首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The three-dimensional circulation on the continental shelf off northern California in the wind events and shelf transport (WEST) experiment region during summer 2001 is studied using the primitive equation regional ocean modeling system (ROMS). The simulations are performed with realistic topography and initial stratification in a limited-area domain with a high-resolution grid. Forcing consists of measured wind-stress and heat flux values obtained from a WEST surface buoy. The general response shows a southward coastal upwelling jet of up to and a weakening or reversal of currents inshore of the jet when upwelling winds relax. Model results are compared to WEST moored velocity and temperature measurements at five locations, to CODAR surface current observations between Pt. Reyes and Bodega Bay, and to hydrographic measurements along shipboard survey lines. The model performs reasonably well, with the highest depth-averaged velocity correlation (0.81) at the inshore mooring (40 m water depth) and lowest correlation (0.68) at the mid-depth mooring (90 m depth). The model shows generally stronger velocities than those observed, especially at the inshore moorings, and a lack in complete reversal of southward velocities observed when upwelling winds relax. The comparison of surface velocities with CODAR measurements shows good agreement of the mean and the dominant mode of variability. The hydrography compares closely at the southern and northern edges of the survey region (correlation coefficients between 0.90 and 0.97), with weaker correlations at the three interior survey lines (correlation coefficients between 0.44 and 0.76). Mean model fields over the summer upwelling period show slight coastal jet separation off Pt. Arena and significant separation off Pt. Reyes. The cape regions also experience relatively strong bottom velocities and nonlinearity in the surface flow. Across-shelf velocity sections examined along the shelf reveal a double jet structure that appears just north of Bodega Bay and shows the offshore jet strengthening to the south. We examine the dynamics during an upwelling and subsequent relaxation event in May 2001 in which the WEST measurements show evidence of a strong flow response. The alongshelf variability in the upwelling and relaxation response introduced by Pt. Reyes is evident. Analysis of term balances from the depth-averaged momentum equations helps to clarify the event dynamics in different regions over the shelf. A clear pattern in the nonlinear advection term is due to the spatial acceleration of the southward jet around the capes of Pt. Arena and Pt. Reyes during upwelling. Results from a three-dimensional Lagrangian analysis of water parcel displacement show significant southward displacement in the coastal jet region, including a strong signal from the double jet. Alongshelf variability in parcel displacements and upwelling source waters due to the presence of Pt. Arena and Pt. Reyes is also apparent from the Lagrangian fields. A cyclonic eddy-like recirculation feature offshore of Pt. Arena prior to the upwelling event causes large patches of onshore-displaced parcels. Additionally, across-shelf variability in the response of water parcels along the D line includes decreased vertical displacement and increased alongshelf displacement in the offshore direction.  相似文献   

2.
Coastal upwelling in the California Current system has been the subject of large scale studies off California and Baja California, and of small scale studies off Oregon. Recent studies of the winds along the entire coast from 25°N to 50°N indicate that there are significant along-shore variations in the strength of coastal upwelling, which are reflected in the observed temperature distribution. Active upwelling appears to be restricted to a narrow coastal band (about 10–25 km wide) along the entire coast, but the region influenced by coastal upwelling may be much wider. Intensive observations of the upwelling zone during summer off Oregon show the presence of a southward coastal jet at the surface, a mean vertical shear, a poleward undercurrent along the bottom, and persistently sloping isopycnals over the continental shelf; most of the upwelling there occurs during relatively short periods (several days long) of upwelling-favorable winds. During the upwelling season off Oregon, the offshore Ekman transport is carried by the surface Ekman layer, and the onshore return flow occurs through a quasi-geostrophic interior. It is not known whether the structure and dynamics observed off Oregon are typical of the upwelling zone along the entire coast, though some of the same features have been observed off Baja California. Current and future research will eventually show whether the Oregon results are also applicable in the region of persistently strong upwelling-favorable winds off northern California, and in the region of complex bathymetry off central and southern California.  相似文献   

