首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Regional‐scale, high‐resolution terrain data permit the study of landforms across south‐central Ontario, where the bed of the former Laurentide Ice Sheet is well exposed and passes downflow from irregular topography on Precambrian Shield highlands to flat‐lying Palaeozoic carbonate bedrock, and thick (50 to >200 m) unconsolidated sediment substrates. Rock drumlins and megagrooves are eroded into bedrock and mega‐scale glacial lineations (MSGL) occur on patchy streamlined till residuals in the Algonquin Highlands. Downflow, MSGL pass into juxtaposed rock and drift drumlins on Palaeozoic bedrock and predominantly till‐cored drumlins in areas of thick drift. The Lake Simcoe Moraines, now traceable for more than 80 km across the Peterborough drumlin field (PDF), form a distinct morphological boundary: downflow of the moraine system, drumlins are larger, broader and show no indication of subsequent reworking by the ice, whereas upflow of the moraines, a higher degree of complexity in bedform pattern and morphology is distinguished. Discrete radial and/or cross‐cutting flowset terminate at subtle till‐cored moraine ridges downflow of local topographic lows, indicating multiple phases of late‐stage ice flow with strong local topographic steering. More regional‐scale flow switching is evident as NW‐orientated bedforms modify drumlins south of the Oak Ridges Moraine, and radial flowset emanate from areas within the St. Lawrence and Ottawa River valleys. Most of the drumlins in the PDF formed during an early, regional drumlinization phase of NE–SW flow that followed the deposition of a thick regional till sheet. These were subsequently modified by local‐scale, topographically controlled flows that terminate at till‐cored moraines, providing evidence that the superimposed bedforms record dynamic ice (re)advances throughout the deglaciation of south‐central Ontario. The patterns and relationships of glacial landform distribution and characteristics in south‐central Ontario hold significance for many modern and palaeo‐ice sheets, where similar downflow changes in bed topography and substrate lithology are observed.  相似文献   

3.
It has been suggested that extremely long subglacial bedforms (e.g. attenuated drumlins and mega-scale glacial lineations) record former areas of fast-flowing ice and that bedform elongation ratio is a useful proxy for ice velocity. Despite the availability of much data pertaining to the measurement and analysis of subglacial bedforms, these assumptions have rarely been explicitly addressed in detail. In this paper, we demonstrate that long subglacial bedforms (length:width ratios ≥10:1) are indicative of fast ice flow. Using satellite imagery, we mapped over 8000 lineaments associated with a highly convergent flow pattern near Dubawnt Lake, District of Keewatin, Canada. This flow pattern is unusual in that it displays a large zone of convergence feeding into a main 'trunk' and then diverging towards the inferred ice margin. The 'bottleneck' pattern is taken to record an increase and subsequent decrease in ice velocity and we analysed transverse and longitudinal variations in bedform morphometry. The main trunk of the flow pattern (down-ice of the convergent zone) is characterized by mega-scale glacial lineations of great length (up to 13 km) and high elongation ratios (up to 43:1). The down-ice variations in elongation ratio reflect exactly what we would expect from a terrestrial ice stream whose velocity increases in the onset zone passes through a maximum in the main trunk and slows down as the ice diverges at the terminus. It is suggested that any unifying theory of drumlin formation must be able to account for the association between long subglacial bedforms and fast ice flow, although it is not assumed that fast ice flow always produces attenuated bedforms. A further implication of this work is that many more ice streams may be identified on the basis of attenuated subglacial bedforms, radically altering our views on the flow dynamics of former ice sheets.  相似文献   

4.
This paper presents an historical and in places informal account of the meltwater hypothesis, which invokes enormous outburst floods for the formation of subglacial bedforms. It begins with a brief discussion of the difficulties of determining processes of formation for landforms, which are not seen in formation. Analogy provides a solution to these difficulties. Analogy between erosional marks at the bases of turbidites and drumlins, which were the starting point for this hypothesis, rests on the idea that inverted erosional marks at the ice bed are subsequently infilled to form drumlins. Field tests on the sedimentology, architecture, and landform associations of drumlins in the Livingstone Lake drumlin field are outlined before more extensive work on bedrock erosional forms and flood routes is introduced. Bedrock erosional forms played a central part in establishing the hypothesis since their form and ornamentation are confidently interpreted as fluvial. Their form and genesis are discussed mainly with reference to sites at French River and Wilton Creek, Ontario, though some remarkable bedrock erosional forms in Antarctica support their regional extent. Initially in the meltwater hypothesis, drumlins were thought to be cavity fills and erosional drumlins were recognized later. This development is shown to be central to the realization that drumlin composition may be inferred from drumlin form. The scale of drumlin fields, measured at about 103 km2, and the magnitude of the inferred floods require that the flood events were regional. Regional-scale flood tracts in Ontario, Quebec, Alberta and the Northwest Territories extending over 1000 km in length and several hundred kilometers in width, support this suggestion. Floods, had they occurred, would have caused rapid rates of sea level rise and may have changed climate through their effects on ocean stratification and sea surface temperatures. The meltwater hypothesis covers a range of bedforms besides drumlins and bedrock erosional marks—fluting, Rogen moraine, hummocky terrain, and transverse ridges. Recent work shows how these forms are best explained by the meltwater hypothesis. The roles of water storage and release, which underpin the theory of the meltwater hypothesis, remain poorly understood.  相似文献   

