首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The northern South China Sea(SCS) is frequently affected by typhoons. During severe storm events, wave-current interactions produce storm surges causing enormous damage in the path of the typhoon. To evaluate the influence of wave-current interactions on storm surge, we used a coupled ocean-atmospherewave-sediment transport(COAWST) modeling system with radiation-stress and vortex-force formulations to simulate two typically intense tropical storms that invaded the SCS, namely Typhoons Nuri(2008) and Hagupit(2008), and compared results with observations from the Hong Kong Observatory. Both radiationstress and vortex-force formulations significantly improved the accuracy of the simulation. Depending on which typhoon and the topography encountered, the influence of surface waves on the oceanic circulation showed different characteristics, including the differences of range and intensity of storm surge between vortex-force and radiation-stress experiments. During typhoon landing, strong sea-surface elevation in concert with wave set-up/set-down caused the adjustment of the momentum balance. In the direction perpendicular to the current, but especially in the cross-shore direction, the pressure gradient and wave effects on the current dominated the momentum balance.  相似文献   

2.
A typhoon-induced storm surge simulation system was developed for the Qingdao area, including a typhoon diagnostic model for the generation of wind and pressure fields and a 2D Advanced Circulation (ADCIRC) model for simulating the associated storm surge with a 200 m resolution along the Qingdao coastline. The system was validated by an extreme surge event Typhoon Mamie (8509) and the parameters of Typhoon Mamie were used to investigate the sensitivity of typhoon paths to Qingdao storm surges with four selected paths: the paths of Typhoons Mamie (8509), Opal, 3921 and 2413, the selection being made according to their relative position to Qingdao. Experiments based on the Typhoon Mamie (8509) storm surge were also conducted to study the possible influences of future climate changes, including the sea level rise and sea surface temperature (SST) rise, on storm surges along the Qingdao coast. Storm surge conditions under both present day and future (the end of the 21st century) climate scenarios associated with the four selected paths were simulated. The results show that with the same intensity, when typhoons follow the paths of 3921 and 2413, they would lead to the most serious disasters in different areas of Qingdao. Sea level and SST affect storm surges in different ways: sea level rise affects storm surge mainly through its influence on the tide amplitude, while the increased SST has direct impact on the intensity of the surges. The possible maximum risk of storm surges in 2100 in the Qingdao area caused by typhoons like Mamie (8509) was also estimated in this study.  相似文献   

3.
Dike failure and marine losses are quite prominent in Laizhou Bay during the period of cold wave storm surges because of its open coastline to the north and flat topography. In order to evaluate the intensity of cold wave storm surge, the hindcast of marine elements induced by cold waves in Laizhou Bay from 1985 to 2004 is conducted using a cold wave storm surge–wave coupled model and the joint return period of extreme water level, concomitant wave height, and concomitant wind speed are calculated. A new criterion of cold wave storm surge intensity based on such studies is developed. Considering the frequency of cold wave, this paper introduces a Poisson trivariate compound reconstruction model to calculate the joint return period, which is closer to the reality. By using the newly defined cold wave storm surge intensity, the ‘cold wave grade' in meteorology can better describe the severity of cold wave storm surges and the warning level is well corresponding to different intensities of cold wave storm surges. Therefore, it provides a proper guidance to marine hydrological analysis, disaster prevention and marine structure design in Laizhou Bay.  相似文献   

4.
When investigating the long-term variation of wave characteristics as associated with storm surges in the Bohai Sea, the Simulating Waves Nearshore(SWAN) model and ADvanced CIRCulation(ADCIRC) model were coupled to simulate 32 storm surges between 1985 and 2014. This simulation was validated by reproducing three actual wave processes, showing that the simulated significant wave height(SWH) and mean wave period agreed well with the actual measurements. In addition, the long-term variations in SWH, patterns in SWH extremes along the Bohai Sea coast, the 100-year return period SWH extreme distribution, and waves conditional probability distribution were calculated and analyzed. We find that the trend of SWH extremes in most of the coastal stations was negative, among which the largest trend was-0.03 m/a in the western part of Liaodong Bay. From the 100-year return period of the SWH distribution calculated in the Gumbel method, we find that the SWH extremes associated with storm surges decreased gradually from the center of the Bohai Sea to the coast. In addition, the joint probability of wave and surge for the entire Bohai Sea in 100-year return period was determined by the Gumbel logistic method. We therefore, assuming a minimum surge of one meter across the entire Bohai Sea, obtained the spatial SWH distribution. The conclusions of this study are significant for offshore and coastal engineering design.  相似文献   

