首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Neogene and Quaternary sediments of the Faeroe-Shetland Channel and West Shetland shelf and slope rest upon a major regional unconformity, the Latest Oligocene Unconformity (LOU), and have been deposited through the interaction of downslope and parallel-to-slope depositional processes. The upper to middle continental slope is dominated by mass-transport deposits (debris flows), which progressively diminish downslope, and were largely generated and deposited during glacial cycles when ice sheets supplied large quantities of terrigeneous sediment to the upper slope and icebergs scoured sea-floor sediments on the outer shelf and uppermost slope. Large-scale sediment failures have also occurred on the upper slope and resulted in deposition of thick, regionally extensive mass-transport deposits on portions of the lower slope and channel floor. In contrast, large fields of migrating sediment waves and drift deposits dominate most of the middle to lower slope below 700 m water depth and represent deposition by strong contour currents of the various water masses moving northeastward and southwestward through the channel. These migrating sediment waves indicate strong northeastward current flow at water depths shallower than 700 m and strong southwestward current flow at water depths from 700 to >1,400 m. These flow directions are consistent with present-day water-mass flow through the Faeroe-Shetland Channel. The Faeroe-Shetland Channel floor is underlain by thin conformable sediments that appear to be predominantly glacial marine and hemipelagic with less common turbidites and debris flows. No evidence is observed in seismic or core data that indicates strong contour-current erosion or redistribution of sediments along the channel floor.  相似文献   

2.
Recent deep-towed, high resolution sidescan sonar records and seismic profiles have been collected on the lower Valencia Fan (Northwestern Mediterranean). Three morphological zones, channelled, transition and unchannelled, have been recognized in the Valencia Channel mouth. Sonographs from the transition zone show a progresive transversal gradation from depositional to erosional bedforms. This asymmetry may be due to the lateral inputs of sediment flows from the Rhone deep-sea fan and to the effect of the Coriolis force, which could have diverted the flows to the southwest. Bedforms recorded in the study area include trains of starved ripples and dunes, sand ribbons, and fields of elongated scours. Most morphological features, bedforms and seismic characteristics of the Valencia Channel mouth are typical of channel-lobe transition zones.  相似文献   

3.
Recent deep-towed, high resolution sidescan sonar records and seismic profiles have been collected on the lower Valencia Fan (Northwestern Mediterranean). Three morphological zones, channelled, transition and unchannelled, have been recognized in the Valencia Channel mouth. Sonographs from the transition zone show a progresive transversal gradation from depositional to erosional bedforms. This asymmetry may be due to the lateral inputs of sediment flows from the rhone deep-sea fan and to the effect of the Coriolis force, which could have diverted the flows to the southwest. Bedforms recorded in the study area include trains of starved ripples and dunes, sand ribbons, and fields of elongated scours. Most morphological features, bedforms and seismic characteristics of the Valencia Channel mouth are typical of channel-lobe transition zones.  相似文献   

4.
涨潮槽是河口重要的地貌类型,其潮汐动力受地形摩擦、径流及风浪等因素影响而发生不对称现象,直接影响槽内的泥沙动力过程。本文基于实测数据与数值模型计算潮汐不对称偏度,研究长江口南支最大的涨潮槽——新桥水道的潮汐不对称性及其影响因素。结果表明:(1)受余流与各分潮的相互作用控制,新桥水道可分为三个区域,上段为涨潮优势区域,中段为涨落潮转换区域,下段是落潮优势区域。(2)新桥水道欧拉余流表现出明显的分段差异,上段指向陆而在中下段指向海并受到径流影响。斯托克斯余流则均指向陆并向陆增强。(3)新桥水道内中下段潮汐不对称受地形的影响较大,其中扁担沙的北移增强了新桥水道中段的涨潮优势特性,新的新桥通道的形成促进了新桥水道下段的落潮优势特性。  相似文献   

