recurring oscillation of shock waves in the air gap increases the time over which it acts on the adjacent rock mass by factor of 2–5. Top air deck blasting technique trial conducted with an application of gas bags at Chimiwungo pit resulted in an improved fragmentation of about 94 % less than 950 mm. Results obtained from the analysis of muckpile images using split-desktop exhibited that the mean fragment size was 264.81 mm and F20, F80 and top-size were 41.99, 683.18 and 1454.69 mm respectively. Optimum crusher feed size was as large as 1200 mm and crushed down to the 40 mm and only a small percent of the material was above 1200 mm. Gas bag application resulted in a significant reduction in explosives load in production holes without loss in fragmentation or movement of the collar zone. This reduced total cost of charging as compared to conventional blasts with a variance of $20, powder factor was dropped to an average of 0.86 kg/bcm. The technique reduced the cost of bulk blend explosive by 15 %, reduced overall cost of charging per hole by 12 %, enhanced premature ejections. The overall blast results were satisfactory, 443,624 tonnes of blasted material from the block which represented 90 % of the total muckpile material was within 900 mm size. The overall muckpile blasted was well fragmented.  相似文献   

3.
Blasting is the primary comminution process in most mining operations. This process involves the highly complex and dynamic interaction between two main components. The first is the detonating explosive and the second is the rock mass into which the explosive is loaded. The mechanical properties of the rock material (such as dynamic strength, tensile strength, dynamic modulus and fracture toughness) are important considerations in understanding the blasting process. However, it is the characteristics of the geological defects (joints, foliation planes, bedding planes) within the rock mass that ultimately determine how effectively a blast performs in terms of fragmentation, all else being equal. The defect characteristics include, but are not limited to, their orientation, spacing, and mechanical properties. During the blasting process, some of the geotechnical characteristics of the rock mass are substantially changed. From the blasting outcome point of view, the most notable and important is the change in fragment size distribution that the rock mass undergoes. The pre-blast in situ defect-bounded block size distribution is transformed into the post-blast muckpile fragment size distribution. Consequently, it is fundamental to our understanding of and ability to predict the blasting process that both the blastability of a rock mass and its transformation into the fragment size distribution can be appropriately quantified.  相似文献   

4.
This paper presents the engineering geological properties and support design of a planned diversion tunnel at the Boztepe dam site that contains units of basalt and tuffites. Empirical, theoretical and numerical approaches were used and compared in this study focusing on tunnel design safety. Rock masses at the site were characterized using three empirical methods, namely rock mass rating (RMR), rock mass quality (Q) and geological strength index (GSI). The RMR, Q and GSI ratings were determined by using field data and the mechanical properties of intact rock samples were evaluated in the laboratory. Support requirements were proposed accordingly in terms of different rock mass classification systems. The convergence–confinement method was used as the theoretical approach. Support systems were also analyzed using a commercial software based on the finite element method (FEM). The parameters calculated by empirical methods were used as input parameters for the FEM analysis. The results from the two methods were compared with each other. This comparison suggests that a more reliable and safe design could be achieved by using a combination of empirical, analytical and numerical approaches.  相似文献   

5.
Summary ?Strain-dependent hydraulic conductivities are uniquely defined by an environmental factor, representing applied normal and shear strains, combined with intrinsic material parameters representing mass and component deformation moduli, initial conductivities, and mass structure. The components representing mass moduli and structure are defined in terms of RQD (rock quality designation) and RMR (rock mass rating) to represent the response of a whole spectrum of rock masses, varying from highly fractured (crushed) rock to intact rock. These two empirical parameters determine the hydraulic response of a fractured medium to the induced-deformations. The constitutive relations are verified against available published data and applied to study one-dimensional, strain-dependent fluid flow. Analytical results indicate that both normal and shear strains exert a significant influence on the processes of fluid flow and that the magnitude of this influence is regulated by the values of RQD and RMR.  相似文献   

6.
The competency of any TBM in any geological condition is determined by a rock or rock mass breakage process. A 12.24 km long tunnel between Maroshi and Ruparel College was excavated by Brihanmumbai municipal corporation (BMC) to improve water supply system of greater Mumbai, India, using open-type hard rock tunnel boring machines (TBMs). In this paper an attempt has been made to establish the relationship between rock mass characteristics i.e. RMR and UCS of the Deccan trap rocks and TBMs performance characteristics for 5.83 km long Maroshi–Vakola tunnel section of the Maroshi–Ruparel college tunnel project. To analyze the effect of variable rock mass conditions on the TBM performance, the operating parameters i.e. thrust force, torque and RPM of the machine, were recorded and intact rock strength was determined. The effect of rock mass properties on machine penetration rate (PR) and the relation with other operational parameters were analyzed. The rock strength affects the rock behaviour under compression. When the rolling cutters indent the rock, the stress exerted must be higher than the rock strength i.e.; the rock strength is directly relevant to the performance of TBM. Studies show that the penetration rate decreases with increase in uniaxial compressive strength (UCS). The comparison of measured penetration rate with empirical model developed by Graham, in which, the penetration rate is computed using UCS and average thrust per cutter, showed good agreement with coefficient of determination (R2), i.e. 0.97. The study shows that the TBM performance was maximum in rock mass rating (RMR) range from 40 to 75, while slower penetration was recorded both in very poor and very good rock masses.  相似文献   

