首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies, the groundwater flow models formulated for the Hat Yai Basin were conventional and deterministic because the geologic heterogeneity of the alluvial aquifer system in the basin had not yet been assessed. This paper describes an effort to develop hydrofacies models, such that the spatial variability of the aquifer system can be represented in a systematic way. Variogram parameters that characterize the alluvial aquifer heterogeneity were determined. Based on these variogram parameters, an indicator-based geostatistical approach was used to develop hydrofacies models using sequential indicator simulation. The hydrofacies models indicate three distinct aquifer units, namely Hat Yai, Khu Tao, and Kho Hong aquifers, which is in good agreement with a conceptual model, and incorporates spatial variability as observed in field data from borehole logs. The hydrofacies models can be used in groundwater modeling and simulations.  相似文献   

2.
Providing a sound basis for aquifer management or remediation requires that hydrogeological investigations carried out to understand groundwater flow and contaminant transport be based on representative data that capture the heterogeneous spatial distribution of aquifer hydraulic properties. This paper describes a general workflow allowing the characterization of the heterogeneity of the hydraulic properties of granular aquifers at an intermediate scale of a few km2. The workflow involves characterization and data integration steps that were applied on a 12-km2 study area encompassing a decommissioned landfill emitting a leachate plume and its main surface water receptors. The sediments composing the aquifer were deposited in a littoral–sublittoral environment and show evidence of small-scale transitional heterogeneities. Cone penetrometer tests (CPT) combined with soil moisture and electrical resistivity (SMR) measurements were thus used to identify and characterize spatial heterogeneities in hydraulic properties over the study area. Site-specific statistical relationships were needed to infer hydrofacies units and to estimate hydraulic properties from high-resolution CPT/SMR soundings distributed all over the study area. A learning machine approach was used due to the complex statistical relationships between colocated hydraulic and CPT/SMR data covering the full range of aquifer materials. Application of this workflow allowed the identification of hydrofacies units and the estimation of horizontal hydraulic conductivity, vertical hydraulic conductivity and porosity over the study area. The paper describes and discusses data acquisition and integration methodologies that can be adapted to different field situations, while making the aquifer characterization process more time-efficient and less labor-intensive.  相似文献   

3.
The future development of agriculture, industry, and civil activity planned to be in the Western Desert. This strategy need to the groundwater resource. Vertical electrical soundings (VES) and electromagnetic (TEM) measurements conducted in the El Bawiti, northern Bahariya Oasis. The measurements give detailed information about the geometry of the different hydrogeological layers in the aquifer system and depth to them. A total of 22 VES and TEM were carried out within El Bawiti area. Thirty-one sub soil samples were collected from eight sites to determine the chemical characteristics and address the effects of lithogenic source and anthropogenic activity on them. The geoelectrical measurements and borehole information indicate the presence of five geoelectrical units, from top to base; the surface cover, sand and shale, upper aquifer (Nubian sandstone), sand and shale, and lower aquifer (Nubian sandstone). Surface cover was equally distributed in thickness and composed of dry sand, gravel, and clay deposits. The regional resistivity of the upper aquifer increased in the southwestern part and decline in the northern, eastern, southern, and western parts. The decline in the resistivity reflects the high water yields and potentiality, as well as low salinity. The resistivity of the lower aquifer increased due the northwestern part and the southwestern part. The information collected during this research provides valuable data for estimating the fresh- to brackish-water resources and for development of a groundwater management plan. The integrated analyses carried out represent a significant and cost-effective method for delineating the main aquifer in this area. In turn, future well locations can be placed with more confidence than before, in accordance with the evaluation of the potentiality of the groundwater aquifers in the area. The electrical conductivity of the soil ranges from 302 to 8,490 μS/cm, increases in the western and central-northern parts. It is attributed to the location from the salt-affected soils (playa), the relatively lower elevation units (depressions) and the position in landscape in the Oasis. Sodium adsorption ratio ranges from 0.44 to 11 and the exchangeable sodium ratio ranges from 0.11 to 5. The estimated magnesium hazard fluctuated below 50%. The statistical analyses were accomplished in soil chemistry and discussed.  相似文献   