5.
Storm surge is one of the predominant natural threats to coastal communities. Qingdao is located on the southern coast of the Shandong Peninsula in China. The storm surge disaster in Qingdao depends on various influencing factors such as the intensity, duration, and route of the passing typhoon, and thus a comprehensive understanding of natural coastal hazards is essential. In order to make up the defects of merely using the warning water level, this paper presents two statistical distribution models(Poisson Bi- variable Gumbel Logistic Distribution and Poisson Bi-variable Log-normal Distribution) to classify the intensity of storm surge. We emphasize the joint return period of typhoon-induced water levels and wave heights measured in the coastal area of Qingdao since 1949. The present study establishes a new criterion to classify the intensity grade of catastrophic storms using the typhoon surge estimated by the two models. A case study demonstrates that the new criterion is well defined in terms of probability concept, is easy to implement, and fits well the calculation of storm surge intensity. The procedures with the proposed statistical models would be useful for the disaster mitigation in other coastal areas influenced by typhoons.  相似文献   

6.
1 Introduction Thestormsurgeisoneofthemostimportantphe nomenathatendangerthecoastalengineeringfacili ties .Everyyearthereareabout 1 2tropicalcyclonesmakinglandfallatthemainlandofChinafromMaytoOctober (MuandTu ,2 0 0 0 ) .Whentheastronomictideishigh ,the…  相似文献   

7.
There are obvious periodic oscillations in the observations of storm surges in the East China Sea. The storm surges are not only controlled by the wind stresses and isolated long wave caused by typhoons but also affected by the interaction between astronomical tides and storm surges. In the present paper we simulate the interaction between tides and storm surges by using a two dimensional numerical model. In our numerical experiments we use the data of the storm surge induced by Typhoon 8114. The calculations tally with the measured data well. The results indicate that the periodic oscillations occurring in the elevations of the surge are mainly caused by the interaction between the tide and the storm surge. The numerical experiments also indicate that the forecasting precision may be notably improved if the nonlinear interaction between tides and storm surges is taken into account.  相似文献   

8.
Extreme water level is an important consideration when designing coastal protection structures. However, frequency analysis recommended by standard codes only considers the annual maximum water level, whereas water levels should actually be regarded as a combination of astronomical tide and storm surge. The two impacting factors are both random variables, and this paper discusses their dependency structures and proposes a new joint probability method to determine extreme design water levels. The lognormal, Gumbel, Weibull, Pearson type 3, traditional maximum entropy, and modified maximum entropy distributions are applied to fit univariate data of astronomical tides and storm surges separately, and the bivariate normal, Gumbel-Hougaard, Frank and Clayton copulas are then utilized to construct their joint probability distributions. To ensure that the new design method is suitable for use with typhoon data, the annual occurrence frequency of typhoon processes is considered and corresponding bivariate compound probability distributions are proposed. Based on maximum water level data obtained from Hengmen hydrological station in the Pearl River Basin, China, these probability models are applied to obtain designs for extreme water levels using the largest sum of the astronomical tide and storm surge obtained under fixed joint return periods. These design values provide an improved approach for determining the necessary height of coastal and offshore structures.  相似文献   