3.
The propulsion of the winter counter-wind current in the northern South China Sea (SCS) is investigated with a regional, three-dimensional, primitive equation model. This current is usually called the SCS Warm Current (SCSWC). Model results well reproduced the banded structure of the Guangdong coastal current, the SCSWC and the slope current from the coast to the slope in the northern SCS in the climatological data. The across-shelf flow is active in the shelf break area. Both onshore and offshore flows exist; the net across-shelf transport is shoreward throughout the year, and is larger in winter than in other seasons. The joint effect of baroclinicity and relief (JEBAR) is the dominant forcing of the across-shelf transport in the shelf break area. The major mass source of the SCSWC is the onshore-veered slope current. It is the JEBAR effect that supplies the necessary negative vorticity to maintain the slope current flowing across the isobaths and veering to the right hand to feed the SCSWC. Analyses of the momentum fields indicate that the onshore pressure gradient in the outer shelf balances the Coriolis force induced by the northeastward SCSWC in the frame of geostrophy. In winter, such an onshore pressure gradient is mainly provided by the strong density contrast between waters of the shelf and of the upper slope, which results from the Kuroshio intrusion via the Luzon Strait. The notable intrusion of the Kuroshio in winter is crucial for maintaining the density structure in the shelf break area and facilitates the set-up of the onshore pressure gradient over the outer shelf.  相似文献   

4.
The initiation of the toxic harmful algal bloom (HAB), Karenia brevis, along the west Florida coast has been associated with upwelling events. Upwelling processes may be responsible for the transport of nutrients or algae from deep offshore locations across the Florida shelf to the coast. The influence of coastal wind-driven upwelling on the onset and occurrences of K. brevis in this region was numerically investigated using Rutgers University's Regional Ocean Modeling System. Computations were carried out in an idealized model domain, a two-dimensional slice in the cross-shore and vertical directions. The surface forcing data used was from several offshore meteorological buoys. The motion of the algae was simulated using Lagrangian particles and a passive tracer. The numerical simulations of three K. brevis events in 2000–2002 showed that the particles respond (with upwelling/downwelling) to the along-shore wind stresses as expected and some upwelling was present during the events. Comparison of the passive tracer fields with measured fluorescence data exposed the model's sensitivity to the particular surface forcing data employed and the relatively more significant role played by surface forcing over initial conditions. The present model set-up constitutes a useful predictive tool for conditions conducive to the onset of HABs. It is planned to be used in a real-time mode to aid the NOAA HAB monitoring and forecasting system.  相似文献   

5.
The NSF-sponsored Coastal Ocean Processes Wind Events and Shelf Transport (WEST) experiment investigates the interplay between wind-driven transport and shelf productivity; while eastern boundary shelves are characterized by high productivity due to upward fluxes of nutrients into the euphotic zone, wind forcing also represents negative physical and biological controls via offshore transport and deep (light-limiting) mixing of primary producers. Although this interaction has been well documented for eastern boundary systems generally and for California specifically, one of the primary goals of WEST was to characterize more fully the interplay between positive and negative effects of wind stress, which result in the consistently elevated biological productivity in these shelf regions. During 3 month-long summer cruises (2000–2002) we observed extremes in upwelling/relaxation, using both in situ instrumentation and remotely sensed data. Relationships between optical and physical properties were examined, with emphasis on biogeochemical implications. During 2000, the WEST region was optically dominated by phytoplankton and covarying constituents. During 2001 and 2002, periods of more intense upwelling favorable winds, we observed a transition to optical properties dominated by detrital and inorganic materials. In all years, the continental shelf break provided a natural boundary between optically distinct shelf and open ocean waters. During 2002, we obtained discrete trace-metal measurements of particulate iron and aluminum; we develop a bio-optical proxy for acetic-acid leachable iron from backscatter and fluorescence, and demonstrate that particulate iron is not well correlated to traditional upwelling proxies such as macronutrients, temperature, and salinity. We conclude that the shelf break between ca. 100 and 200 m water depth serves as a natural break point between coastal and oceanic water masses in this region, and that the elevated biomass and productivity associated with this eastern boundary current regime is dominated by these iron rich, shallow shelf waters.  相似文献   

