首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用1979-2017年欧洲中期天气预报中心提供的ERA-Interim再分析数据与中国气象局-上海台风研究所(China Meteorological Administration-Shanghai Typhoon Research Institute,CMA-STI)、美国联合台风警报中心(Joint Typhoo...  相似文献   

2.
登陆华南热带气旋强度变化与大尺度环流的关系   总被引:1,自引:0,他引:1  
应用UK再分析资料,采用合成分析方法,对比分析了登陆华南的登陆前迅速增强的TC(Rapid Intensifying TC,简称RITC)和迅速减弱的TC(Rapid FillingTC,简称RFTC)登陆前24h的大尺度环流背景特征。结果表明:从外流、入流强度和范围上看,RITC的低空入流和高空外流均明显强于RFTC,两类TC高空外流强度的差异比低空入流明显,RITC的次级环流径向范围大;从外流垂直伸展高度上看,RITC的平均外流主要集中在500hPa以上,而RFFC的平均外流比较分散,向下伸展到850hPa;从高空流场配置看,RITC上空除西北象限外均有较强外流,而RVrC仅在东北象限有较强外流,相应的RITC和RVrC的高空辐散在范围和强度上均有明显的差异,其中RITC的高空辐散明显强于RFTC;强烈的西南季风水汽输送是登陆华南的TC登陆前突然加强的先兆条件,RITC的对流活动明显比RFTc活跃;RITC的纬向风垂直切变比RFTC小,有利于RITC的强度增强。  相似文献   

3.
GRAPES-TCM对登陆热带气旋降水的预报及其性能评估   总被引:2,自引:0,他引:2  
黄伟  余晖  梁旭东 《气象学报》2009,67(5):892-901
基于GRAPES-TCM对2006年登陆热带气旋的降水预报结果,对该系统的24 h和6 h降水预报能力进行评估,并与基于卫星降水反演的外推预报(TRaP,Tropical Rainfall Potential)和相似台风降水预报技术(Analog Prediction Technique for Ty-phoon Precipitation,TAPT)进行对比.各方法对登陆热带气旋降水的综合预报能力通过分析预报和观测降水散点图、预报平均绝对误差(MAE)及均方根误差得到,降水分布型态的预报能力通过计算预报和观测降水的相关系数估计.此外,还分析了BS、POD、FAR、ETS评分等常用降水预报评估指标.结果显示,GRAPES-TCM的24 h降水预报绝对误差和均方根误差比TRaP和TAPT都大.但是,GRAPES-TCM的24 h降水预报与观测降水的相关系数远比TRaP和TAPT高.对其他指标的分析表明,GRAPES-TCM的漏报率远低于TRaP和TAPT,但3种方法的空报率在同一水平;对任一强度的降水,GRAPES-TCM的ETS评分总是最高,TRaP和TAPT对于大暴雨以上的强降水则几乎没有预报能力.对24小时内每6 h的降水预报,3种方法相对性能与24 h总降水相似.通过对各强度降水造成的降水量在总降水量中的百分比的对比分析,发现GRAPES-TCM预报强降水占总降水量的比重与观测十分接近.总体上说,GRAPES-TCM能较好地预报出登陆热带气旋降水的分布型态,对强降水的预报能力强于外推和相似预报方法,但是预报的降水量绝对误差偏大,尤其对暴雨级别以上降水,其BS值明显偏大.  相似文献   

4.
In this study, the dependence of tropical cyclone (TC) development on the inner-core structure of the parent vortex is examined using a pair of idealized numerical simulations. It is found that the radial profile of inner-core relative vorticity may have a great impact on its subsequent development. For a system with a larger inner-core relative vorticity/inertial stability, the conversion ratio of the diabatic heating to kinetic energy is greater. Furthermore, the behavior of the convective vorticity eddies is likely modulated by the system-scale circulation. For a parent vortex with a relatively higher inner-core vorticity and larger negative radial vorticity gradient, convective eddy formation and radially inward propagation is promoted through vorticity segregation. This provides a greater potential for these small-scale convective cells to self-organize into a mesoscale inner-core structure in the TC. In turn, convectively induced diabatic heating that is close to the center, along with higher inertial stability, efficiently enhances system-scale secondary circulation. This study provides a solid basis for further research into how the initial structure of a TC influences storm dynamics and thermodynamics.  相似文献   