4.
Numerical models encompassing source zones and receptors, based on representative conceptual models and accounting for aquifer heterogeneity, are needed to understand contaminant migration and fate; however, aquifer characterization seldom provides the necessary data. This study aimed to develop a workflow for field characterization and data integration, which could: (1) be adapted to the definition of subwatershed-scale aquifer heterogeneity (over 10 km2) and (2) adequately support mass transport model development. The study involved the field investigation of a shallow granular aquifer in a 12-km2 subwatershed in Saint-Lambert-de-Lauzon, Canada, in which a decommissioned landfill is emitting a leachate plume managed by natural attenuation. Using proven field methods, the characterization sequence was designed to optimize each method in terms of location, scale of acquisition, density and quality. The emphasis was on the acquisition of detailed indirect geophysical data that were integrated with direct hydraulic and geochemical data. This report focuses on the first qualitative and geostatistical data integration steps of the workflow leading to the development of a hydrogeological conceptual model. This is a prerequisite for further integration steps: prediction of hydrofacies and hydraulic conductivity (K), geostatistical simulations of K, studies of geochemical processes and numerical modeling.  相似文献   

5.
This study compares numerical models with analytical solutions in computing travel times and radius of protection zones for a pumping well located in an unconfined aquifer with uniform recharge and in a semi-confined aquifer. Numerical models were capable of delineating protection zones using particle tracking method in both cases. However, protection zones defined by travel time criterion can only protect small percent of source water to the well; large percent of source water is not protected which may pose a risk of pollution of source water to the well. The case study of Leggeloo well field in the Netherlands indicates that although a well field protection area was enforced in 1980s, elevated nitrate concentration has been monitored in the abstracted water since 1990s. The analysis of protection areas shows that the current protection area only protects 37.4% of recharge water to the well field. A large protection area must be adopted in order to safeguard the sustainable water supply for the local community  相似文献   

6.
由于盖层中存在的未知断层、裂隙或被废弃井穿透等原因,深部储存的CO2可能会发生渗漏,并向上迁移进入浅部含水层,改变地下水中酸度和溶解组分的浓度分布。国外开展CO2泄漏对浅层地下水水质影响相关研究尚处于起步阶段,且室内实验、野外试验和数值模拟等研究结果表明,CO2泄漏对浅层地下水中pH和微量重金属组分浓度影响显著,虽浓度大多未超饮用水标准,但由于含水介质之间矿物组成的差异较大,有必要针对具体场地的地下水水质和矿物组分特征进行调查,研究CO2侵入对地下水水质的影响,在总结已经达成共识和存在的问题基础上提出下一步研究趋势。  相似文献   

7.
Electrical geophysical surveys in the mode of vertical electrical soundings (VES) and continuous vertical electrical soundings (CVES) were conducted in the León-Chinandega plains, northwestern Nicaragua, in order to obtain detailed information about the geometry of the different hydrogeological layers in the aquifer and depth to the basement. A total of 51 VES were carried out within the plains. The results show a complex structure towards the north east of the area, and the southwestern part of the plains presents a smoother stratification. The geoelectrical measurements and borehole information indicate that the basement topography is characterized by hills and deep valleys with highly variable basement depths. Fifty CVES where done in a smaller area in the center of the plain. The resistivity data yielded considerable information revealing the existence of two main geo-electrical units. The combined interpretation of geological and geophysical data shows an environment typical of sedimentary volcanic coastal plains. The information collected during this investigation provides valuable data for estimating the fresh-water resources of the León-Chinandega aquifer system and for development of a groundwater management plan.  相似文献   

8.
Three aquifer systems as deep, middle, and shallow were identified in the Kazan trona ore deposit area. The flow conditions and the interaction between various layers were conceptualized into a site hydrogeological model. Each aquifer system was hydraulically and chemically characterized and represented in a numerical groundwater model. The resulting model has been calibrated under steady-state and transient conditions using available data. The flow model was used in conjunction with a three-dimensional solute transport model to assess the impacts of the pilot well solution mining of the trona deposit on groundwater resources during operation and post-operation periods. The results of operation period indicate that, even under the worse conditions (50 times increase in vertical hydraulic conductivity due to subsidence), ion contribution from the mine area with 118,000 mg/l maximum concentration would be about 58 mg/l into the deep aquifer system. This contribution is about 1.45% of the existing concentration (4,000 mg/l) in the deep aquifer. After 1,000 years of post-operation period, ion contribution from the mine area with maximum 119,000 mg/l concentration would be about 205 mg/l into the deep aquifer under extremely worse conditions. This contribution is about 5–20% of present concentrations in the deep aquifer. Retardation factors, which were not considered during model simulations would decrease the predicted concentrations. It is concluded that pilot well solution mining of the trona deposit would not have significant impact on the quality of groundwater resources in the overlying aquifers.  相似文献   