6.
We conducted a research cruise in late summer (July–August) 2000 to study the effect of mesoscale circulation features on zooplankton distributions in the coastal upwelling ecosystem of the northern California Current. Our study area was in a region of complex coastline and bottom topography between Newport, Oregon (44.7°N), and Crescent City, California (41.9°N). Winds were generally strong and equatorward for >6 weeks prior to the cruise, resulting in the upwelling of cold, nutrient-rich water along the coast and an alongshore upwelling jet. In the northern part of the study area, the jet followed the bottom topography, creating a broad, retentive area nearshore over a submarine shelf bank (Heceta Bank, 44–44.4°N). In the south, a meander of the jet extended seaward off of Cape Blanco (42.8°N), resulting in the displacement of coastal water and the associated coastal taxa to >100 km off the continental shelf. Zooplankton biomass was high both over the submarine bank and offshore in the meander of the upwelling jet. We used velocities and standing stocks of plankton in the upper 100 m to estimate that 1×106 m3 of water, containing an average zooplankton biomass of ~20 mg carbon m?3, was transported seaward across the 2000-m isobath in the meandering jet each second. That flux equated to offshore transport of >900 metric tons of carbon each day, and 4–5×104 tons over the 6–8 week lifetime of the circulation feature. Thus, mesoscale circulation can create disparate regions in which zooplankton populations are retained over the shelf and biomass can accumulate or, alternatively, in which high biomass is advected offshore to the oligotrophic deep sea.  相似文献   

7.
郭琳  刘娜  王国建  修鹏 《海洋与湖沼》2016,47(3):491-501
本文利用三维数值模型(ROMS-Co Si NE)分析了整个加利福尼亚流系水平流场的季节性演变过程,研究了美国加州中部海域流场垂直结构的季节性变化特征,并探讨了其动力学机制。研究发现:(1)数值模型能够较为准确的模拟流场的季节性变化,与浮标观测数据以及前人的研究结果符合良好;(2)从表层到200m,加利福尼亚潜流向高纬度扩张,近岸上升流急流则向高纬度撤退,加州南部海域的中尺度涡更显著;(3)在加州中部海域,近岸急流的最大值(约15cm/s)发生在夏季,位于近岸的表层海域;加利福尼亚潜流最大值(约4cm/s)发生于冬季,出现在离岸100km的125m处;加利福尼亚流在春季达到全年最大值(约5cm/s),流轴位于离岸(400—600km)的表层海水。加利福尼亚流系的流场具有显著的季节性变化,研究进一步表明这主要受地转关系调控。  相似文献   

8.
As an integral part of the WEST study of the role of wind-driven transport in shelf productivity, HF radar currents are analyzed to determine typical surface flow patterns off Bodega Bay in northern California. Radar-derived surface trajectories and surface velocity divergences are used to determine the proximal origins and destinations of surface waters in the area. Surface trajectory results show a strong bimodality, with water over the entire shelf originating in the north under upwelling conditions and waters over the inner/mid-shelf originating in the south during relaxation conditions. Outer shelf waters have more variable transport patterns during relaxation conditions, with limited equatorward or onshore movements being most typical. The destinations of surface waters starting at the outer shelf are predominantly offshore, with the majority of particles exiting the radar domain west of Pt Reyes along the shelf edge in less than 2 days. Significant proportions of water from the inner/mid-shelf are exported southward and exit the radar domain inshore or within 20 km of the tip of Pt Reyes, creating possibilities for either nearshore retention in the Bodega region or entrainment of water into the Gulf of Farallons. Approximately 15% of all trajectories remained in the radar domain for 6 days, suggesting that a biologically significant percentage of larvae might be retained in the area for time periods approaching typical larval durations. Calculations of surface divergence indicate where vertical flux may be significant. An extensive area of positive divergence is observed off Bodega during upwelling conditions, while weakly convergent flow is observed where upwelling flows approach Pt Reyes. Positive divergence also is observed during relaxation periods when poleward flow separates from the shore just north of Pt Reyes. Estimates of vertical flux in these divergence zones point to a significant contribution of recently upwelled waters to the observed horizontal fluxes at the surface. Determination of the ultimate source and fate of phytoplankton-rich waters requires further analysis of the detailed time dependence of phytoplankton concentration relative to the time dependence of wind-forced currents.  相似文献   