5.
利用高分辨率中尺度WRF-ARW模式,进行云辐射强迫效应对热带气旋(Tropical Cyclone,TC)发展和结构影响的敏感性试验研究。结果表明,云辐射强迫效应主要通过改变TC云区的辐射分布影响对流活动,进而影响TC的发展和结构。在TC发展阶段,TC内区对流云区云顶的强烈辐射冷却作用和云层内部的辐射增温过程降低了TC中上层的静力稳定度,中下层的变化相对不明显。总体上考虑云辐射效应的试验更易激发出更多更强的对流活动,有利于TC的发展及TC尺度的增大。鉴于云辐射强迫对TC的影响,在TC数值预报中需要更加重视云辐射强迫效应。  相似文献   

6.
马圆  余锦华  方珂  董晓云 《气象科学》2020,40(2):264-269
采用1949—2016年7—8月美国国家环境预报中心及大气研究中心(NCEP/NCAR)再分析资料与中国气象局(CMA)上海台风所整编的热带气旋最佳路径数据集,研究大气环状模(Circumglobal Teleconnection,CGT)与中国大陆地区登陆热带气旋(Tropical Cyclone,TC)频数气候变化的关系。定义200 hPa经向风经验正交展开(EOF)的第一模态为CGT,其时间系数为环状模指数(Circumgolbal Teleconnection Index,CGTI)。CGT在北半球中纬度地区有5个异常中心,CGTI在1949—2016年呈明显的下降趋势,且存在一个2~3 a的周期振荡。CGT与大尺度环流异常存在密切的联系。研究表明:CGTI与中国大陆登陆TC频数气候变率具有显著的正相关,即CGTI表现为正异常时,登陆中国大陆的TC频数增加,反之减少。当CGT表现为正位相时,东亚副热带西风急流增强,急流南侧的反气旋切变增强,使TC登陆过程的活动区域200 hPa的辐散增强,此外,对流层高层Rossby波能量向南传播增强,形成波通量辐合,导致东风异常,产生了东风异常的引导气流和纬向风垂直切变,东风切变使得切变减小,增加了TC登陆中国大陆的可能性。  相似文献   

7.
热带气旋(TC)登陆时中心最大风速会发生明显衰减,研究此时的风压关系对风暴潮模拟和预测具有重要意义。采用中国气象局上海台风研究所数据资料,对1949—2016年风压关系序列的一致性进行检验,登陆风压关系公式拟合及误差分析。结果表明:1970s后风压关系发生变异;新公式在计算登陆风速时要优于原公式,尤其是大风速情况下;相同气压下台风在近岸时风速明显小于大洋中,且登陆时风速越大衰减越剧烈。  相似文献   

8.
An ocean general circulation model (OGCM) is used to demonstrate remote effects of tropical cyclone wind (TCW) forcing in the tropical Pacific. The signature of TCW forcing is explicitly extracted using a locally weighted quadratic least=squares regression (called as LOESS) method from six-hour satellite surface wind data; the extracted TCW component can then be additionally taken into account or not in ocean modeling, allowing isolation of its effects on the ocean in a clean and clear way. In this paper, seasonally varying TCW fields in year 2008 are extracted from satellite data which are prescribed as a repeated annual cycle over the western Pacific regions off the equator (poleward of 10°N/S); two long-term OGCM experiments are performed and compared, one with the TCW forcing part included additionally and the other not. Large, persistent thermal perturbations (cooling in the mixed layer (ML) and warming in the thermocline) are induced locally in the western tropical Pacific, which are seen to spread with the mean ocean circulation pathways around the tropical basin. In particular, a remote ocean response emerges in the eastern equatorial Pacific to the prescribed off-equatorial TCW forcing, characterized by a cooling in the mixed layer and a warming in the thermocline. Heat budget analyses indicate that the vertical mixing is a dominant process responsible for the SST cooling in the eastern equatorial Pacific. Further studies are clearly needed to demonstrate the significance of these results in a coupled ocean-atmosphere modeling context.  相似文献   