5.
Bonanza Canyon is a complex canyon system on the slope from the intermittently glaciated Grand Bank on the south side of Orphan Basin. A 3D seismic reflection volume, 2D high-resolution seismic reflection profiles and ten piston cores were acquired to study the evolution of this canyon system in relation to glacial processes on the continental shelf and the effects of different types of turbidity currents on the development of deep water channels. Mapped reflector surfaces from the 3D seismic volume show that the Bonanza Canyons developed in a depression created by a large submarine slide of middle Pleistocene age, coincident with the onset of glacigenic debris flows entering western Orphan Basin. Two 3–5 km wide, flat-floored channels were cut into the resulting mass-transport deposit and resemble catastrophic glacial meltwater channels elsewhere on the margin. Both channels subsequently aggraded. The eastern channel A became narrower but maintained a sandy channel floor. The western channel, B, heads at a spur on the continental slope and appears to have been rather passively draped by muds and minor sands that have built 1500-m wave length sediment waves.Muddy turbidites recorded by piston cores in the channel and on the inter-channel ridges are restricted to marine isotope stage (MIS) 2 and were deposited from thick, sheet-like, and sluggish turbidity current derived from western Orphan Basin that resulted in aggradation of the channels and inter-channel ridges. Sandy turbidites in channels and on inner levees were deposited throughout MIS 2–3 and were restricted to the channels, locally causing erosion. Some coincide with Heinrich events. Channels with well-developed distributaries on the upper slope more readily trap the sediments on Grand Bank to form sandy turbidity currents. Channel B dominated by muddy turbidity currents has wide and relatively smooth floor whereas channel A dominated by sandy turbidity currents has a sharp geometry.  相似文献   

6.
We present the results of a marine geophysical investigation of the northern Prince Gustav Channel. By comparative analysis of multibeam bathymetric data, single channel seismic reflection profiles, underway chirp sonar data, ADCP current data and sediment coring, we define the main morphological elements of the area. In particular we define the glacial morphogenesis in relation to the excavation of inner shelf basins and troughs along structural discontinuities and lithologic boundaries. We identify streamlined surfaces that testify to the grounding of ice and past ice flow directions. These glacial forms are found only on glacial tills preserved in the deepest part of the basins, while net erosion to bedrock has occurred elsewhere. Since the Last Glacial Maximum (LGM), the relict glacial morphology has been draped by hemipelagic and diatomaceous mud, and bottom currents have played a major role in focusing sedimentation within small depocentres, that we define as contouritic drifts. Based on shallow sediment architecture and supported by direct measurements, we propose that the direction of bottom water flow is from the outer shelf into the Prince Gustav channel as a result of a combination of tidal currents and ice shelf-related thermohaline circulation.  相似文献   

7.
R. M. Carter  L. Carter 《Marine Geology》1996,130(3-4):181-202
The Bounty Channel and Fan system provides the basis for a model for deep-sea channel and fan development in a rifted continental margin setting. The sedimentary system results from an interplay between tectonics (fan location; sediment source), turbidity currents (sediment supply), geostrophic currents (sediment reworking and distribution) and climate (sea level, and hence sediment supply and type). Today, sediment is shed from the collisional Southern Alps, part of the Pacific/Indo-Australian plate margin, and passes east across the adjacent shelf and into the Otago Fan complex at the head of the Bounty Trough. Paths of sediment supply, and locations of sediment deposition, are controlled by the bathymetry of the Bounty Trough, with axial slopes as high as 37 m/km (2°) towards the trough head, diminishing to around 3.5 m/km (0.2°) along the trough axis. The Bounty Fan is located 800 km further east, where the Bounty Channel debouches onto abyssal oceanic crust at the mouth of the Bounty Trough. The Bounty Fan comprises a basement controlled fan-channel complex with high leveed banks exhibiting fields of mud waves, and a northward-elongated middle fan. Channel-axis gradients diminish from 6 m/km (0.35°) or more on the upper fan to less than 1 m/km (<0.06°) on the lower fan. Parts of the left bank levee and almost the entire middle fan are being eroded and re-entrained within a Deep Western Boundary Current (DWBC), which passes along the eastern New Zealand margin at depths below 2000 m. The DWBC is the prime source of deep, cold water flow into the Pacific Ocean, with a volume of ca. 20 Sv and velocities up to 4 cm/s or greater. The mouth of the Bounty Channel, at a depth of 4950 m at the south end of the middle fan, acts as a point source for an abyssal sediment drift entrained northward under the DWBC at depths below 4300 m. The Bounty Fan probably originated in the early to middle Neogene, but has mostly been built during the last 3 Myr (Plio-Pleistocene), predominantly as climate-controlled sedimentary couplets of terrigenous, micaceous mud (acoustically reflective; glacial) and biopelagic ooze (acoustically transparent; interglacial), deposited under the pervasive influence of the DWBC.  相似文献   