9.
Summer upwelling on the continental shelf north of Cape Canaveral, Florida, has been previously observed to result from wind forcing. A two-layer, finite element model reproduces reasonably well the characteristics of the wind-driven upwelling in respect to location and magnitude. Model investigation also shows that upwelling results from offshore current forcing which is imposed through an along-shelf sea level slope. This sea level slope, which has been found to be of the order of −10−7, represents a mean Gulf Stream effect. The results suggest that the strongest upwelling events near Cape Canaveral occur when the wind and Gulf Stream forcings act together.  相似文献   

10.
The “Wind Events and Shelf Transport” (WEST) program was an interdisciplinary study of coastal upwelling off northern California in 2000–03. WEST was comprised of modeling and field observations. The primary goal of WEST was to better describe and understand the competing influences of wind forcing on planktonic productivity in coastal waters. While increased upwelling-favorable winds lead to increased nutrient supply, they also result in reduced light exposure due to deeper surface mixed layers and increased advective loss of plankton from coastal waters. The key to understanding high levels of productivity, amidst these competing responses to wind forcing, is the temporal and spatial structure of upwelling. Temporal fluctuations and spatial patterns allow strong upwelling that favors nutrient delivery to be juxtaposed with less energetic conditions that favor stratification and plankton blooms. Observations of winds, ocean circulation, nutrients, phytoplankton and zooplankton off Bodega Bay and Point Reyes (38°N) were combined with model studies of winds, circulation and productivity. This overview of the WEST program provides an introduction to the WEST special issue of Deep-Sea Research, including the motivation for WEST, a summary of study components, an integrative synthesis of major research results to-date, and background on conditions during field studies in May–June 2001 (the upwelling period on which this special issue is focused).  相似文献   

11.
This paper describes the westward movement of a cyclonic eddy across the Mozambique Channel and the subsequent south-westward propagation of the eddy along the east coast of South Africa and its interaction with the shelf. A hydrographic survey on 13 September 2006 off Nine-mile Reef (NMR), Sodwana Bay, showed a well-developed Agulhas Current along the continental shelf inshore of a cyclonic eddy flanked by two anti-cyclonic eddies, further offshore. A satellite-tracked drifter and complementary altimetry data confirmed the dimensions of the eddy and tracked its movement towards the coast. Shelf-edge upwelling was measured at NMR by an underwater temperature recorder (UTR) when the cyclonic eddy first came into contact with the shelf and again when the cyclonic eddy interacted with the leading edge of the anti-cyclonic eddy moving onto the shelf. Further shelf–eddy interactions off Aliwal Shoal, south of Durban, and consequent upwelling were similarly caused by the same cyclonic eddy as it progressed south-westward along the east coast. Analysis of UTR data between 2004 and 2006 indicated that between two and five cyclonic eddies impact the shelf off NMR per year.  相似文献   

12.
An investigation of surface phytoplankton communities was undertaken on the shelf of the northern Benguela upwelling ecosystem during austral autumn (May) and spring (September), along latitudinal transects at 20° S and 23° S, from 2 to 70 nautical miles offshore, as well as on a zigzag grid located between these transects. Microscopic identification of the phytoplankton and CHEMTAX analysis of pigment biomarkers were used to characterise the community composition. During May 2014, warmer, more-saline water with a shallower upper mixed layer corresponding to periods of less-intense offshore Ekman transport was encountered on the shelf. Satellite imagery indicated high phytoplankton biomass extending for a considerable distance from the coast, and CHEMTAX indicated diatoms as dominant at most of the stations (52–92%), although dinoflagellates were dominant at some inshore localities (57–74%). Species of Chaetoceros, Bacteriastrum and Cylindrotheca were the most abundant, with abundance of the Pseudo-nitzschiaseriata-group’ being particularly high at a number of stations. In September 2014, more-intense wind-forcing resulted in a deeper upper mixed layer and stronger upwelling of colder, less-saline water. Elevated phytoplankton biomass was confined close to the coast, where diatoms accounted for most of the population (54–87%), whereas small flagellates, such as prasinophytes, haptophytes and cryptophytes, as well as the cyanobacterium Synechococcus, dominated the communities (58–90%) farther from the coast. It is hypothesised that stronger upwelling and deeper vertical mixing in September of that year were not conducive for widespread diatom growth, and that small flagellates populated the water column by being entrained from offshore onto the shelf in the upwelled water that moved in towards the coast.  相似文献   

