首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The characteristics of low-damping high-frequency waves in hot magnetized solar and stellar coronal plasmas under the conditions when the electron gyrofrequency ωHe is equal to or higher than the electron plasma frequency ωpe have been analyzed using the numerical solution of the dispersion equation. It is shown that the wave branches corresponding to the Z mode and ordinary waves approach each other when the magnetic field increases and become almost indistinguishable in a wide frequency range at all angles between the wave vector and magnetic field. A branch with anomalous dispersion appears at angles close to 90°. A new interpretation of broadband pulsations and spikes is suggested on the basis of the results.  相似文献   

2.
The efficiency of energetic electron cyclotron acceleration in the Earth’s magnetosphere in different regimes of electron resonant interaction with parallel propagating whistler mode waves of variable frequency, specifically, with chorus ELF-VLF emissions, is considered. The regime of stochastic acceleration, typical of the interaction between particles and noise-like emissions, and particle acceleration in the regime of nonlinear trapping by a quasimonochromatic wave field are discussed. The specific feature of the latter regime consists in its non-diffuse character, i.e., the definite sign of the energy variation depending on the frequency variation in the wave packet. The trapped electron energy becomes higher if frequency increases within an element, which is typical of chorus emissions. For the parameters typical of chorus emissions (the amplitude of a wave magnetic field B = 102 nT, the initial frequency ω ~ 0.3ω H , and the frequency variation &;Dω ~ 0.15ω H , where ω H is the electron gyrofrequency), the energy increase during one act of such an interaction at L = 4?5 exceeds the rms variation in the energy of untrapped electron (during stochastic acceleration) by one-two orders of magnitude. The estimates indicate that a considerable fraction (several tens of percent) of the chorus element energy can be absorbed by electrons accelerated in the trapping regime during a single hop.  相似文献   

3.
A method of wave mode determination, which was announced in Balikhin and Gedalin, is applied to AMPTE UKS and AMPTE IRM magnetic field measurements downstream of supercritical quasiperpendicular shock. The method is based on the fact that the relation between phase difference of the waves measured by two satellites, Doppler shift equation, the direction of the wave propagation are enough to obtain the dispersion equation of the observed waves. It is shown that the low frequency turbulence mainly consists of waves observed below 1 Hz with a linear dependence between the absolute value of wave vector |k| and the plasma frame wave frequency. The phase velocity of these waves is close to the phase velocity of intermediate waves Vint = Vacos().  相似文献   

4.
Low frequency electrostatic waves are studied in magnetized plasmas with an electron temperature which varies with position in a direction perpendicular to the magnetic field. For wave frequencies below the ion cyclotron frequency, the waves need not follow any definite dispersion relation. Instead a band of phase velocities is allowed, with a range of variation depending on the maximum and minimum values of the electron temperature. Simple model equations are obtained for the general case which can be solved to give the spatial variation of a harmonically time varying potential. A simple analytical model for the phenomenon is presented and the results are supported by numerical simulations carried out in a 2.5-dimensional particle-in-cell numerical simulation. We find that when the electron temperature is striated along B0 and low frequency waves (ci) are excited in this environment, then the intensity of these low frequency waves will be striated in a manner following the electron temperature striations. High frequency ion acoustic waves (ci) will on the other hand have a spatially more uniform intensity distribution.  相似文献   

5.
WIND observations of coherent electrostatic waves in the solar wind   总被引:4,自引:0,他引:4  
The time domain sampler (TDS) experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency fpi and smaller than or of the order of the electron plasma frequency fpe, TDS observed three kinds of electrostatic (e.s.) waves: coherent wave packets of Langmuir waves with frequencies ffpe, coherent wave packets with frequencies in the ion acoustic range fpiffpe, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF) ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λD. The electric field in the isolated electrostatic structures (IES) and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ≃25D, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations). The type (wave packet or IES) of the observed LF waves is mainly determined by the proton temperature and by the direction of the magnetic field, which themselves depend on the latitude of WIND with respect to the heliospheric current sheet.  相似文献   