9.
利用中尺度数值模式设计一组高分辨率理想试验,采用位涡趋势方法定量诊断分析热带气旋在登陆我国华东沿海地形时,其运动发生的精细化变化以及不同因子的贡献。结果表明,平地的存在使得登陆热带气旋移速相对更快,当华东沿海地形存在时,热带气旋移速显著增大,这种增速现象主要是由于平地和地形所引起的非对称气流以及相应的引导气流变化所致,这很可能是导致预报路径误差的一个重要原因。平地试验中,陆地在热带气旋低层激发出中小尺度的非对称气流,与之不同的是,实际地形的加入激发出更大尺度并且更强的非对称偏南气流。位涡趋势方法的诊断结果表明,非引导效应总体而言对热带气旋运动贡献较小,这是因为这些因子相互抵消,但在不同的垂直层次上,不同的非引导因子贡献存在明显的差异。  相似文献   

10.
The purpose of this study is to investigate the effectiveness of two different ensemble forecasting (EF) techniques–the lagged-averaged forecast (LAF) and the breeding of growing modes (BGM). In the BGM experiments, the vortex and the environment are perturbed separately (named BGMV and BGME). Tropical cyclone (TC) motions in two difficult situations are studied: a large vortex interacting with its environment, and an apparent binary interaction. The former is Typhoon Yancy and the latter involves Typhoon Ed and super Typhoon Flo, all occurring during the Tropical Cyclone Motion Experiment TCM- 90. The model used is the baroclinic model of the University of New South Wales. The lateral boundary tendencies are computed from atmospheric analysis data. Only the relative skill of the ensemble forecast mean over the control run is used to evaluate the effectiveness of the EF methods, although the EF technique is also used to quantify forecast uncertainty in some studies. In the case of Yancy, the ensemble mean forecasts of each of the three methodologies are better than that of the control, with LAF being the best. The mean track of the LAF is close to the best track, and it predicts landfall over Taiwan. The improvements in LAF and the full BGM where both the environment and vortex are perturbed suggest the importance of combining the perturbation of the vortex and environment when the interaction between the two is appreciable. In the binary interaction case of Ed and Flo, the forecasts of Ed appear to be insensitive to perturbations of the environment and/or the vortex, which apparently results from erroneous forecasts by the model of the interaction between the subtropical ridge and Ed, as well as from the interaction between the two typhoons, thus reducing the effectiveness of the EF technique. This conclusion is reached through sensitivity experiments on the domain of the model and by adding or eliminating certain features in the model atmosphere. Nevertheless, the forecast tracks in some of the cases are improved over that of the control. On the other hand, the EF technique has little impact on the forecasts of Flo because the control forecast is already very close to the best track. The study provides a basis for the future development of the EF technique. The limitations of this study are also addressed. For example, the above results are based on a small sample, and the study is actually a simulation, which is different than operational forecasting. Further tests of these EF techniques are proposed.  相似文献   

11.
Global climate models predict that the increasing Amazonian-deforestation rates cause rising tempera- tures (increases of 1.8℃ to 8℃ under different conditions) and Amazonian drying over the 21st century. Observations in the 20th century also show that over the warmer continent and the nearby western South At- lantic Ocean, the lower-layer equatorial westerly wind (LLEWW) strengthens with the initiation of tropical cyclones (TCs). The warmer-continent-related LLEWW can result from the Coriolis-force-induced deflection of the cross-equatorial flow (similar to the well-known heat-island effect on sea breeze) driven by the enhanced land-sea contrast between the warmer urbanized continents and relatively cold oceans. This study focuses on the processes relating the warmer-continent-related LLEWW to the TC initiation and demonstrates that the LLEWW embedded in trade easterlies can directly initiate TCs by creating cyclonic wind shears and forming the intertropical convergence zone. In addition to this direct effect, the LLEWW combined with the rotating Earth can boost additional updraft vapor over the high sea-surface temperature region (factor 1), facilitating a surface-to-midtroposphere moist layer (factor 2) and convective instability (factor 3) followed by diabatic processes. According to previous studies, the diabatic heating in a finite equatorial region also activates TCs (factor 4) on each side of the Equator with weak vertical shear (factor 5). Factors 1-5 are favorable conditions for the initiation of severe TCs. Statistical analyses show that the earliest signal of sustained LLEWW not only leads the earliest signal of sustained tropical depression by >3 days but also explains a higher percentage of total variance.  相似文献   