8.
Magnetic signature of the Sicily Channel volcanism   总被引:1,自引:0,他引:1  
Widespread Late Miocene to Quaternary volcanic activity is know to have occurred in the Sicily Channel continuing up to historical time. New magnetic anomaly data acquired in the Pantelleria Graben, one of the three main tectonic depressions forming the WNW-trending Sicily Channel rift system, integrated with available profiles, are used to identify and map volcanic bodies in this sector of the northern African margin. Some of these manifestations, both outcropping at the sea-floor or buried beneath a variable thickness of Plio-Quaternary sedimentary cover, have been imaged by seismic reflection profiles. Three main positive magnetic anomalies have been found: to the S–E of the Pantelleria Island, the largest emerged caldera of the Sicily Channel, along the eastern margin of the Nameless Bank, and at the north–western termination of the Linosa Graben. Only the anomaly located off the south–eastern coast of the Pantelleria Island, associated with a large outcropping body gradually buried beneath a substantially undisturbed Upper Pliocene-Quaternary sediments, aligns with the trend of the tectonic depression. 2-D geophysical models produced along seismic transects perpendicularly crossing the Pantelleria Graben have allowed to derive its deep crustal structure, and detect the presence of buried magmatic bodies which generate the anomalies. Marginal faults seem to have played a major role in focussing magma emplacement in this sector of the Sicily Channel. The other anomalies represent off-axis volcanic episodes and generally do not show evident magmatic manifestations at the sea-floor. These magnetic maxima seem to follow a NNE-SSW-trending belt extending from Linosa Island to the Nameless Bank, where pre-existing crustal anisotropies may have conditioned magma emplacement both at deep and shallow crustal levels. In general, data analysis has shown that there is a structural control on magma emplacement, with the major magmatic features located in specific locations like boundary faults and transfer zones, in a manner similar to that found along several segments of the East African Rift system.  相似文献   

9.
Baraza  J.  Ercilla  G.  Farrán  M.  Casamor  J. L.  Sorribas  J.  Flores  J. A.  Sierro  F.  Wersteeg  W. 《Marine Geophysical Researches》1997,19(2):115-135
Multibeam bathymetric and ultra high-resolution seismic data reveal that the distal course of the Equatorial Atlantic Mid-Ocean Channel (EAMOC) extends further east and south than was previously known, and is controlled by the presence of morphologic highs related to the Fernando de Noronha Fracture Zone. Distal course of the EAMOC is buried by sediments, and does not have bathymetric expression on the seafloor. The channel fill consists of three seismic sequences, suggesting that the recent geological evolution of the channel is composed of successive phases of decreasing sedimentary activity that finally resulted in its complete burial. Tectonic and volcanic activity related to the Fernando de Noronha Fracture Zone and Ridge, together with the effect of strong pulses of the Antarctic bottom water current during the upper Pliocene are suggested to have contributed to the progressive burial and the final abandonment of the EAMOC.  相似文献   