9.
Extreme water levels are related to astronomical tides and storm surges.Eleven typhoon systems,which have caused extreme water level rises,were selected based on 60-yr water level data from the Xiamen tide gauge station.In these 11 typhoon systems,the astronomical tide component accounts for 71%-95%of the total water level.The Gumbel distribution of extreme water level rise was estimated,and the impact of typhoon surges on water levels during the return period was analyzed.The ex-treme tide levels caused by typhoons Herb(1996)and Dujuan(2015)are much higher than those of other typhoons and correspond to the return period of 76 yr and 71 yr,respectively.The differences of sea levels in the presence and absence of these two typhoons in the 10-100 yr return period are 5.8-11.1 cm.For the 100-yr return period,the total risks within 10,25,50,and 100 yr increase by 94.3%,85.4%,72.9%,and 54.4%,respectively,if the Herb and Dujuan are not considered.Assuming that typhoon Herb(1996)occurred during the highest astronomical tide,it will produce a water level higher than that of the 1000-yr return period.Sea level rise has an important influence on the water level return period,and the contribution of nonlinear sea level rise in the next 100 yr is estimated to be 10.34%.  相似文献   

10.
Typhoons are one of the most serious natural disasters that occur annually on China's southeast coast.A technique for analyzing the typhoon wind hazard was developed based on the empirical track model,and used to generate 1 000-year virtual typhoons for Northwest Pacific basin.The influences of typhoon decay model,track model,and the extreme value distribution on the predicted extreme wind speed were investigated.We found that different typhoon decay models have least influence on the predicted extreme wind speed.Over most of the southeast coast of China,the predicted wind speed by the nonsimplified empirical track model is larger than that from the simplified tracking model.The extreme wind speed predicted by different extreme value distribution is quite different.Four super typhoons Meranti(2016),Hato(2017),Mangkhut(2018),and Lekima(2019) were selected and the return periods of typhoon wind speeds along the China southeast coast were estimated in order to assess the typhoon wind hazard.  相似文献   

11.
In this study, an operational forecasting system of sea dike risk in the southern Zhejiang Province, South China was developed based on a coupled storm-surge and wave model. This forecasting system is important because of the high cost of storm-surge damage and the need for rapid emergency planning. A comparison with astronomical tides in 2016 and the validation of storm surges and high water marks of 20 typhoons verified that the forecast system has a good simulation ability. The system can forecast relatively realistic water levels and wave heights as shown under the parametric atmospheric forces simulated in a case study; the sea dikes in credible high risk were mainly located in the estuaries, rivers, and around the islands in the southern Zhejiang. Therefore, the forecast system is applicable in the southern Zhejiang with a support to the effective prevention from typhoon storm-surge damage.  相似文献   

12.
利用香港卫星定位参考站网GNSS观测数据,提取强热带风暴"塔拉斯"与热带风暴"洛克"影响期间各测站天顶方向对流层延迟,反演香港区域大气可降水量;根据香港区域49个天文台气象站提供的实测降雨量数据,分析大气可降水量与实际降雨量的相关性,以及两次台风对香港区域水汽时空分布的不同影响。结果表明,大气可降水量在台风影响前期均上升,在大量降雨后回落,但在连续台风的间歇期间,仍高于台风来临前的水平;水汽累积是大量降雨的前提条件,当水汽累积量相近时,水汽累积时长与累积降雨量呈正相关;台风期间大气可降水量值超过65 mm的区域面积与台风等级相关,台风路径对局部水汽分布有一定的影响。  相似文献   

13.
The current storm wave hazard assessment tends to rely on a statistical method using wave models and fewer historical data which do not consider the effects of tidal and storm surge.In this paper,the wave-current coupled model ADCIRC+SWAN was used to hindcast storm events in the last 30 years.We simulated storm wave on the basis of a large set of historical storms in the North-West Pacific Basin between 1985 and 2015 in Houshui Bay using the wave-current coupled model ADCIRC+SWAN to obtain the storm wave level maps.The results were used for the statistical analysis of the maximum significant wave heights in Houshui Bay and the behavior of wave associated with storm track.Comparisons made between observations and simulated results during typhoon Rammasun(2014)indicate agreement.In addition,results demonstrate that significant wave height in Houshui Bay is dominated by the storm wind velocity and the storm track.Two groups of synthetic storm tracks were designed to further investigate the worst case of typhoon scenarios.The storm wave analysis method developed for the Houshui Bay is significant in assisting government's decision-making in rational planning of deep sea net-cage culture.The method can be applied to other bays in the Hainan Island as well.  相似文献   