12.
The present study discovered a strong negative correlation between Korea-landfalling tropical cyclone (TC) frequency and Pacific Decadal Oscillation (PDO) in the summer. Thus, the present study selected years that had the highest PDO index (positive PDO years) and years that had the lowest PDO index (negative PDO years) to analyze a mean difference between the two phases in order to determine the reason for the strong negative correlation between the two variables. In the positive PDO years, TCs were mainly generated in the southeastern part of the western North Pacific, and lower TC passage frequency was found in most regions in the mid-latitude in East Asia. Moreover, a slightly weaker TC intensity than that in the negative PDO years was revealed. In order to determine the cause of the TC activity revealed in the positive PDO years, 850 hPa and 500 hPa stream flows were analyzed first. In the mid-latitude region in East Asia, anomalous huge cyclonic circulations were strengthened, while anomalous anticyclonic circulations were strengthened in the low-latitude region. Accordingly, Korea was being influenced by anomalous northwesterlies, which played a role in blocking TCs from moving northward to Korea. The results of analysis on 850 hPa air temperature, precipitation, 600 hPa relative humidity, and sea surface temperature (SST) showed that negative anomalies were strengthened in the northwest region in the western North Pacific while positive anomalies were strengthened in the southeast region. The atmospheric and oceanic environments were related to frequent occurrences of TCs in the southeast region in the western North Pacific during the positive PDO years. All factors of air temperature, precipitation, 600 hPa relative humidity, and SST revealed negative (positive for vertical wind shear) anomalies near Korea, so that atmospheric and oceanic environments were formed that could rapidly weaken TC intensity, even if the TCs moved northward to Korea in the positive PDO years.  相似文献   

13.
Variable thicknesses in the lowest half-ηmodel level (LML) are often used in atmospheric models to compute surface diagnostic fields such as surface latent and sensible heat fluxes.The effects of the LML on simulated tropical cyclone (TC)evolution were investigated in this study using the Weather Research and Forecasting (WRF) model.The results demonstrated notable influences of the LML on TC evolution when the LML was placed below 12 m.The TC intensification rate decreased progressively with a lowering of the LML,but its ultimate intensity change was relatively small.The maximum 10-m winds showed different behavior to minimum sea level pressure and azimuthally-averaged tangential winds,and thus the windpressure relationship was changed accordingly by varying the LML.The TC circulation was more contracted in association with a higher LML.Surface latent heat fluxes were enhanced greatly by elevating the LML,wherein the wind speed at the LML played a dominant role.The changes in the wind speed at the LML were dependent not only on their profile differences,but also the different heights they were taken from.Due to the enhanced surface heat fluxes,more intense latent heat release occurred in the eyewall,which boosted the storm's intensification.A higher LML tended to produce a stronger storm,and therefore the surface friction was reinforced,which in turn induced stronger boundary layer inflow together with increased diabatic heating.  相似文献   