6.
Compressional waves with periods greater than 2 min (about 10–30 min) at low geomagnetic latitudes, namely compressional Pc5 waves, are studied. The data set obtained with magnetometer MIF-M and plasma analyzer instrument CORALL on board the Interball-1 are analyzed. Measurements performed in October 1995 and October 1996 in the dawn plasma sheet at −30 RE ≤ XGSM and |ZGSM| ≤ 10 RE are considered. Anti-phase variations of magnetic field and ion plasma pressures are analyzed by searching for morphological similarities in the two time series. It is found that longitudinal and transverse magnetic field variations with respect to the background magnetic field are of the same order of magnitude. Plasma velocities are processed for each time period of the local dissimilarity in the pressure time series. VeloCity disturbances occur mainly transversely to the local field line. The data reveal the rotation of the veloCity vector. Because of the field line curvature, there is no fixed position of the rotational plane in the space. These vortices are localized in the regions of anti-phase variations of the magnetic field and plasma pressures, and the vortical flows are associated with the compressional Pc5 wave process. A theoretical model is proposed to explain the main features of the nonlinear wave processes. Our main goal is to study coupling of drift Alfven wave and magnetosonic wave in a warm inhomogeneous plasma. A vortex is the partial solution of the set of the equations when the compression is neglected. A compression effect gives rise to a nonlinear soliton-like solution.  相似文献   

7.
Results of the analysis of 15 unusual Pc1 pearl wave events with inverse dispersion in comparison with the dispersion of well-known electromagnetic ion-cyclotron (EMIC) waves in the form of classic pearl pulsations are presented. Pulsations with the dynamical spectrum consisting of both falling tones only (first type) and events with structures, which start with the falling tones and then develop into rising tones (second type), have been discovered. The first type corresponds to the frequency dispersion of magnetosonic waves (R-waves), and the second type corresponds to the mixed frequency dispersion of R-waves and EMIC waves (L-waves). All events were observed during quiet geomagnetic periods. The duration of the events is about 20–30 min. For the interpretation of these phenomena, the cyclotron instability driven by energetic proton beams with relative mean velocity v0 directed along the background magnetic field and corresponding to an energy ∼10–100 keV is considered. The interaction of such proton beams with waves having frequencies ω<ωi (ωi is the ion gyrofrequency) leads to the instability, which allows the fastest growth of electromagnetic oscillations with the dispersion of R-wave type. When the velocity of the proton beam decreases (v0≈0), R-waves attenuate and L-waves (for the proton temperature T>T) will be amplified. This instability is the reason for the generation of classic Pc1 pearl pulsations with the usual dispersion and allows explaining the transition of the dispersion from R- to L-waves.  相似文献   

8.
On the basis of the model of the three-dimensional (3D) generalized Kadomtsev-Petviashvili equation for magnetic field h = B ~/B the formation, stability, and dynamics of 3D soliton-like structures, such as the beams of fast magnetosonic (FMS) waves generated in ionospheric and magnetospheric plasma at a low-frequency branch of oscillations when β = 4πnT/B 2 ? 1 and β > 1, are studied. The study takes into account the highest dispersion correction determined by values of the plasma parameters and the angle θ = (B, k), which plays a key role in the FMS beam propagation at those angles to the magnetic field that are close to π/2. The stability of multidimensional solutions is studied by an investigation of the Hamiltonian boundness under its deformations on the basis of solving of the corresponding variational problem. The evolution and dynamics of the 3D FMS wave beam are studied by the numerical integration of equations with the use of specially developed methods. The results can be interpreted in terms of the self-focusing phenomenon, as the formation of a stationary beam and the scattering and self-focusing of the solitary beam of FMS waves. These cases were studied with a detailed investigation of all evolutionary stages of the 3D FMS wave beams in the ionospheric and magnetospheric plasma.  相似文献   

9.
An anisotropic kappa velocity distribution with loss-cones is used to investigate whistler wave instability occurring in the magnetosphere. The elements of the dielectric tensor and dispersion relation using modified plasma dispersion function Zκ1(ξ) with loss-cone angle have been obtained for the linear waves propagating exactly parallel to a uniform local magnetic field in a homogeneous and hot plasma. The modified plasma dispersion function and integrals have been expressed in power-series form for argument of ξ≫1. Temporal/spatial growth rates for whistler wave in the magnetosphere have been evaluated by the method of numerical techniques. The results of such a kappa loss-cone distribution function on the generation of whistler waves are compared with those obtained by Maxwellian loss-cone distribution. Calculations show that either a loss-cone or a thermal anisotropy in the hot plasma component of the magnetosphere can lead to the generation of incoherent emission of low-frequency whistler waves. This methodology could be easily extended to the study of low frequency emissions from planetary magnetospheres under suitable choice of models of density and magnetic field and other plasma parameters.  相似文献   

