首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new OH maser was detected in January 2008 toward the infrared source IRAS 05338-0624 in the dark cloud L1641N. The observations were carried out on the Nan cay Radio Telescope (France) in the 1667 and 1665 MHz OH lines. In the spectra of both lines, thermal OH emission from the surrounding molecular cloud is present at radial velocities V LSR = 6–9 km/s. In addition, a narrow maser feature is present in both lines at V LSR = 2 km/s in the profiles obtained on January 7, 2008; the peak flux densities at 1667 and 1665 MHz are 1.5 and 0.4 Jy, respectively. No OH maser emission was detected in February–July 2008. Then, a maser feature was again observed in the 1665 MHz line on August 20, 2008, at the same velocity as in January, V LSR = 2 km/s, with a peak flux density of 0.4 Jy. No 1667 MHz counterpart was observed with an upper limit of ~0.1 Jy. Emission in both OH lines was again absent on September 18. The source was also observed in the H2O line at λ = 1.35 cm on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) on February 7 and 13, 2008. In both cases, a maser feature was detected at V LSR = 9 km/s, with peak flux densities of 35 and 15 Jy, respectively. After the its apparent absence in April, H2O maser emission reappeared on May 14, 2008, at V LSR = 7 km/s with a flux density of about 15 Jy. The history of previous observations of the object in the OH and H2O lines is traced. The maser displays strong and rapid flux variability in the lines of both molecules, as is typical of young low-luminosity stellar objects at early stages of their evolution.  相似文献   

2.
Results of a study of a strong flare of H2O maser emission in the star-forming region Sgr B2(M) in 2004 are reported. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory. The main emission, with its flux density reaching 3800 Jy, was concentrated in a narrow radial-velocity interval (about 3 km/s) and was most likely associated with the compact group r, while the emission at VLSR > 64 km/s came from group q. After 1994, the variations of the H2O maser emission in Sgr B2(M) became cyclic with a mean period of 3 years.  相似文献   

3.
The structure of the ejector region in the active star-forming region Orion KL has been studied over a broad dynamic range with a high angular resolution of 0.1 milliarcsec, or 0.05 AU. The line profile of the H2O supermaser emission has broad wings and can be represented as a superposition of two Gaussians with frequency widths Δf1=31 kHz and Δf2=163 kHz. The line intensities are I1≈3×105 Jy/beam and I2≈400 Jy/beam, and the brightness temperatures, Tb1≈5×1016 K and Tb2≈6×1014 K. The broadband ejector emission is determined by a rotating bipolar outflow with a rotational period of 5 months. The ejector emission in the 31-kHz component at a velocity of 7.64 km/s is amplified by more than two orders of magnitude by the surrounding envelope. The maser amplification regime is partially saturated.  相似文献   

4.
Results of monitoring the H2O and OH masers in W44C, located near the cometary HII region G34.3+0.15, are reported. Observations in the water-vapor line at λ = 1.35 cm were carried out on the 22-meter radio telescope of the Pushchino Radio Astronomy Observatory (Russia) from November 1979 to March 2011, and in the hydroxyl lines at λ = 18 cm on the large Nançay radio telescope (France). Activity maxima and minima of the water maser alternated. The average period of the activity is ~ 14 years, consistent with results obtained earlier for a number of other sources associated with regions of active star formation. In periods of enhanced maser activity, two series of strong H2O maser flares were observed, which were related to two different clusters of maser spots located at the front of a shock at the periphery of the ultracompact region UH II. These series of flares may be associated with cyclic activity of the protostellar object in UH II. In the remaining time intervals, there were mainly short-lived flares of single features. The Stokes parameters for the observations in the hydroxyl lines were determined. Zeeman splitting was observed in the profile of the 1667 MHz OH main line at a velocity of 58.5 km/s, and was used to estimate the intensity of the line-of-sight component of the magnetic field (1.2 mG).  相似文献   

5.
We present coordinated synchronous observations of Active Galactic Nuclei in the radio and optical, aimed at searching for fast (intraday) flux variations and possible correlations in the flux variations in different wavebands. Our observations were performed with the 22-m radio telescope of the Crimean Astrophysical Observatory at 22.2 and 36.8 GHz and the Zeiss-1000 reflector of the Special Astrophysical Observatory in the R filter, using a CCD photometer. We performed five observing runs of 7–10 nights each in 2004–2006. We obtained radio and optical light curves for the variable extragalactic radio sources DA 55, 1633+382, 2134+004, 2145+067, and 2251+158. We detected short-duration flares of DA 55 and 2134+004 in the R band with variations of 0.2 m within about 15 minutes. The other sources did not show any considerable flux variations. The radio flux variations of DA 55 and 2134+004 reached 1.5 Jy in about 15 minutes, and those of 2145+067 reached 2 Jy in 2 hours. We observed chaotic flux variations in 2251+158, by 2–2.5 Jy in half an hour. We detected no correlation between the radiation in the optical and radio.  相似文献   