14.
When tropical cyclones (hereafter referred as TCs) are over the ocean, surface friction plays a dual role in the development of TCs. From the viewpoint of water vapor supply, frictional convergence and Ekman pumping provide a source of moisture for organized cumulus convection and is propitious to the spin-up of TCs. On the other hand, surface friction leads to a dissipation of kinetic energy that impedes the intensification of TCs. Which role is dominant in the developing stage of TCs is a controversial issue. In the present work, the influence of surface friction on the growth of TCs is re-examined in detail by conducting two sets of numerical experiments initialized with different cyclonic disturbances. Results indicate that, because of the inherent complexities of TCs, the impact of surface friction on the evolution of TCs can not be simply boiled down to being positive or negative. In the case that a TC starts from a low-level vortex with a warm core, surface friction and the resultant vertical motion makes an important contribution to the convection in the early developing stage of the TC by accelerating the build-up of convective available potential energy (CAPE) and ensuring moisture supply and the lifting of air parcels. This effect is so prominent that it dominates the friction-induced dissipation and makes surface friction a facilitative factor in the spin-up of the TC. However, for a TC formed from a mesoscale convective vortex (MCV) spawned in a long-lasting mesoscale convective system (MCS), the initial fields, and especially the low-level humidity and cold core, enable the prerequisites of convection (i.e., conditional instability, moisture, and lifting), to be easily achieved even without the help of boundary-layer pumping induced by surface friction. Accordingly, the reliance of the development of TCs on surface friction is not as heavy as that derived from a low-level vortex. The positive effect of surface friction on the development of TCs realized through facilitating favorable conditions for convection is nearly cancelled out by the friction-induced dissipation. However, as SST is enhanced in the latter case, the situation may be changed, and different development speeds may emerge between model TCs with and without surface friction considered. In short, owing to the fact that TC development is a complicated process affected by many factors such as initial perturbations, SST, etc., the importance of surface friction to the intensification of TCs may vary enormously from case to case.  相似文献   

15.
北上热带气旋气候特征分析   总被引:2,自引:1,他引:2  
北上热带气旋是影响我国华北和东北地区的重要天气系统,其带来的大风和暴雨,常常造成我国北方地区的风灾和水灾。利用建国以来56 a的气象资料,对影响我国的北上热带气旋进行气候分析。结果表明:从时间上看,平均每年约有3个北上热带气旋,最早出现在5月下旬,最晚出现在11月中旬,其中以7月和8月为最多;每年6—9月为北上热带气旋登陆季节,7月和8月登陆的热带气旋占85%。从强度上看,能够到达北方的热带气旋一般都是较强的热带气旋,在进入北上热带气旋定义区后,总体强度明显减弱,但在进入黄渤海时仍能够达到台风的强度;与北上热带气旋相比,北上登陆热带气旋的强度更大。统计分析发现,在辽宁和华北登陆的热带气旋,其强度大于在山东半岛登陆的热带气旋。北上登陆热带气旋和北转向、中转向的热带气旋一般均能产生暴雨和大风。  相似文献   

16.
The monsoon trough(MT) is one of the large-scale patterns favorable for tropical cyclone(TC) formation over the western North Pacific(WNP). This study re-examines TC formation by treating the MT as a large-scale background for TC activity during May–October. Over an 11-year(2000–10) period, 8.3 TC formation events on average per year are identified to occur within MTs, accounting for 43.1% of the total TC formation events in the WNP basin. This percentage is much lower than those reported in previous studies. Further analysis indicates that TC formation events in monsoon gyres were included at least in some previous studies. The MT includes a monsoon confluence zone where westerlies meet easterlies and a monsoon shear line where the trade easterlies lie north of the monsoon westerlies. In this study, the large-scale flow pattern associated with TC formation in the MT is composited based on the reference point in the confluence zone where both the zonal and meridional wind components are zero with positive vorticity. While previous studies have found that many TCs form in the confluence zone, the composite analysis indicates that nearly all of the TCs formed in the shear region, since the shear region is associated with stronger low-level relative vorticity than the confluence zone. The prevailing easterly vertical shear of zonal wind and barotropic instability may also be conducive to TC formation in the shear region, through the development of synoptic-scale tropical disturbances in the MT that are necessary for TC formation.  相似文献   