10.
The Bengal Fan: morphology, geometry, stratigraphy, history and processes   总被引:2,自引:0,他引:2  
The Bengal Fan is the largest submarine fan in the world, with a length of about 3000 km, a width of about 1000 km and a maximum thickness of 16.5 km. It has been formed as a direct result of the India–Asia collision and uplift of the Himalayas and the Tibetan Plateau. It is currently supplied mainly by the confluent Ganges and Brahmaputra Rivers, with smaller contributions of sediment from several other large rivers in Bangladesh and India.The sedimentary section of the fan is subdivided by seismic stratigraphy by two unconformities which have been tentatively dated as upper Miocene and lower Eocene by long correlations from DSDP Leg 22 and ODP Legs 116 and 121. The upper Miocene unconformity is the time of onset of the diffuse plate edge or intraplate deformation in the southern or lower fan. The lower Eocene unconformity, a hiatus which increases in duration down the fan, is postulated to be the time of first deposition of the fan, starting at the base of the Bangladesh slope shortly after the initial India–Asia collision.The Quaternary of the upper fan comprises a section of enormous channel-levee complexes which were built on top of the preexisting fan surface during lowered sea level by very large turbidity currents. The Quaternary section of the upper fan can be subdivided by seismic stratigraphy into four subfans, which show lateral shifting as a function of the location of the submarine canyon supplying the turbidity currents and sediments. There was probably more than one active canyon at times during the Quaternary, but each one had only one active fan valley system and subfan at any given time. The fan currently has one submarine canyon source and one active fan valley system which extends the length of the active subfan. Since the Holocene rise in sea level, however, the head of the submarine canyon lies in a mid-shelf location, and the supply of sediment to the canyon and fan valley is greatly reduced from the huge supply which had existed during Pleistocene lowered sea level. Holocene turbidity currents are small and infrequent, and the active channel is partially filled in about the middle of the fan by deposition from these small turbidity currents.Channel migration within the fan valley system occurs by avulsion only in the upper fan and in the upper middle fan in the area of highest rates of deposition. Abandoned fan valleys are filled rapidly in the upper fan, but many open abandoned fan valleys are found on the lower fan. A sequence of time of activity of the important open channels is proposed, culminating with formation of the one currently active channel at about 12,000 years BP.  相似文献   

11.
冲绳海槽西部陆坡地震相模式与沉积体系   总被引:8,自引:3,他引:5  
对冲绳海槽西部陆坡上两个航次(95航次和99航次)共计2000多公里的单道地震资料进行分析和解译,对斜坡沉积环境下沉积体系发育、分布特征进行了研究。结果表明:a)冲绳海槽西部斜坡环境下,上新世以来的沉积层均不同程度的变形和错动;b)存在两种斜坡相地震反射模式——退覆模式和叠覆模式,这两种模式都反映了冲绳海槽西部陆坡得到充足的沉积物供给;c)斜坡环境下主要发育陆架边缘三角洲、重力流沉积和水道充填等沉积体系;d)沉积层发育特征表明,冲绳海槽西部陆坡具有北段坡度缓、沉积物供应丰富、构造相对不活跃,中段坡度陡、沉积物供应充足、构造活动强烈,南段坡度陡、沉积供应相对较少、构造和火山活动十分强烈3种主要沉积环境。西部陆坡的沉积特征也揭示了东海陆架向陆坡提供了大量碎屑沉积物质。  相似文献   

12.
The reservoir architecture of methane hydrate (MH) bearing turbidite channels in the eastern Nankai Trough, offshore Japan is evaluated using a combination of 3-D seismic and well data. On the 3-D seismic section, the MH-bearing turbidite channels correspond to complex patterns of strong seismic reflectors, which show the 3-D internal architecture of the channel complex. A seismic-sequence stratigraphic analysis reveals that the channel complex can be roughly classified into three different stages of depositional sequence (upper, middle, and lower). Each depositional sequence results in a different depositional system that primarily controls the reservoir architecture of the turbidite channels. To construct a 3-D facies model, the stacking patterns of the turbidite channels are interpreted, and the reservoir heterogeneities of MH-bearing sediments are discussed. The identified channels at the upper sequence around the β1 well exhibit low-sinuosity channels consisting of various channel widths that range from tens to several hundreds of meters. Paleo-current flow directions of the turbidite channels are typically oriented along the north-northeast-to-south-southwest direction. High-amplitude patterns were identified above the channels along the north-to-south and north-northeast-to-south-southeast directions. These roughly coincide with the paleo-current flow of the turbidite channels. An interval velocity using high-density velocity analysis shows that velocity anomalies (>2000 m/s) are found on the northeastern side of the turbidite channels. The depositional stage of the northeastern side of the turbidite channels exhibits slightly older sediment stages than the depositional stages of the remaining channels. Hence, the velocity anomalies of the northeastern side of the channels are related to the different stages of sediment supply, and this may lead to the different reservoir architectures of the turbidite channels.  相似文献   