6.
We analyze photometric and spectroscopic observations of the close binary system V664 Cas. All the characteristics of its radiation are consistent with the star being a cataclysmic variable with powerful reflection effects. The orbital period is refined (P=0.5816475 d) and the ephemerides of the system determined. The U, B, V, R light curves of V664 Cas display sinusoidal variations with similar amplitudes near Δm=1.1m. This suggests that a hot spot on the surface of the secondary always dominates the optical radiation of the system. The spectra contain emission lines, two-peaked hydrogen lines, and narrow lines of helium and heavy elements in high ionization states, whose intensities vary synchronously with the brightness. The HeII λ4686 Å line has broad absorption wings that form in the atmosphere of the O subdwarf. The mass function, f(m)=0.007M, is the lowest among all precataclysmic variables: the mass of the secondary exceeds the mass of the primary by more than a factor of 1.6. A full set of fundamental parameters for V664 Cas is determined based on modeling of the spectra and light curves, taking into account reflection effects in the system. Most of the emission lines are formed under conditions of appreciable deviations from local thermodynamic equilibrium. The possibility of carrying out correct modeling of the Balmer-line profiles assuming the stellar radiation is absorbed in a planetary nebula is demonstrated.  相似文献   

7.
The results of monitoring the H2O maser observed toward the region GH2O 092.67+03.07 (IRAS 21078+5211) located in the Giant Molecular Cloud Cygnus OB7 are presented. The observations were carried out with the 22-m radio telescope of the Pushchino Radio Astronomy Observatory in 2006–2017. Strong flares of the H2O maser emission with flux densities up to 19 800 Jy were detected. The flares exhibited both global (over the source) and local characters. All the flares were accompanied by strong variations in the H2O spectra within the corresponding radial-velocity ranges. Individual H2O components form both compact clusters and chains 1–2-AU long. Analysis of the variations of the fluxes, radial velocities, and line shapes of features during the flares showed that the medium may be strongly fragmented, with small-scale turbulent motions taking place in the H2Omaser region.  相似文献   

8.
Multi-epoch observations with high spectral resolution acquired in 1998–2008 are used to study the time behavior of the spectral-line profiles and velocity fields in the atmosphere and circumstellar shell of the post-AGB star V448 Lac. Asymmetry of the profiles of the strongest absorption lines with lower-level excitation potentials χ low < 1 eV and time variations of these profiles have been detected, most prominently the profiles of the resonance lines of BaII, YII, LaII, SiII. The peculiarities of these profiles can be explained using a superposition of stellar absorption line and shell emission lines. Emission in the (0; 1) 5635 Å Swan system band of the C2 molecule has been detected in the spectrum of V448 Lac for the first time. The core of the Hα line displays radial-velocity variations with an amplitude of ΔV r ≈ 8 km/s. Radial-velocity variations displayed by weak metallic lines with lower amplitudes, ΔV r ≈ 1–2 km/s, may be due to atmospheric pulsations. Differential line shifts, ΔV r = 0–8 km/s have been detected on various dates. The position of the molecular spectrum is stationary in time, indicating a constant expansion velocity of the circumstellar shell, V exp = 15.2 km/s, as derived from the C2 and NaI lines.  相似文献   