9.
为提高应用地球物理方法划分含水层的准确性,提出将音频大地电磁法与核磁共振法结合运用的综合方法。运用该方法在内蒙古巴彦宝力格盆地某区开展野外试验,并将试验结果与该区域供水水文地质详查报告中的水文地质剖面图进行了比对。结果表明:①试验区100 m深度范围内,该方法所揭示的含水层深度、厚度分布与水文地质剖面图基本一致;②据该方法,介质岩性为泥岩、粉质黏土、粉土、气孔状玄武岩和砂砾时,其衰减时间分别为≤30、30~60、60~120、120~260和260~600 ms,据此得到的介质岩性分布与水文地质剖面图高度吻合;③该方法得到的含水层含水量变化与水文地质剖面图的涌水量变化规律一致。因此,运用该方法划分含水层具有很强的可行性,在生产实践中具有推广价值。  相似文献   

10.
Groundwater is a treasured earth’s resource and plays an important role in addressing water and environmental sustainability. However, its overexploitation and wide spatial variability within a basin and/or across regions are posing a serious challenge for groundwater sustainability. Some parts of southern West Bengal of India are problematic for groundwater occurrence despite of high rainfall in this region. Characterization of an aquifer in this area is very important for sustainable development of water supply and artificial recharge. Electrical resistivity surveys using 1-D and 2-D arrays were performed at a regular interval from Subarnarekha River at Bhasraghat (south) to Kharagpur (north) to map the lithological variations in this area. Resistivity sounding surveys were carried out at an interval of 2–3 km. Subsurface resistivity variation has been interpreted using very fast simulated annealing (VFSA) global optimization technique. The analysis of the field data indicated that the resistivity variation with depth is suitable in the southern part of the area and corresponds to clayey sand. Interpreted resistivity in the northern part of the area is relatively high and reveals impervious laterite layer. In the southern part of the area resistivity varies between 15 and 40 Ωm at a depth below 30 m. A 2-D resistivity imaging conducted at the most important location in the area is correlated well with the 1-D results. Based on the interpreted resistivity variation with depth at different locations different types of geologic units (laterite, clay, sand, etc.) are classified, and the zone of interests for aquifer has been demarcated. Study reveals that southern part of the area is better for artificial recharge than the northern part. The presence of laterite cover in the northern part of the area restricts the percolation of rainwater to recharge the aquifer at depth. To recharge the aquifer at depth in the northern part of the area, rainwater must be sent artificially at depth by puncturing laterite layers on the top. Such studies in challenging areas will help in understanding the problems and finding its solution.  相似文献   

11.
The Memphis aquifer in southwestern Tennessee is a confined to semi-confined unconsolidated sand aquifer and is the primary municipal water source for the Memphis metropolitan area. Leakage of modern water from shallow unconfined aquifers through the upper Claiborne confining unit locally degrades water quality in the Memphis aquifer and makes the aquifer more vulnerable to contamination. Major solute chemistry, tritium, and 3H/3He data were used to investigate the source and mixing proportions of modern water in the Memphis aquifer in the Davis well field, Memphis, Tennessee. Water quality in several production wells in the Davis well field has declined over the past 30 years, mainly through increased total dissolved solids, iron, alkalinity, and hardness. Trends in chemical data, tritium, and other hydrogeologic data support a source for the leakage from the Mississippi River Valley Alluvial aquifer. Mixing proportions of alluvial water in production well water obtained by inverse chemical modeling with PHREEQCi range from 7 to 45%. For two of the production wells, MLGW 414 and 432, 3H/3He data yield mixing ratios similar to those obtained from PHREEQCi in three of four cases; the dissimilar ratio is likely due to a poor solution from the PHREEQCi inverse modeling. Modeling of the age distribution obtained from MLGW 414 and 432 using an exponential-piston flow model (EPM) with an inverse solution computer code yielded mixed results. The EPM solution obtained for MLGW 414 converged with difficulty only for a 5-year transit time in the shallow aquifer and is consistent with a source from the Mississippi River Valley Alluvial aquifer; however, the modeled age of the water is greater than that observed. In comparison, the EPM solution for MLGW 432 converged for the 5- and 7-year transit periods in the shallow aquifer and yielded model ages consistent with observed 3H/3He ages; however, the extent of the maximum radii for infiltration source is not consistent with a Mississippi River Valley Alluvial aquifer source. Other potential sources for leakage to MLGW 432 include water from the Fluvial-terrace aquifer migrating along a fault east of the well field or infiltration of water from a lake south of the well field.  相似文献   