7.
In the last decade, fragmentation prediction has been attempted by many researchers in the field of blasting. Kuznetsov developed an equation for the estimation of average fragment size, x 50 , based on explosive energy and powder factors. Cunningham introduced a uniformity index n as a function of drilling accuracy, blast geometry and a rock factor A associated with a “blastability index”, which can be calculated from the jointing, density and hardness of the blasted rock mass. Knowing the mean size and the uniformity index, a Rosin-Rammler distribution equation can then be derived for calculating the fragment size distribution in a blasted muckpile. Analysis of existing data has revealed serious discrepancies between actual and calculated uniformity indices. The current integrated approach combines the Kuznetsov or similar equation and a comminution concept like the Bond Index equation to enable the estimation of both the 50% and 80% passing sizes ( k 50 and k 80 ). By substituting these two passing sizes into the Rosin-Rammler equation, the characteristic size x c and the uniformity index n can be obtained to allow the calculation of various fragment sizes in a given blast. The effectiveness of this new fragmentation prediction approach has been tested using sieved data from small-scale bench blasts, available in the literature. This paper will cover all tested results and a discussion on the discrepancy between measurement and prediction due to possible energy loss during blasting.  相似文献   

8.
It is not the purpose of this paper to propose a new rock mass classification system but rather to improve the existing ones by incorporating some simple quantitative interpretations. The geomechanics classification system of naturally fractured rock masses is modified to decrease personal judgement involved in its calculation. Instead of six parameters in the classical rock mass rating (RMR) system, only five basic parameters are considered in the proposed system, which are namely, rock quality designation (RQD) value with the underlying frequency distribution function of intact lengths; uniaxial or point load strength of intact rock material; conditions of the most unfavorable joints; groundwater condition; and joint orientation. Classical lump-rating system is replaced by continuous grading system which leaves no ambiguity for an inexperienced engineer in allocating grades based on quantitative field or laboratory measurements. Finally, necessary charts are presented for obtaining straightforward design values concerning average stand-up time and corresponding unsupported span of excavations in fractured rock mass; cohesion as well as friction angle of the rock mass. The continuous RMR system is very convenient for calculators or in writing computer software. The proposed methodology reduces the scale of subjectivity and leads to a unique rock mass design value.  相似文献   

9.
隧洞开挖重复爆炸荷载作用下围岩累积损伤特性   总被引:1,自引:0,他引:1  
杨建华  卢文波  胡英国 《岩土力学》2014,299(2):511-518
隧洞毫秒爆破开挖推进过程中,预留岩体在重复爆炸荷载作用下产生不可逆的损伤叠加。而现有的岩体爆破损伤数值模拟基本都是针对单孔装药和单段爆破,很少涉及实际工程中的重复爆炸。基于LS-DYNA程序的用户自定义材料接口,将统计损伤演化模型嵌入到弹塑性本构材料中,模拟圆形隧洞全断面毫秒爆破过程中重复爆炸荷载作用下的岩体累积损伤效应,并考虑地应力对岩体爆破损伤的影响。计算结果表明,围岩损伤范围和损伤程度随重复爆炸荷载次数而增加,在一个爆破进尺内,围岩损伤的临界峰值质点振动速度较单段爆破降低了12%;爆炸荷载作用下,围岩主要表现为拉损伤,围岩地应力对爆破张拉效应起到非常敏感的"抑制"作用,在210 MPa应力水平时,围岩爆破累积损伤范围随着应力增加而明显减小,围岩损伤的临界峰值质点振动速度增加24%10 MPa应力水平时,围岩爆破累积损伤范围随着应力增加而明显减小,围岩损伤的临界峰值质点振动速度增加24%57%。  相似文献   