13.
A high-resolution seismic survey covering more than 2,000 km2 has revealed the processes responsible for the slope morphology and channel sedimentation across the forearc slope-basin of the Kurile Arc–NE Japan Arc collision zone, offshore from Tokachi (Hokkaido, Japan). The dominant slope contours parallel the trench but, in the middle and lower reaches of the southern slope, contours are convex-shaped with an offshore trend. This sector of the slope is traversed diagonally by the Hiroo submarine channel. The offshore-trending convex contours and the channel course have developed through the interplay of tectonic and sedimentary processes, including the development of anticlines, anticline-induced lobe sedimentation and channel avulsion. In its upper reaches, the channel is restricted by a topographic low associated with NNW–SSE-trending anticlines which developed within the upper and middle slope sectors during late Miocene uplift. The uplift timing and trend of these anticlines indicate that they resulted from collision, the channel sedimentology and slope morphology of the middle and lower slopes having been influenced by Pliocene uplift of NE–SW-trending anticlines. The trends of these anticlines parallel those of the Kurile Trench. The Pliocene and early Pleistocene strata of the middle and lower slopes consist of ponded lobe sediments deposited along the palaeo-Hiroo submarine channel on the landward side of the anticlines. As a lobe pile accumulated, the channel thalweg shifted to the north of the stack, allowing the channel to bypass the topographic high formed by the growing stack. Thick levee deposits built up along the channel course during the late Pleistocene and Holocene. These levees, along with the Pliocene and early Pleistocene lobes, are reflected in the present-day sigmoid-shaped, convex offshore-trending contours. Thus, the interplay of subduction- and collision-related anticlines, tectonic-related channel ponding, and avulsion has contributed to the slope morphology of the southern Kurile Trench.  相似文献   

14.
The Middle to Upper Jurassic Todagin assemblage in northwestern British Columbia, Canada, was deposited in the Bowser Basin above arc-related rocks of the Stikine terrane. Sedimentary structures indicate that a variety of gravity flow processes were involved in transport and deposition in deep-water slope environments. At Mount Dilworth, laterally continuous and channelized turbidites are interbedded with and overlain by mass-transport deposits in which sedimentary clasts are supported in a mudstone matrix. More than 50% of the succession consists of mass-transport deposits, indicating significant slope instability. A 300 m thick mass-transport complex exposed near the top of the succession is interpreted to result from tectonic activity, which triggered a major change in sediment supply from a local source area. At Todagin Mountain, a channel complex displays three successive channel-fills with associated overbank sedimentation units. Mass-transport deposits are rare, and confined to channel axes. Channels 1 and 2 are characterized by 40-50 m thick, ungraded pebble clast-supported conglomerate while the uppermost Channel 3 contains graded beds and occasional traction structures. The gradual change from erosive and amalgamated channel deposits at the base, to more aggradational channels at the top, is related to elevation of the equilibrium profile. Creation of accommodation favored aggradation on the mud-dominated slope succession and construction of well-developed channel-levee systems. The vertical succession exposed at Todagin Mountain is consistent with normal progradation of the slope under high sedimentation rates. In the Mount Dilworth area, extensional faulting associated with development of the restricted Eskay rift in the early Middle Jurassic produced a dissected basement above which the Todagin assemblage was deposited. These structures were inverted during collision of the Stikine and Cache Creek terranes, and likely played a major role in the stratigraphic evolution of the deep-water architectures.  相似文献   