9.
We report H2O maser line observations of the bright-rimmed globule IC 1396 N using a ground-space interferometer with the 10-m RadioAstron radio telescope as the space-based element. The source was not detected on projected baselines >2.3. Earth diameters, which indicates a lower limit on the maser size of L > 0.03 AU and an upper limit on the brightness temperature of 6.25 × 1012 K. Fringe-rate maps are prepared based on data from ground-ground baselines. Positions, velocities and flux densities of maser spots were determined. Multiple low-velocity features from ?4.5 km/s to +0.7 km/s are seen, and two high-velocity features of V LSR = ?9.4 km/s and V LSR = +4.4 km/s are found at projected distances of 157 AU and 70 AU, respectively, from the strongest low-velocity feature at V LSR = ~+0.3 km/s. Maser components from the central part of the spectrum fall into four velocity groups but into three spatial groups. Three spatial groups of low-velocity features detected in the 2014 observations are arranged in a linear structure about ~200 AU in length. Two of these groups were not detected in 1996 and possibly are jets which formed between 1996 and 2014. The putative jet seems to have changed direction in 18 years, which we explain by the precession of the jet under the influence of the gravity of material surrounding the globule. The jet collimation can be provided by a circumstellar protoplanetary disk. There is a straight line orientation in the “V LSR-Right Ascension” diagram between the jet and the maser group at V LSR = ~+0.3 km/s. However, the central group with the same position but at the velocity V LSR ~ ?3.4 km/s falls on a straight line between two high-velocity components detected in 2014. Comparison of the low-velocity positions from 2014 and 1996, based on the same V LSR-Right Ascension diagram for low-velocity features, shows that the majority of the masers maintain their positions near the central velocity V LSR = ~0.3 km/s during the 18 year period.  相似文献   

10.
Radio interferometric observations of an H2O maser flare in the Orion Nebula at epoch 1982.9 have been used to determine the flare’s spatial structure. Antennas in the Crimea, Effelsberg, and Onsala were used. The emission region consists of three groups of components. The angular sizes of the components are 0.2–0.9 mas, and the widths of the emitted lines are 0.2–0.7 km/s. The velocities of the components are correlated with their relative positions, which correspond to expanding concentric rings. Assuming a 1 M protostar in a Keplerian approximation, the radius of the inner ring R is 15 AU, the velocity of its rotation Vrot is 8.98 km/s, and the radial component of the velocity Vrad is 1.79 km/s. For the outer ring, R=15.7 AU, Vrot=8.79 km/s, and Vrad=2.61 km/s.  相似文献   

11.
We have studied the variability of the Hβ line and the adjacent continuum in the spectrum of the Seyfert galaxy Ark 120, based on spectral observations of the galaxy’s nucleus obtained in the Crimea in 1992–2005, supplemented by published data for 1988–1996. Irregular variability on various timescales (years to days) can be accompanied by periodic brightness variations in both the continuum and the Hβ line, with a period of P ~ 430 days and an amplitude of Δm ~ 0.2 m in the continuum, which were traced for more than 13 cycles. In total, in 1988–2005, the flux variations in the line lag those in the continuum by 55 ± 9 days if calculated from the peak of the cross correlation function, or by 72 ± 7 days, if calculated from the centroid of the CCF. The delay is correlated with the continuum brightness, increasing when the continuum flux increases. The Hβ line profiles indicate both a high degree of diversity and the presence of features that recur after various extended time intervals. Analysis of the evolution of the differences between each individual normalized line profile and the mean normalized profile indicates systematic motion of excesses relative to the average profile from negative to positive radial velocities. In contrast, parts of the Hβ line with low radiation relative to the mean normalized profile evolve in the opposite direction (from the red to the blue Hβ wing). This pattern is also typical for the rotating broad-line region, if this region has the form of a disk. The rotation period exceeds 9000–10000 days, or 25–27 years. The size of the broad-line region calculated form this period corresponds to a reverberation time of no fewer than 30 days, consistent with the results of cross-correlation analysis.  相似文献   

12.
To determine the parameters of the accretion disk and shock-wave region responsible for the formation of the orbital peak in the light curve of the binary system OY Car (an SU UMa-type variable), we have analyzed its U BV R and JK light curves using two gas-dynamical models with different regions of shock interaction: one with a hot line along the stream from the Lagrange point L1 and one with a hot spot on the accretion disk. The hot-line model can better describe the quiescent state of the system: the maximum X2 for the optical light curves does not exceed 207, whereas the minimum residual for the hot-spot model is X2>290. The shape of the eclipse is almost identical in both models; the main differences are in interpreting out-of-eclipse portions of the light curves, whose shape can varyin the transition from one orbital cycle to another. The hot-spot model is not able to describe variations of the system’s brightness at orbital phases ?~0.1–0.6. The rather complex behavior of the observed flux in this phase interval can be explained in the hot-line model as being due to variations of the temperature and size of the system. Based on the analysis of a sequence of 20 B curves of OY Car, we conclude that the flux variations in the primary minimum are due to variations of the luminosity of the accretion disk, whereas the flux variability in the vicinity of the orbital peak is due to the combined effect of the radiation of the disk and hot line. The JK light curves of OY Car in the quiescent state and during a small flare also indicate preference for the hot-line model, since the primaryminimum and the flux near quadratures calculated using the hot-spot model are not consistent with the observations.  相似文献   