14.
An increasing number of marine structures have been built for coastal protection and marine development in recent years,and wind,which is crucial to marine structures,should be analyzed.Therefore,typhoon frequency,wind climate,wind energy assess-ment,and extreme wind speed in the South China Sea(SCS)are investigated in detail in this study.The data are obtained from the China Meteorological Administration,the European Centre for Medium-range Weather Forecasts,and the National Centers for Envi-ronmental Prediction.The offshore wind energy potential is analyzed at five sites near the coast.The spatial and monthly frequencies of tropical cyclones for different intensity categories are analyzed.The extreme wind speed is fitted by five distribution models,and the generalized extreme value(GEV)distribution is selected as the most suitable function according to the goodness of fit.The spa-tial distributions of extreme wind speeds in the SCS are plotted on the basis of the GEV distribution and ERA5 data sets.The influ-ences of the distribution models and data sets on the calculated results are discussed.Moreover,the monthly extreme wind speed and comparison with the results of previous studies are analyzed.This study provides a reference for the design of wind turbines.  相似文献   

15.
Wang  Kai  Hou  Yijun  Li  Shuiqing  Du  Mei  Li  Rui 《中国海洋大学学报(英文版)》2020,19(2):263-271
Storm surge inundation is a major concern in marine hazard risk assessment during extreme weather conditions.In this study,a high-resolution coupled model(the ADVanced CIRCulation model+the Simulating WAves Nearshore model)was used to investigate the storm surge inundation in the southwestern Hangzhou Bay region during Typhoon Chan-hom in 2015.The simulated hydrodynamic processes(sea surface wave and storm tide)were validated with measured data from wave buoys and tide gauges,indicating that the overall performance of the model was satisfactory.The storm surge inundation in the coastal area was simulated for several idealized control experiments,including different wave effects(wave-enhanced wind stress,wave-enhanced bottom stress,and wave radiation stress).Dike overflowing cases with different dike heights and dike breaking cases with different dike breach lengths were considered in the simulation.The results highlight the necessity of incorporating wave effects in the accurate simulation of storm surge inundation.Dike height significantly influences the magnitude and phase of the maximum inundation area in the dike overflowing cases,and dike breach length is an important factor impacting the magnitude of the maximum inundation area in the dike breaking cases.This study may serve as a useful reference for accurate coastal inundation simulation and risk assessment.  相似文献   

16.
Using statistically downscaled atmospheric forcing, we performed a numerical investigation to evaluate future climate's impact on storm surges along the Gulf of Mexico and U.S. east coast. The focus is on the impact of climatic changes in wind pattern and surface pressure while neglecting sea level rise and other factors. We adapted the regional ocean model system(ROMS) to the study region with a mesh grid size of 7–10 km in horizontal and 18 vertical layers. The model was validated by a hindcast of the coastal sea levels in the winter of 2008. Model's robustness was confirmed by the good agreement between model-simulated and observed sea levels at 37 tidal gages. Two 10-year forecasts, one for the IPCC Pre-Industry(PI) and the other for the A1 FI scenario, were conducted. The differences in model-simulated surge heights under the two climate scenarios were analyzed. We identified three types of responses in extreme surge heights to future climate: a clear decrease in Middle Atlantic Bight, an increase in the western Gulf of Mexico, and non-significant response for the remaining area. Such spatial pattern is also consistent with previous projections of sea surface winds and ocean wave heights.  相似文献   