15.
Triple mass-transport deposits(MTDs) with areas of 625, 494 and 902 km2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic reflection data and multi-beam bathymetric data, the Quaternary MTDs are characterized by typical geometric shapes and internal structures. Results of slope analysis showed that they are developed in a steep slope ranging from 5° to 35°. The head wall scarps of the MTDs arrived to 50 km in length(from headwall to termination). Their inner structures include well developed basal shear surface, growth faults, stepping lateral scarps, erosion grooves, and frontal thrust deformation. From seismic images, the central deepwater channel system of the Xisha Trough has been filled by interbedded channel-levee deposits and thick MTDs. Therefore, we inferred that the MTDs in the deepwater channel system could be dominated by far-travelled slope failure deposits even though there are local collapses of the trough walls. And then, we drew the two-dimensional process model and threedimensional structure model diagram of the MTDs. Combined with the regional geological setting and previous studies, we discussed the trigger mechanisms of the triple MTDs.  相似文献   

16.
Multibeam bathymetry, high (sleeve airguns) and very high resolution (parametric system-TOPAS-) seismic records were used to define the morphosedimentary features and investigate the depositional architecture of the Cantabrian continental margin. The outer shelf (down to 180–245 m water depth) displays an intensively eroded seafloor surface that truncates consolidated ancient folded and fractured deposits. Recent deposits are only locally present as lowstand shelf-margin deposits and a transparent drape with bedforms. The continental slope is affected by sedimentary processes that have combined to create the morphosedimentary features seen today. The upper (down to 2000 m water depth) and lower (down to 3700–4600 m water depth) slopes are mostly subject to different types of slope failures, such as slides, mass-transport deposits (a mix of slumping and mass-flows), and turbidity currents. The upper slope is also subject to the action of bottom currents (the Mediterranean Water — MW) that interact with the Le Danois Bank favouring the reworking of the sediment and the sculpting of a contourite system. The continental rise is a bypass region of debris flows and turbidity currents where a complex channel-lobe transition zone (CLTZ) of the Cap Ferret Fan develops.The recent architecture depositional model is complex and results from the remaining structural template and the great variability of interconnected sedimentary systems and processes. This margin can be considered as starved due to the great sediment evacuation over a relatively steep entire depositional profile. Sediment is eroded mostly from the Cantabrian and also the Pyrenees mountains (source) and transported by small stream/river mountains to the sea. It bypasses the continental shelf and when sediment arrives at the slope it is transported through a major submarine drainage system (large submarine valleys and mass-movement processes) down to the continental rise and adjacent Biscay Abyssal Plain (sink). Factors controlling this architecture are tectonism and sediment source/dispersal, which are closely interrelated, whereas sea-level changes and oceanography have played a minor role (on a long-term scale).  相似文献   

17.
Based on seismic profiles, multibeam bathymetry and sediment cores, an improved understanding of the deglaciation/postglacial history of the southern part of the Norwegian Channel has been obtained. The Norwegian Channel Ice Stream started to recede from the shelf edge ca. 15.5 ka BP (14C ages are used throughout). Approximately 500–1000 years later the ice margin was located east of the deep Skagerrak trough. At that time, the Norwegian Channel off southern Norway had become a large fjord-like embayment, surrounded by the grounded ice sheet along the northern slope and possibly stagnant ice remnants at the southern flank. The Norwegian Channel off southern Norway has been the main sediment trap of the North Sea, and south of Egersund more than 200 m of sediments have been deposited since the start of the deglaciation. Five seismic units are mapped. The oldest unit E occurs in some of the deepest troughs, and was deposited immediately after the ice became buoyant. Unit D is acoustically massive and comprises mass-movement deposits in eastern Skagerrak and south of Egersund. Unit C (in the channel southwest of Lista/Egersund) is interpreted to comprise mainly bottom current deposits derived from palaeo-rivers, e.g. Elben. During deposition of unit C (ca. 14.5–13 ka BP), there was limited inflow of Atlantic water. A change in depositional environment at ca. 13 ka BP is related to an increased inflow of saline water and more open hydrographic circulation. Widely distributed, acoustically stratified clays of unit B were deposited ca. 13–10 ka BP. The Holocene Unit A shows a depositional pattern broadly similar to that of unit B.  相似文献   