13.
It is shown that the approximation of the complex, tidally distorted shape of a star as a circular disc with local line profiles and a linear limb-darkening law, which is usually applied when deriving equatorial stellar rotation velocities from line profiles, leads to overestimation of the equatorial velocity V rot sin i and underestimation of the component mass ratio q = M x /M v . A formula enabling correction of the effect of these simplifying assumptions on the shape of a star is used to re-determine the mass ratios q and the masses of the black holes M x and visual components M v in low-mass X-ray binary systems containing black holes. Taking into account the tidal–rotational distortion of the stellar shape can significantly increase the mass ratios q = M x /M v , reducing M v , while M x changes only slightly. The resulting distribution of M v attains its maximum near M v ? 0.35M , in disagreement with the results of population synthesis computations realizing standard models for Galactic X-ray novae with black holes. Possible ways to overcome this inconsistency are discussed. The derived distribution of M x also differs strongly from the mass distribution for massive stars in the Galaxy.  相似文献   

14.
This work continues earlier statistical analyses of catalogued proton events in cosmic rays. The spectra of proton enhancements identified from the logarithm of the ratio of the proton fluxes with energies exceeding 100 and 10 MeV, δ = log(F 100/F 10), are studied focusing on 172 powerful events with favorable conditions for escaping from the corona and subsequent propagation in the interplanetary space. The δ distribution for the flares is Gaussian, with a comparatively weak spread in δ. The distribution maximum corresponds to an excess of the 10 MeV flux over the 100 MeV flux by a factor of 30. The fact such a frequent spectrum does exist supports the idea that both soft and hard protons are efficiently accelerated, probably by a single mechanism that operates during the explosive phases of the flares. The sizes of the loops of M2-X4 flares observed by the Yohkoh Hard X-Ray Telescope at energies exceeding 50 keV indicate low heights for the main acceleration regions. There is some excess over the Gaussian distribution for “softer” events. Some post-eruptive phenomena can be clearly distinguished in these events, and they display a correlation between δ and the total flare duration. Thus, there are two sources of the particle acceleration operating at low and high altitudes during the explosive and post-eruptive phases of the solar flares, respectively. The second source, which is manifested through some prolonged flares and filament-ejection phenomena, accelerates protons only to energies of 10–30 MeV.  相似文献   

15.
RXTE observations of the X-ray binary systems SXP 138, GX-304, and γ Cas in 1997–2011 have shown for the first time that these objects (X-ray binaries with Be donors) display X-ray flux variations on timescales of ~1000 days. This timescale is about 10 times longer than their orbital periods, and is comparable to the total time of the observations. The observed variations are apparently not strictly periodic and represent stochastic variability, as is characteristic of such systems in the optical. γ Cas is considered as an example. The series of optical observations of this system available in the AAVSO database covers 78 years, and is much longer than the timescale of the variability studied. Our analysis of this series has shown that γ Cas variability on a timescale of tens of years is predominantly stochastic with a power-law spectrum.  相似文献   

16.
We present the results of our CCD photometric and moderate-dispersion spectroscopic observations of the binary system V4641 Sgr, which contains a black hole of mass ≈9.5M and a normal B9III star. The photometric light curve reveals an ellipticity effect with very high amplitudes in V and R, 0.40m and 0.37m, and the color curve shows that the surface temperature is nonuniform. All this testifies to tidal distortion of the normal star's surface due to the massive companion and to a high inclination of the orbit to the line of sight. In June and July 2002, during quiescence, we obtained data during three flares with amplitudes up to 0.26m. In particular, spectroscopic observations were acquired near the time of the black hole's inferior conjunction. One hour before conjunction, a depression by EW=0.5 Å was observed in the red wing of the Hα absorption line, interpreted as absorption by gas flowing in the direction from the observer toward the normal star. This flow is apparently associated with a rarefied gas disk around the black hole, and the conjunction grazes the stellar surface if the orbital inclination is close to 70.7°. The maximum velocity along a circular Keplerian orbit is 650 km/s at a distance of R=0.15–0.20a from the black hole (where a is the component separation). Thus, we find the mass of the black hole to be M BH =7.1–9.5M, confirming the model of Orosz et al. (2001).  相似文献   