17.
因台风风暴潮的突发性、情景演变时间的连续性和路径的不确定性,导致应急决策者在应急救援中难以做出正确决策,针对这一现状,将“情景—应对”应用在台风风暴潮应急决策中。本文在分析台风风暴潮情景、情景要素的概念模型基础上,首先通过资料搜集、属性识别等方法提取关键情景要素,采用框架表示法构建情景;然后分析台风风暴潮情景演变规律及演变路径;其次通过动态贝叶斯网络法构建台风风暴潮动态情景网络;最后利用先验概率与条件概率计算情景状态概率,实现了台风风暴潮的关键情景推演。本文以2018年9月16日11时至17时山竹台风对广东省沿海城市影响为例,演示了台风风暴潮的情景推演流程及关键技术。实证分析结果表明,溃堤、海水倒灌、洪水、滑坡发生的概率分别为85%、81%、74%、54%,验证了情景推演在风暴潮中应用的合理性。  相似文献   

18.
In recent years, fast economic development demands for more land use and thus many reclamation projects are initiated around the Sanmen Bay, Zhejiang, SE China in the East China Sea, for which tidal and storm surge levels are reassessed. A two-dimensional numerical model based on an advanced circulation model(ADCIRC) was applied to evaluate the impact of reclamation projects on tidal and storm surge levels in the bay. The results show that the shoreline relocation and topographic change had opposite effects on tidal heights. Shoreline relocation decreased the tidal amplitude, while siltation caused topographic change and increased the amplitude. Such variations of the amplitude were significant in the top areas of Sanmen Bay. Three types of typhoon paths were selected for a case study to investigate the impacts of shoreline relocation and topographic change on storm surge level. Results show that the maximum increase in storm surge level due to shoreline relocation was less than 0.06 m. The rise of peak surge level due to the change of topography was significant and the peak surge level rose when siltation increased. The maximum surge level rise occurred in the path of northwest landing typhoons, which exceeded 0.24 m at the top of the bay. The rise in peak surge level can potentially lead to severe damages and losses in Sanmen Bay and more attention needs to be paid to this problem of shoreline change in the future.  相似文献   

19.
The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport(COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-art numerical simulation technique comprising several coupled models to study coastal and environmental processes. The modeling system is applied to simulate Typhoon Muifa(2011), which strengthened from a tropical storm to a super typhoon in the Northwestern Pacific, to explore the heat fluxes exchanged among the processes simulated using the atmosphere model WRF, ocean model ROMS and wave model SWAN. These three models adopted the same horizontal grid. Three numerical experiments with different coupling configurations are performed in order to investigate the impact of typhoon-ocean interaction on the intensity and ocean response to typhoon. The simulated typhoon tracks and intensities agree with observations. Comparisons of the simulated variables with available atmospheric and oceanic observations show the good performance of using the coupled modeling system for simulating the ocean and atmosphere processes during a typhoon event. The fully coupled simulation that includes a ocean model identifies a decreased SST as a result of the typhoon-forced entrainment. Typhoon intensity and wind speed are reduced due to the decrease of the sea surface temperature when using a coupled ocean model. The experiments with ocean coupled to atmosphere also results in decreased sea surface heat flux and air temperature. The heat flux decreases by about 29% compared to the WRF only case. The reduction of the energy induced by SST decreases, resulting in weakening of the typhoon. Coupling of the waves to the atmosphere and ocean model induces a slight increase of SST in the typhoon center area with the ocean-atmosphere interaction increased as a result of wave feedback to atmosphere.  相似文献   

20.
In the context of global climate change, the impact of group-occurring ocean dynamic disasters on China's offshore areas is becoming more and more intense. The study of the effect of existing ocean dynamic disasters on offshore hazard-bearing bodies mostly focuses on the effect of single disaster-causing factors, and it is still insufficient to study storm surge and dynamic wave coupling reinforcement effects as well as the process of the dynamic response of such hazard-bearing bodies as seawalls. This study firstly realized the synchronous process of water level and wave through continuous tide generation and wave generation by the wave maker and tide generating device, so as to realize the dynamic coupling simulation of storm surge and wave in the laboratory. Then the physical model test of the typical seawall section was carried out under the dynamic coupling of storm surge and wave as well as at a conventional fixed water level respectively. In the process of test wave overtopping discharge and the damage process of the levee crown and backwall of seawalls were observed and compared, and their damage mechanism was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号