12.
El Bahariya Oasis is a part of the great groundwater reservoir of the Western Desert of Egypt. The different stratigraphic units, the water-bearing zones, aquifer potentiality conditions, and the favorable locations for drilling new wells were evaluated by carrying out 24 Schlumberger vertical electrical soundings (VESs), along with the data of some wells drilled in the near vicinity of the measuring sites. The results of the interpreted field data revealed the presence of ten distinctive subsurface geoelectric layers; a thin surface, dry loose sand and gravel, sandy clay and shale interclations, saturated coarse sand layer, shale and clay, and saturated fine sandstone and saturated coarse sandstone. The aquifer is a multilayer aquifer with different thicknesses represented by the fourth, sixth, eighth, and tenth geoelectric layers. Results also revealed that the thicknesses of the water-bearing horizons increase towards the east direction, consequently the aquifer potentiality increases. Therefore, the best production well locations are in that direction. Depth to water starts from 40 m at VES no. 14 and increases gradually toward the east to reach 66 m at VES no. 5. Hydrogeochemical analysis of two groundwater samples taken from Ein El Ezza and well no. 2 showed that groundwater in the study area is suitable for agricultural purposes but not for human consumption due to the high iron content. Recommendations concerning site selection for drilling new productive groundwater wells are given.  相似文献   

13.
A detailed hydrogeological investigation was carried out in the Tabriz plain in Iran using conventional hydrogeological field investigations and hydrochemistry. The study was carried out because the aquifers are of particular importance as they are more or less the only source of water supply available to the rural population and for agricultural and industrial activities. Analytical and numerical methods were applied to the constant rate pumping test data from the Tabriz airport and the Tabriz Power Station well fields. Two types of aquifers of different water quality were identified in the study area: an unconfined aquifer that extends over the plain and confined aquifers that are found in the deeper layers of the multilayered sediment terraces of the Aji-Chay River course. Therefore, the central part of the Tabriz plain contains both unconfined and confined aquifers, while close to the highlands, there is only an unconfined aquifer. There was evidence of minor leakage in the confined aquifers when the numerical method was used for analysis. The groundwater in the area can be identified by three main geochemical facies: Na-Cl, Ca-HCO3, and mixed Ca-Mg-Cl-SO4. The processes responsible for the hydrochemical evolution in the area fall into five categories: dissolution of evaporate minerals, precipitation of carbonate minerals, evaporation, ion exchange, and anthropogenic activity.  相似文献   

14.
The aim of this study was to investigate the pollution parameters relating to surface and groundwaters and to establish an interaction between these for the area near Yerköy. Three characteristic facies were determined based on the results of hydrochemical analyses: (1) Na+-Cl- facies were greater the deeper the aquifer, (2) Na+-SO42- facies were the greater portion of the shallow alluvium aquifer, and (3) Na+-HCO3- (SO42-) facies represented the western portion of the shallow alluvium aquifer. Based on field and laboratory observations it was found that the water of the River Delice is suitable for irrigation and domestic use whereas the water from the shallow aquifer is extremely saline and considered to have been polluted by local lithological units. Active groundwater circulation and dilution between the alluvium aquifer and the River Delice was observed. Because of the short residence time of the groundwater in this area, the hydrogeochemical concentration and the salinity were found to be low. The other portions of the alluvium aquifer bear higher concentrations of soluble ions.  相似文献   