13.
The continental shelf off Namibia is influenced by the Benguela Current with variable intensity year-round, and upwelling there has an important effect on the spawning habits of fish. During three cruises to northern Namibia, carried out in intensive and weak upwelling seasons, there were notable differences in the ichthyoplankton fauna. General features of the hydrography and plankton and an index of larval diversity calculated for all ichthyoplankton stations occupied during the three cruises are presented. Low larval diversity seemed to be related to centres of upwelling and, conversely, high larval diversity to hydrological stability. Principal components analysis was used to study the ichthyoplankton association patterns and their relation to external factors. In cruises carried out in upwelling periods (winter and spring) the main factors were identified as depth and latitude. A good relationship was found between species in the north of the survey area and warmer Angolan water during the autumn cruise. Hierarchical classification methods were also used, the points coefficient of correlation being used as a similarity index and the U PGM A as algorithm. Results obtained by this method of classification coincided with those obtained from principal components analysis.  相似文献   

14.
High-resolution (1km) satellite data from the NOAA AVHRR (Advanced Very High Resolution Radiometer) and OrbView-2 SeaWiFS (Sea-viewing Wide Field-of-view Sensor) are used to investigate the upper layer dynamics of the southern Benguela ecosystem in more detailed space and time scales than previously undertaken. A consistent time-series of daily sea surface temperature (SST) and chlorophyll a concentration images is generated for the period July 1998–June 2003, and a quantitative analysis undertaken. The variability in SST, upwelling and phytoplankton biomass is explored for selected biogeographic regions, with particular focus on intra-seasonal time scales. The location and emergence of upwelling cells are clearly identified along the length of the southern Benguela, being distinct on the narrow inner and the mid-continental shelves. Most notable is the rapidly pulsating nature of the upwelling, with intense warm/cold events clearly distinguished. The phytoplankton response to this physical forcing is described. Chlorophyll concentration on the inner shelf largely mirrors the pattern of SST variability, similarly dominated by event-scale processes. Over the mid-shelf, higher chlorophyll is observed throughout all seasons, although low biomass occurs during winter. The variability of the offshore extent of SST and chlorophyll is identified at locations of differing shelf width. Cooler upwelled water is confined primarily to the narrow inner-shelf, with event-scale pulses extending considerable distances offshore. Agulhas Current influences are readily observed, even on the Cape Peninsula inner-shelf. Chlorophyll concentrations vary considerably between the locations of differing shelf width. SST, upwelling and phytoplankton indices are derived for selected locations to quantify the intra-seasonal variations. The SST indices show marked temperature changes associated with rapid pulsation on the event scale. No strong seasonal signal is evident. In contrast, the upwelling indices display a strong seasonal signal, with most intense upwelling occurring in spring/summer in the south. The phytoplankton response to the seasonal upwelling index differs between the selected locations. This study concludes that, although low-resolution SST and chlorophyll data may be useful for investigating general patterns over large scales, higher resolution data are necessary to identify finer scale spatial and temporal variability, especially in the inshore coastal zones.  相似文献   

15.
16.
A five-element mooring array is used to study surface boundary-layer transport over the Northern California shelf from May to August 2001. In this region, upwelling favorable winds increase in strength offshore, leading to a strong positive wind stress curl. We examine the cross-shelf variation in surface Ekman transport calculated from the wind stress and the actual surface boundary-layer transport estimated from oceanic observations. The two quantities are highly correlated with a regression slope near one. Both the Ekman transport and surface boundary layer transport imply curl-driven upwelling rates of about 3×10−4 m s−1 between the 40 and 90 m isobaths (1.5 and 11.0 km from the coast, respectively) and curl-driven upwelling rates about 1.5×10−4m s−1 between the 90 and 130 m isobaths (11.0 and 28.4 km from the coast, respectively). Thus curl-driven upwelling extends to at least 25 km from the coast. In contrast, upwelling driven by the adjustment to the coastal boundary condition occurs primarily inshore of the 40-m isobath. The upwelling rates implied by the differentiating the 40-m transport observations with the coastal boundary condition are up to 8×10−4 m s−1. The estimated upwelling rates and the temperature–nitrate relationship imply curl-driven vertical nitrate flux divergences are about half of those driven by coastal boundary upwelling.  相似文献   