10.
A guided wave along a borehole is often observed in borehole radar measurements. These guided waves deform the antenna pattern and can cause artefacts in radar measurements. A water-filled borehole or a conducting logging cable can function as a waveguide for electromagnetic waves under some conditions. We describe the theoretical characteristics of such a guided wave in a borehole and compare them with our experiments. The measured signal discussed was obtained with a directional borehole radar. This radar uses a cylindrical conformal array antenna as receiver and is a model of a conducting structure in a borehole. The induced field around the borehole was compared with the theory. The most fundamental symmetrical and asymmetrical modes were TM01 and HE11, and they were identified in the measured signals using time–frequency distribution analysis and by observation of the azimuthal field distribution of the magnetic field.  相似文献   

11.
We present an analysis of phenomena observed by HF distance-diagnostic tools located in St. Petersburg combined with multi-instrument observation at Tromsø in the HF modified ionosphere during a magnetospheric substorm. The observed phenomena that occurred during the Tromsø heating experiment in the nightside auroral Es region of the ionosphere depend on the phase of substorm. The heating excited small-scale field-aligned irregularities in the E region responsible for field-aligned scattering of diagnostic HF waves. The equipment used in the experiment was sensitive to electron density irregularities with wavelengths 12–15 m across the geomagnetic field lines. Analysis of the Doppler measurement data shows the appearance of quasiperiodic variations with a Doppler frequency shift, fd and periods about 100–120 s during the heating cycle coinciding in time with the first substorm activation and initiation of the upward field-aligned currents. A relationship between wave variations in fd and magnetic pulsations in the Y-component of the geomagnetic field at Tromsø was detected. The analysis of the magnetic field variations from the IMAGE magnetometer stations shows that ULF waves occurred, not only at Tromsø, but in the adjacent area bounded by geographical latitudes from 70.5° to 68° and longitudes from 16° to 27°. It is suggested that the ULF observed can result from superposition of the natural and heater-induced ULF waves. During the substorm expansion a strong stimulated electromagnetic emission (SEE) at the third harmonic of the downshifted maximum frequency was found. It is believed that SEE is accompanied by excitation of the VLF waves penetrating into magneto-sphere and stimulating the precipitation of the energetic electrons (10–40 keV) of about 1-min duration. This is due to a cyclotron resonant interaction of natural precipitating electrons (1–10 keV) with heater-induced whistler waves in the magnetosphere. It is reasonable to suppose that a new substorm activation, exactly above Tromsø, was closely connected with the heater-induced precipitation of energetic electrons.  相似文献   

12.
The strong increase in the flux of relativistic electrons during the recovery phase of magnetic storms and during other active periods is investigated with the help of Hamiltonian formalism and simulations of test electrons which interact with whistler waves. The intensity of the whistler waves is enhanced significantly due to injection of 10–100 keV electrons during the substorm. Electrons which drift in the gradient and curvature of the magnetic field generate the rising tones of VLF whistler chorus. The seed population of relativistic electrons which bounce along the inhomogeneous magnetic field, interacts resonantly with the whistler waves. Whistler wave propagating obliquely to the magnetic field can interact with energetic electrons through Landau, cyclotron, and higher harmonic resonant interactions when the Doppler-shifted wave frequency equals any (positive or negative) integer multiple of the local relativistic gyrofrequency. Because the gyroradius of a relativistic electron may be the order of or greater than the perpendicular wavelength, numerous cyclotron, harmonics can contribute to the resonant interaction which breaks down the adiabatic invariant. A similar process diffuses the pitch angle leading to electron precipitation. The irreversible changes in the adiabatic invariant depend on the relative phase between the wave and the electron, and successive resonant interactions result in electrons undergoing a random walk in energy and pitch angle. This resonant process may contribute to the 10–100 fold increase of the relativistic electron flux in the outer radiation belt, and constitute an interesting relation between substorm-generated waves and enhancements in fluxes of relativistic electrons during geomagnetic storms and other active periods.  相似文献   

13.
We present observations of electric and magnetic field variations from proton (about few Hz) to electron cyclotron frequencies (about few kHz) obtained by STAFF instrument on Cluster satellites during two cusp crossings, at ∼6 R E altitude, in September 2002. The cusp was identified by the presence of intensive fluxes of counter streaming electrons with low energies and broadband wave activity which is typical for this region. Special attention is given for the interval of measurements when the waveform of the magnetic field fluctuations was taken in this region by CLUSTER satellites. The wave has been processed using the wavelet and bispectral analysis. Results showing the cascade of turbulence and wave-wave interactions are presented in this paper. A three wave process can be responsible for the broadening of the wave spectra in the polar cusp.  相似文献   