17.
Studies of the extreme solar proton event of January 20, 2005 intensified the contest over of a long-standing problem: are solar cosmic rays arriving at the Earth accelerated by solar flares or by shocks preceding rapidly moving coronal mass ejections? Among the most important questions is the relationship between the energy spectra of the solar cosmic rays and the frequency spectra of flare microwave bursts. Some studies of previous solar-activity cycles have shown that such a relationship does exist, in particular, for protons with energies of tens of MeV. The present work analyzes this relation using data for 1987–2008. For flare events observed in the western half of the disk, there is a significant correlation between the index δ, which is equivalent to the power-law index of the integrated energy spectrum of 10–100 MeV protons detected near the Earth’s orbit, and radio burst parameters such as a ratio of peak fluxes S at two frequencies (for example, at 9 and 15 GHz) and a microwave peak frequency f m . Proton fluxes with hard (flat) energy spectra (δ ≤ 1.5) correspond to hard microwave frequency spectra (S 9/S 15 ≤ 1 and f m ≥ 15 GHz), while flares with soft radio spectra (S 9/S 15 ≥ 1.5 and f m ≤ 5 GHz) result in proton fluxes with soft (steep) energy spectra (δ ≥ 1.5–2). It is also shown that powerful high-frequency bursts with the hardest radio spectra (f m ≈ 30 GHz) can point at acceleration of significant proton fluxes in flares occurring in strong magnetic fields. These results argue that solar cosmic rays (or at least their initial impulses) are mainly accelerated in flares associated with impulsive and post-eruptive energy release, rather than in shocks driven by coronal mass ejections.  相似文献   

18.
We have obtained the stellar velocity dispersion in three mutually perpendicular directions in the halos and cores of clusters as a function of time for several non-stationary open-cluster models. During the dynamical evolution of the open-cluster models, the velocity dispersions undergo oscillations that do not decay during 5–10 violent-relaxation timescales, τ vr . We estimated the time for synchronization of the rotation of the open-cluster models and their motion around the center of the Galaxy, t s , which, depending on the model parameters, is t s ? (5–27)τ vr . Synchronization mechanisms for the models are discussed. The disruption of the systems in the force field of the Galaxy is strongly affected by tidal friction. We have also estimated the time for the formation of a spherical stellar-velocity distribution in the cluster models, t σ ? (6 ? 25)τ vr . The impact of instability in the stellar motions in a cluster on the formation of a spherical velocity distribution in the open-cluster models is discussed. We have noted a tendency for a weakening of the dependence of the coarse phase density of the cluster on small initial perturbations of the stellar phase coordinates in the model cluster cores for times about five times longer than the violent-relaxation time.  相似文献   

19.
We have calculated profiles of the CIV 1550, NV 1240, OVI 1035, and SiIV 1400 resonance doublets for a plane-parallel shock viewed at various angles. Calculations were performed for the range of preshock gas velocities V0 and gas densities ρ0 appropriate for classical T Tauri stars. The parameters of accretion shocks in young stars can be determined by comparing the calculated and observed profiles of the studied lines and their relative intensities. It is not possible to derive the parameters of the accreting gas from the line profiles without knowing the geometry of the accretion zone. The relation I v (µ,V0,ρ0) for a plane shock, where I v is the intensity μ=cosθ, can be used to determine the accretion parameters by either choosing a geometry for the radiating region or using a technique similar to Doppler tomography. The results obtained for DR Tau, T Tau, and RY Tau indicate that, in contrast to current concepts, the inner regions of the accretion disk are not disrupted by the magnetic field of the star, and the disk reaches the stellar surface. As a result, only a small fraction of the accreted matter passes through the shock and falls onto the star.  相似文献   

20.
AIA/SDO data in the 193 Å channel preceding a coronal mass ejection observed at the solar limb on June 13, 2010 are used to simultaneously identify and examine two different shock fronts. The angular size of each front relative to the CME center was about 20°, and their propagation directions differed by ≈25° (≈4° in position angle). The faster front, called the blast shock, advanced the other front, called the piston shock, by R ≈ (0.02-0.03)R⊙ (R⊙ is the solar radius) and had a maximum initial speed of VB ≈ 850 km/s (with VP ≈ 700 km/s for the piston shock). The appearance and motion of these shocks were accompanied by a Type II radio burst observed at the fundamental frequency F and second harmonic H. Each frequency was split into two close frequencies f1 and f2 separated by Δf = f2 - f1 ? F, H. It is concluded that the observed frequency splitting Δf of the F and H components of the Type II burst could result from the simultaneous propagation of piston and blast shocks moving with different speeds in somewhat different directions displaying different coronal-plasma densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号