15.
16.
Groundwater flow fields in aquifers are often determined by water level data measured in monitoring wells. The flow field can be further refined by mass balance simulations, especially when groundwater level data is limited. The mass balance simulation is based on the principle of mass conservation and relies on water quality data in the same aquifer. The approach is applied to the Luohe aquifer in the Binchang area, China. The water-rock interactions and the hydrogeochemical evolution were studied along four typical flow paths. The study indicates that groundwater in the Luohe formation flows from the southern border to the interior of the Ordos Basin. The southern border, approximately 1,400 km2, is a recharge zone, where the Luohe formation outcrops. The total dissolved solids of the groundwater in the southern boarder are less than 1 g/l, and the hydrochemistry type is HCO3–Na. This new finding refines the flow field of the water-bearing formation, and an additional 1,400 km2 is included in the water resource planning of the area.  相似文献   

17.
In this study, we model the geothermal potential of deep geological formations located in the Berlin region in Germany. Berlin is situated in a sedimentary geological setting (northeastern German basin), comprising low-enthalpic aquifers at horizons down to 4–5 km depth. In the Berlin region, the temperature increases almost linearly with depth by about 30 K per kilometer, thus allowing for direct heating from deep aquifer reservoirs in principle. Our model incorporates eight major sedimentary units (Jurassic, Keuper, Muschelkalk, Upper/Middle/Lower Buntsandstein, Zechstein Salt and Sedimentary Rotliegend). Owing to lack of available petro-physical rock data for the Berlin region, we have evaluated literature data for the larger northeastern German basin to develop a thermodynamic field model which regards depth-corrected equations of state within statistical intervals of confidence. Integration over the thicknesses of the respective structural units yields their “heat in place”—energy densities associated with the pore fluid and the rock matrix under local conditions in Joule per unit area at the surface. The model predicts that aquifers in the Middle Buntsandstein and in the Sedimentary Rotliegend may well exhibit energy densities about 10 GJ m?2 for the pore fluids and 20 GJ m?2 to 40 GJ m?2 for the rock matrices on average. Referring these figures to the city area of Berlin (about 892 km2), a significant hydrothermal potential results, which however remained undeveloped until today for the reason of present development risks. The model accounts for these risks through statistical intervals of confidence which are in the order of ±60 to ±80 % of the trend figures. To minimize these uncertainties, scientific field explorations were required in order to assess the petro-physical aquifer properties locally.  相似文献   

18.
Prediction of groundwater inflow into mining excavations is very important in order to design an effective dewatering system to keep the mine workings dry and create prolonged cone of depression. The effects of anisotropy ratio and bedding on the hydraulic head and drawdown curves of a dewatering test carried out in a fully penetrating well in a confined aquifer have been investigated. An existing numerical finite element model has been used to perform the simulations. The results of the numerical model are compared to those from analytical Jacob and Lohman solution for estimating hydraulic heads and drawdown curves. It was found that the anisotropy ratio and bedding should not have a significant effect on drawdown and the quantity of inflow into a confined aquifer. It was further found that taking the simultaneous effects of anisotropy and bedding into account reduces the differences in the results of analytical and numerical methods. Comparison of the field data and model predictions showed that, the modelling results for a three layer anisotropic aquifer fit well to the field data than those results obtained for a single layer aquifer and the relative error decreased from 4.81 % to 2.98 %.  相似文献   

19.
20.
A need exists for a reliable and long-term water supply for the 285,000 inhabitants of the Turku area in southwestern Finland. In response to this need, there are plans to replace the present water supply from the surface sources with artificially infiltrated groundwater from a Quaternary esker aquifer called the Virttaankangas aquifer. New sedimentological studies of the Virttaankangas area have revealed the complexities of the esker system and its surrounding glacial, glaciofluvial, and glaciolacustrine geology. This led to the characterization of the hydrogeological units of the aquifer, the result of which has been a three-dimensional (3-D) truly integrated solids model that represents the geometry, interrelationships, and hydrostratigraphy of the study area. The 3-D model was made with EarthVision geologic modeling software. The 3-D geological model of the Virttaankangas aquifer can be used for planning the infiltration of river water into the aquifer and to understand the geologic and geographic boundaries of the hydrogeologic units hosting the groundwater reserve and the geologic relationships between the units. Another major outcome of this study is a powerful visualization tool that will be provided to municipal and government authorities who must understand the geologic complexities involved with water-resource planning prior to their decision making. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号