10.
One of the fundamental requirements for being able to optimise blasting is the ability to predict fragmentation. An accurate blast fragmentation model allows a mine to adjust the fragmentation size for different downstream processes (mill processing versus leach, for instance), and to make real time adjustments in blasting parameters to account for changes in rock mass characteristics (hardness, fracture density, fracture orientation, etc). A number of blast fragmentation models have been developed in the past 40 years such as the Kuz-Ram model [1]. Fragmentation models have a limited usefulness at the present time because: 1. The input parameters are not the most useful for the engineer to determine and data for these parameters are not available throughout the rock mass. 2. Even if the input parameters are known, the models still do not consistently predict the correct fragmentation. This is because the models capture some but not all of the important rock and blast phenomena. 3. The models do not allow for 'tuning' at a specific mine site. This paper describes studies that are being conducted to improve blast fragmentation models. The Split image processing software is used for these studies [2, 3].  相似文献   

11.
A. Tu rul 《Engineering Geology》1998,50(3-4):337-345
The Atatürk dam was built across the Firat River on clayey limestone. A grout curtain, providing impermeability in the left and right abutments, was done in grouting galleries. The well known rock mass classification systems for tunneling purposes [rock structure rating (RSR), rock mass rating (RMR) and rock mass quality index (Q)] were used to classify the rock mass along these galleries. Based on RSR, RMR and Q values, the rock masses in the galleries have been classified into three different classes. Correlation between the three classification systems is discussed and suggestions are made for using rockbolt, shotcrete with wiremesh and steel ribs for supporting the rock mass.  相似文献   

12.
Changes in the hydraulic conductivity field, resulting from the redistribution of stresses in fractured rock masses, are difficult to characterize due to complex nature of the coupled hydromechanical processes. A methodology is developed to predict the distributed hydraulic conductivity field based on the original undisturbed parameters of hydraulic conductivity, Rock Mass Rating (RMR), Rock Quality Designation (RQD), and additionally the induced strains. The most obvious advantage of the methodology is that these required parameters are minimal and are readily available in practice. The incorporation of RMR and RQD, both of which have been applied to design in rock engineering for decades, enables the stress-dependent hydraulic conductivity field to be represented for a whole spectrum of rock masses. Knowledge of the RQD, together with the original hydraulic conductivity, is applied to determine the effective porosity for the fractured media. When RQD approaches zero, the rock mass is highly fractured, and fracture permeability will be relatively high. When RQD approaches 100, the degree of fracturing is minimal, and secondary porosity and secondary permeability will be low. These values bound the possible ranges in hydraulic behaviour of the secondary porosity within the system. RMR may also be applied to determine the scale effect of elastic modulus. As RMR approaches 100, the ‘softening’ effect of fractures is a minimum and results in the smallest strain-induced change in the hydraulic conductivity because the induced strain is uniformly distributed between fractures and matrix. When RMR approaches zero, the laboratory modulus must be reduced significantly in order to represent the rock mass. This results in the largest possible change in the hydraulic conductivity because the induced strain is applied entirely to the fracture system. These values of RMR bound the possible ranges in mechanical behaviour of the system. The mechanical system is coupled with the hydraulic system by two empirical parameters, RQD and RMR. The methodology has been applied to a circular underground excavation and to qualitatively explain the in situ experimental results of the macropermeability test in the drift at Stripa. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.

The joint frequency rating index accounts for 40% of the weight in the hundred-mark Rock Mass Rating 2014 (RMR14) classification system. However, owning to the natural variations of in-situ rock mass, this parameter is difficult for site engineers to obtain along the tunnel axis, especially in groundwater-rich conditions or prior to any disturbances made to rock mass. In this study, we propose an equivalent joint frequency, expressed quantitatively in terms of the ratio of the P-wave propagation velocity in the rock mass to that of the intact rocks, which is mainly based on engineering statistics easily obtained from the Chinese National Standard, GB/T 50218. We also explore a new rating method, based on field P-wave propagation velocity tests, for the joint frequency in the RMR14 classification system. Literature from in-situ databases is discussed to verify the applicability of the proposed rating method. The verifications demonstrate that, compared with the results of on-site parameters ratings as per the RMR classification system, the new rating method using P-wave propagation velocity can obtain a certain degree of accuracy. Hence, this enables the presentation of the primary state of integrity of an in-situ rock mass in accordance with the RMR14 classification system, through simple and non-destructive field P-wave velocity tests.