17.
Long series data of a thermistor chain in the Black Sea coastal zone near Gelendzhik were analyzed. A thermistor chain installed 1 km offshore and at a depth of 22 m. There are full and incomplete upwelling events observed. The study of upwelling genesis based on: wind speed data from the NCEP/CFSR reanalysis and Gelendzhik weather station, velocity and direction of coastal currents measured by ADCP profiler moored on the bottom near the thermistor chain. Over the whole observation period (warm seasons of 2013–2015), more than 40 events of upwelling were registered four of them were full upwellings, when presence of under-thermocline water was observed near the sea surface. For every upwelling event, conditions prior to the changes in thermic structure, were analyzed. It is found that full upwelling generally occur under synergistic wind and current forcing. Fairly strong forcing of one of these factors is sufficient for partial upwelling to occur.  相似文献   

18.
Data collected in 1953 and 1954 by the U.S. Fish and Wildlife Service were statistically analyzed to ascertain where and when fish eggs and larvae are most abundant on the southeastern U.S. continental shelf. The results are related to some oceanographic processes that might affect the survival of larval fish. Along-shelf differences in numbers of eggs and larvae are minimal compared with differences that occur across the shelf. Highest numbers of fish larvae are found on the outer shelf during fall, winter and spring, but larvae are evenly distributed across the shelf in summer.Upwelling strongly influences the dynamics of plankton production on the outer shelf, and thus during most seasons of the year upwelling may be the most important process controlling the amount of food available to larval fish. During winter and spring, mean winds do not favor shoreward transport of larval fish from the outer shelf if the larvae are located in near-surface waters. Thus, during these seasons variability of winds on the ‘event’ time scale may be more important to onshore and offshore transport of larval fish than the mean strength and direction of monthly or seasonally averaged winds.  相似文献   

19.
We have studied the relation between the hydrography, the composition and horizontal structure of the larval fish community, and the horizontal distribution patterns of larval fish abundances in an area characterised by strong mesoscale oceanographic activity, located between the Canary Islands and the African coast (the Canaries Coastal Transition Zone), during August 1999. Upwelling, upwelling filaments, cyclonic and anticyclonic eddies and island wakes are typical mesoscale features of the northwest African coast in summer. A single upwelling filament off Cabo Juby was joined in mid-August by a second that originated about 100 km to the north. The two filaments flowed together and merged 100 km offshore. The merged filament was partially entrained around a cyclonic eddy, trapped between the Canary Islands and the African coast, and interacted with cyclonic and anticyclonic eddies shed from Gran Canaria. Mesoscale oceanographic features strongly influenced the horizontal distributions of fish larvae. Eddies acted as a mechanism of concentration, while upwelling filaments were dispersive, transporting larvae from the African neritic zone into oceanic areas and towards the Canary archipelago. This transport was the major cause of the predominance of neritic larvae in the composition of the larval fish community of the area. The results also suggest: (1) that anchovy larvae are good indicators of the offshore displacement of upwelled water; (2) that the alternation between anchovy and sardine as species dominant in the larval fish community of the area during summer depends upon the water temperature in the African upwelling region, anchovy dominating at higher temperature; (3) that a coupling of anchovy and sardine spawning with the mesoscale oceanographic structure formed by the upwelling filaments and trapped eddy overcomes the negative effect that Ekman transport has on their populations.  相似文献   

20.
用沿岸上升流指数分析中国东南沿岸风生上升流的特征   总被引:2,自引:0,他引:2  
苗馨  胡建宇 《海洋通报》2011,30(3):258-265
对1968年1月到2007年12月中国东南沿海(17°N~30°N,109°E~123°E)上升流指数月平均数据进行分析,结论如下:(1)风生沿岸上升流主要在4-8月间发生于海南岛东部、雷州半岛东部、汕头以北至浙江沿岸.(2)风生沿岸上升流的强度具有时空分布变化特征,其中海南岛东部沿岸上升流最强,浙江沿岸其次;整个中国...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号