18.
利用Sea Bat 7125多波束测深系统,对长江河口南港河段进行了沙波的高分辨率观测研究。结果表明:南港河段沙波发育广泛。统计的沙波中,最小波高0.12m,最大波高达3.12m;最小波长为3.12m,最大波长为127.89m。其中,南港上段、南港中段主航道、南港下段沙波陡坡有向海倾斜的趋势,而南港中段主航道南侧沙波陡坡有向陆倾斜的趋势。  相似文献   

19.
This study focuses on the interpretation of stratigraphic sequences through the integration of biostratigraphic, well log and 3D seismic data. Sequence analysis is used to identify significant surfaces, systems tracts, and sequences for the Miocene succession.The depositional systems in this area are dominantly represented by submarine fans deposited on the slope and the basin floor. The main depositional elements that characterize these depositional settings are channel systems (channel-fills, channel-levee systems), frontal splays, frontal splay complexes, lobes of debrites and mass-transport complexes.Five genetic sequences were identified and eleven stratigraphic surfaces interpreted and correlated through the study area. The Oligocene-lower Miocene, lower Miocene and middle Miocene sequences were deposited in bathyal water depths, whereas the upper Miocene sequences (Tortonian and Messinian) were deposited in bathyal and outer neritic water depths. The bulk of the Miocene succession, from the older to younger deposits consists of mass-transport deposits (Oligocene-lower Miocene); mass transport deposits and turbidite deposits (lower Miocene); debrite deposits and turbidite deposits (middle Miocene); and debrite deposits, turbidite deposits and pelagic and hemipelagic sediments (upper Miocene). Cycles of sedimentation are delineated by regionally extensive maximum flooding surfaces within condensed sections of hemipelagic mudstone which represent starved basin floors. These condensed sections are markers for regional correlation, and the maximum flooding surfaces, which they include, are the key surfaces for the construction of the Miocene stratigraphic framework. The falling-stage system tract forms the bulk of the Miocene sequences. Individual sequence geometry and thickness were controlled largely by salt evacuation and large-scale sedimentation patterns. For the upper Miocene, the older sequence (Tortonian) includes sandy deposits, whereas the overlying younger sequence (Messinian) includes sandy facies at the base and muddy facies at the top; this trend reflects the change from slope to shelf settings.  相似文献   

20.
渤海湾曹妃甸深槽海区地形地貌特征及控制因素   总被引:2,自引:2,他引:0  
通过研究浅层地震剖面、侧扫声纳和水深地形等数据资料,得出,曹妃甸沙岛的岬角地貌引起深槽海域局部潮流流速增大,甸头前沿深槽区以冲刷为主,最大水深达42 m,刷新了渤海湾最大水深记录,深槽部位的侵蚀量最大,深槽南坡冲刷幅度大于北坡,工程建设后期深槽区侵蚀冲刷程度有变小变缓趋势。早期深槽的形成是由于浅部断层受深部构造影响发生阶梯状错断沉陷,海底地层形成古凹槽,但深槽海底地层沉陷速率略大于沉积速率,使得深槽海域长期保持了渤海湾最大的水深环境。初步得出在历史时期曹妃甸深槽经过2万a以上长期存在,深槽的走向经历了南北向-北东向-北西向的转化过程。认为地质构造、古滦河三角洲演变、海洋水动力作用和人类活动等内外营力作用共同控制了曹妃甸海区地貌体系的发育与演化。达到了研究渤海湾曹妃甸深槽海区地形地貌控制因素和深槽的地质演化的目的,为曹妃甸港的规划、运营期维护和未来发展提供科学依据具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号