14.
对套管井偶极弯曲模式波的频散特性进行了系统的数值考察、实例对比和分析.发现套管井弯曲波频散曲线随地层横波速度的降低,特别是地层横波速度小于2000 m·s-1以下,会迅速移向高频区,偶极弯曲波基础模式主频散区(或截止频率)可出现在13 kHz以上,以致超出了现行低频偶极子声波测井仪的激发与接收频带,这是一过去没有被研究者注意到的现象,并进一步被现场实例所证实.研究表明控制套管井弯曲波频散曲线主频散区位置的主要是钢套管的厚度和地层横波速度.对地层横波速度大于井孔流体声速的快速地层,在钢套管壁厚一定(8 mm)的情况下,频散曲线主频散区可移至11 kHz以上,可能出现的最大可能频域位置是同一井孔内径,井外全钢时的频散曲线上等于、小于地层横波速度那一段,这对各种地层和套管参数都是适用的.对地层横波速度小于等于井孔流体声速(1500 m·s-1)的慢速地层,弯曲波频散曲线随地层横波速度的降低移向高频区的特点更为明显,可能移至16 kHz以上;而套管厚度的影响,也比快速地层大的多,对地层横波速度小于1380 m·s-1的慢速地层,无论用多高的频率激发,都不能在现行使用的各类套管井(壁厚6~12 mm)中用偶极声波测井仪测到弯曲模式波.  相似文献   

15.
Results of numerical simulation studies of processes associated with Stimulated Electromagnetic Emission (SEE) produced during ionospheric heating experiments are presented. A one-dimensional magnetized electrostatic Particle-In-Cell (PIC) simulation model with uniform plasma density is used to investigate electrostatic wave generation in the region where the pump frequency ω0 approximately equals the upper hybrid frequency ωuh. In particular, the simulation plasma is driven with a uniform oscillating electric field to represent the long wavelength pump wave and power spectra of the electrostatic waves produced are taken. The pump wave frequency and amplitude are varied to consider the effects on the simulation power spectrum. The upper hybrid frequency in the model is varied through harmonics of the electron cyclotron frequency Ωce to consider the effects of stepping the pump frequency through cyclotron harmonics. The power spectrum from the simulation plasma is richly structured. The resulting power spectra show sidebands upshifted and downshifted from the pump frequency by multiples of the lower hybrid frequency ωlh. The structure of the spectrum is highly sensitive to the proximity of the upper hybrid frequency to the cyclotron harmonic frequencies.  相似文献   

16.
Summary The effects of a uniform external magnetic field on the propagation of waves in a homogeneous, infinitely conducting flat plate with free boundaries have been studied. It has been found that in general all the three types of waves —P, SV andSH waves—are coupled and the influence may be more pronounced in coupling the symmetric and antisymmetric types of motions in every mode.When the magnetic field is parallel to the plane faces and transverse to the direction of wave propagation, the shear wave polarized parallel to the field is purely elastic whereas the coupledP andS V waves are magnetoelastic and exhibit dispersion strikingly similar to the non-magnetic case, provided the electro-magnetic radiation into the surrounding free space is neglected.The results reported in an earlier communication [1]2) are also confirmed.  相似文献   

17.
本文运用磁场的最小方差分析法和磁场-电子密度的相关分析法分析了欧洲空间局Giotto飞船对P/Grigg-Skjellerup(简称G-S)彗星弓激波附近磁场和电子能流的部分观测数据.结果表明彗星附近存在大量的频率靠近新生水族离子回旋频率的波动,它们是由彗星新生水族离子环流激发的低频左旋电磁波.波在近似平行于磁场方向传播,斜传播角小于15°.电子数据和磁场数据相关分析表明即使在离彗星很远的地方仍然存在压缩波.  相似文献   

18.
The ambipolar diffusion equation for the height distribution of electron density in the ionospheric F2-layer is solved in the presence of neutral horizontal shear flow. By using this nonstationary solution the reaction of the F2-region electron density on the evolution of atmospheric acoustic–gravity waves (AGW) is investigated. The evolution of the AGW and the corresponding behaviour of the height distribution of the F2-region electron density are described by the characteristic time, ta, of transient development of shear waves in the horizontal shear flow. For long times t > ta, the gravity wave frequency tends to the isothermal Brunt–Väisälä frequency, which appears in the F2-layer as wavelike behaviour of hmF2 and NmF2 with periods close to 16–20 min, when the scale height of the neutral gas is H = 60 km. The shear wave, which is due to the presence of horizontal shear flow, gives sufficient changes of the height profile of electron density for times of tta.  相似文献   

19.
20.
A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of fk approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号