  相似文献   

14.
岩体质量分级的风险分析方法   总被引:2,自引:0,他引:2  
提出了基于RMR岩体质量分级系统的岩体质量研究风险分析方法。该方法分析步骤如下 :(1)通过岩芯样品的现场观测和实验室试验获得分类所需的变量 ;(2 )统计分析拟合得出各变量的分布函数及参数 ;(3)运用Monte Carlo模拟方法获得 2万个RMR值 ,并将结果绘成岩体质量描述图 ;(4)利用以上结果作出岩体质量风险分析评价。该方法用于润扬长江公路大桥岩体质量评价研究获得良好效果  相似文献   

15.
The rock mass rating (RMR) and slope mass rating (SMR) has been carried out to classify the slope in terms of slope instability. To understand the RMR and SMR various geostructural, geomorphologic and hydrological parameters of the slopes were measured and analyzed. 32 rock slopes/rock cum debris slopes were identified in the study area. The present RMR and SMR study is an outcome of extensive field study along a stretch of about 10 km on road leading from Srinagar to Pauriarea along Alaknanda valley. The technique followed incorporates the relation between discontinuities and slope along with rock mass rating (RMR) and slope mass rating (SMR). The analysis of the 32 studied slopes shows that in the Gangadarshan area out of six rock slope facets, two falls in class II (stable) and four in class IV (unstable). It is significant to note that the slope facets coming under class IV are comprised of active landslide portions. While the slopes under class II show minor failure or old landslide debris.  相似文献   

16.
There are many rock mass classification schemes which are frequently used for different purposes such as estimation of strength and deformability of rock masses, stability assessment of rock slopes, tunneling and underground mining operations etc. The rock mass classification includes some inputs obtained from intact rock and discontinuity properties which have major influence on assessment of engineering behaviour of rock mass. In the present study, detail measurements were employed on road cuts slope faces in Garhwal Himalayas to collect required data to be used for rock mass classification of Rock Mass Rating (RMR) and Geological Strength Index (GSI). The stability assessment of rock slopes were also done by using Slope Mass Rating. In addition the relation between RMR and GSI were also evaluated using 50 data pairs.  相似文献   

17.
为了解决爆破参数优化问题以及考虑炮孔间相互作用对围岩损伤空间分布的影响,先利用数值试算与冲击试验相对照的方法,标定出大理岩Riedel-Hiermaier-Thoma本构模型参数。接着,对隧道全断面爆破开挖开展模拟计算,考察了多炮孔间相互作用下围岩爆破损伤演化过程。最后,基于起爆顺序、径向不耦合系数和分段间隔装药3种方法来优化爆破参数,并对质点振动和围岩损伤进行了深入分析。结果表明:标定所得的本构参数可准确描述大理岩动态应力-应变响应,且模拟结果能很好地揭示爆破损伤演化规律;岩石损伤从爆心处向外发展,随后在炮孔连线上连接贯通;相比于上述其他2种方法,当径向不耦合系数k小于1.33时,在保证爆破效果前提下改变k值能有效地降低围岩的爆破损伤;隧道竖向平均振动速度要大于水平向的对应值,且竖向拱顶和底板中部对爆破振动呈现较高的敏感性。研究结果为工程实践中爆破参数优化选取和围岩损伤精确评估等可提供参考。  相似文献   

18.
为了更方便地求出岩体的等价粘聚力C和摩擦角φ,基于Hoek-Brown准则与RMR法岩体质量分级,求出不同RMR值下的Cφ,拟合出Cφ的折减系数关于RMR值的变化曲线。结果表明:对于质量等级较好的岩体,根据RMR值可以分别求得岩体的Cφ的折减系数,对已知岩石的Cφ值进行折减,求得岩体的Cφ值。岩体的C值随岩石单轴抗压强度成线性正相关,岩体的φ值不随单轴抗压强度变化而变化。Cφ的折减系数不随岩石的单轴抗压强度变化而变化,只与岩体RMR值有关。  相似文献   

19.
金旭浩  卢文波  田勇  严鹏  陈明 《岩土力学》2011,32(Z2):228-232
全面总结、分析了岩石爆破过程S波的产生机制,表明短柱状药包、炮孔周围岩体的开裂与破碎以及装药偏离球形或柱形空腔中心,均可诱发S波,并且诱发S波的幅值可超过P波;P波传播过程与岩体界面的相互作用,可产生次生的S波(透、反射SV波)。在此基础上,就爆破振动场模拟方法与计算模型选择中如何体现S波的产生机制方面提出了建议  相似文献   

20.
ABSTRACT

The local site experience is a valuable component for the success of rock mass classification systems as tunnel design methods. The Ituango hydroelectric project is a very important source of information in order to evaluate the usefulness of the main rock mass classification systems. The objective of this research is to improve understanding of some important features of excavated rock mass, such as discontinuities, block size, shear strength and joint alteration, by analyzing some hundreds of data obtained during excavation cycle.

The field study included a survey of exposures after drilling and blasting rounds. Rock mass classification and support measures for each type of terrain along 1400 m tunnel were performed. The rock mass classes could be better explained if shear strength, alteration or block size is calculated. The assessment of these data allows evaluating the block fall risk, improving support and liner. A local correlation between the RMR and Q system was also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号