17.
Tropical cyclone (TC) Nargis (2008) made landfall in Myanmar on 02 May 2008, bringing a storm surge, major flooding, and resulting in a significant death toll. TC Nargis (2008) displayed abnormal features, including rare eastward motion in its late stage, rapid intensification before landing. Using reanalysis data and a numerical model, we investigated how a low-latitude westerly wind modulated TC Nargis’ (2008) track and provided favorable atmospheric conditions for its rapid intensification. More importantly, we found a possible counterbalance effect of flows from the two hemispheres on the TC track in the Bay of Bengal. Our analysis indicates that a strong westerly wind burst across the Bay of Bengal, resulting in TC Nargis’ (2008) eastward movement after its recurvature. This sudden enhancement of westerly wind was mainly due to the rapidly intensified mid-level cross-equatorial flow. Our results show that a high-pressure system in the Southern Hemisphere induced this strong, mid-level, cross-equatorial flow. During the rapid intensification period of TC Nargis (2008), this strong and broad westerly wind also transported a large amount of water vapor to TC Nargis (2008). Sufficient water vapor gave rise to continuously high and increased mid-level relative humidity, which was favorable to TC Nargis’ (2008) intensification. Condensation of water vapor increased the energy supply, which eventuated the intensification of TC Nargis (2008) to a category 4 on the Saffir-Simpson scale.  相似文献   

18.
应用2006-2010年69个热带气旋1 295个时次的红外云图等资料,提取了1 295个TC的外缘线,用圆规法计算了这些外缘线的分形维数。将这1 295个分形维数自小到大排列,按等频数规则,将1 295个数分为5类,分别记为A、B、C、D、E类。A、B、C、D、E类分形维数的均值分别为1.21、1.26、1.29、1.33、1.40。然后寻找与这5个均值最接近的样本。这5个样本的红外云图和TBB等值线分布图显示:随着分形维数的加大,边缘线的非光滑程度逐渐加大,图形与准圆形的偏离程度逐渐加大,TC空间结构的复杂程度也逐渐加大。说明外缘线的分形维数可以在一定程度上定量表征TC的复杂程度。  相似文献   

19.
1979—2012年西北太平洋存在70个形成于0°~5°N的低纬度地区的热带气旋(TC),占TC总量的8%,其中达到台风等级的个数占64%。而针对此类缺少一定科氏力作用而形成的罕见TC生成的研究相对较少。本文利用JTWC的TC最佳观测资料、ERA-Interim再分析资料,以及NOAA-OISST海温资料,以西北太平洋近赤道TC为研究对象,统计诊断了其年际、年代际、季节分布特征,分析了其大尺度环境背景场,重点探讨了近赤道TC生成的影响因子。研究结果表明,近赤道TC具有明显的年际与年代际变化,并且近赤道TC具有与西北太平洋总TC恰好相反的季节变化。近赤道TC生成的大尺度环境背景场是东北冬季风与其在近赤道地区偏转形成的西北风之间的气旋性环流。对流层低层的绝对涡度动力项与对流层中层的湿度热量项是近赤道TC生成的主要贡献因子,并且相对于5°~10°N生成的TC,近赤道TC对对流层低层的正涡度与对流层中层的湿度条件的要求更高。  相似文献   

20.
本文利用ERA5 1979-2019年逐月大气再分析资料计算南北印度洋热带气旋生成指数,并和IBTrACS观测数据进行比较,探讨用热带气旋生成指数研究南北印度洋热带气旋变化特征的适用性.研究发现热带气旋生成指数能较好地刻画南北印度洋热带气旋的空间分布特征、北印度洋热带气旋个数月变化的双峰结构,以及南印度洋比北印度洋热带气旋发生概率高等特征.最新的IBTrACS v4.0观测资料显示,40年来北印度洋热带气旋每年总生成个数平均每10年增加1.3个,频数的增加主要来源于热带低压和热带风暴,而南印度洋热带气旋每年总生成个数每10年减少2.8个.热带气旋生成指数能很好地描述北印度洋热带气旋生成个数的上升趋势,但对南印度洋热带气旋生成个数趋势的刻画与观测不一致,可能原因需要进一步深入研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号