5.
Geophysical data from Gerlache Strait, Croker Passage, Bismarck Strait and the adjacent continental shelf reveal streamlined subglacial bedforms that were produced at the bed of the Antarctic Peninsula Ice Sheet (APIS) during the last glaciation. The spatial arrangement and orientation of these bedforms record the former drainage pattern and flow dynamics of an APIS outlet up‐flow, and feeding into, a palaeo‐ice stream in the Western Bransfield Basin. Evidence suggests that together, they represent a single ice‐flow system that drained the APIS during the last glaciation. The ice‐sheet outlet flowed north/northeastwards through Gerlache Strait and Croker Passage and converged with a second, more easterly ice‐flow tributary on the middle shelf to form the main palaeo‐ice stream. The dominance of drumlins with low elongation ratios suggests that ice‐sheet outlet draining through Gerlache Strait was comparatively slower than the main palaeo‐ice stream in the Western Bransfield Basin, although the low elongation ratios may also partly reflect the lack of sediment. Progressive elongation of drumlins further down‐flow indicates that the ice sheet accelerated through Croker Passage and the western tributary trough, and fed into the main zone of streaming flow in the Western Bransfield Basin. Topography would have exerted a strong control on the development of the palaeo‐ice stream system but subglacial geology may also have been significant given the transition from crystalline bedrock to sedimentary strata on the inner–mid‐shelf. In the broader context, the APIS was drained by a number of major fast‐flowing outlets through cross‐shelf troughs to the outer continental shelf during the last glaciation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
High resolution swath bathymetry data reveal a previously glaciated submarine terrain 20 km offshore Anglesey, north Wales, UK. The detailed documentation of remarkably well-preserved subglacial and ice-marginal bedforms provides evidence for a grounded part of the Irish Sea Ice Stream in a phase of deglaciation. The observed ribbed moraines, drumlins, flutes and eskers indicate a converging ice flow to the west, which then turns south into the deeper central Irish Sea Basin. Using the relative position of the bedforms, their spatial distribution and the morphological resemblance with bedforms described in the literature, this subglacial terrain is interpreted as representing a transition zone of frozen to thawed bed conditions during deglaciation, with an eastwards migrating thawing front that partly altered the edge of the surveyed ribbed moraine field by drumlinization. The abundant De Geer moraines and iceberg scour marks superimposed on drumlins and flutes reveal that the final retreat of the grounded ice margin in the surveyed area terminated into a water-mass with extensive iceberg calving. As the glacial terrain is well preserved, no significant burial has taken place, either by glacially or terrestrially derived sediment. The strong tidal currents at present keep the submarine terrain swept clean of contemporary sediment cover.  相似文献   

7.
Saks, T., Kalvans, A. & Zel?s, V. 2012 (January): Subglacial bed deformation and dynamics of the Apri?i glacial tongue, W Latvia. Boreas, Vol. 41, pp. 124–140. 10.1111/j.1502‐3885.2011.00222.x. ISSN 0300‐9483. We evaluate the glacial dynamics and subglacial processes of the Apri?i glacial tongue in western Latvia during the Northern Lithuanian (Linkuva) oscillation of the last Scandinavian glaciation. The spatial arrangement of glacial bedforms and deformation structures are used to reconstruct the ice dynamics in the study area. The relationship between geological structures at the glacier bed and the spatial distribution of drumlins and glacigenic diapirs, on the one hand, and the permeability of sediment and bedrock, on the other, is ascertained. Drumlins are found in the upper part of the Apri?i glacial tongue area and are composed of soft deformable sediments overlying highly permeable Devonian dolomite. The soft deformable clayey silty bed with low hydraulic conductivity is conducive to the development of diapirs. The occurrence of diapirs and drumlins is controlled by the fluctuation of pore‐water pressure at the glacier bed and is considered to be an indicator of fast ice flow of the Apri?i glacial tongue during its reactivation at the end of the Oldest Dryas (18–15 ka BP).  相似文献   

8.
The drumlin field at Múlajökull, Iceland, is considered to be an active field in that partly and fully ice‐covered drumlins are being shaped by the current glacier regime. We test the hypothesis that the drumlins form by a combination of erosion and deposition during successive surge cycles. We mapped and measured 143 drumlins and studied their stratigraphy in four exposures. All exposures reveal several till units where the youngest till commonly truncates older tills on the drumlin flanks and proximal slope. Drumlins inside a 1992 moraine are relatively long and narrow whereas drumlins outside the moraine are wider and shorter. A conceptual model suggests that radial crevasses create spatial heterogeneity in normal stress on the bed so that deposition is favoured beneath crevasses and erosion in adjacent areas. Consequently, the crevasse pattern of the glacier controls the location of proto‐drumlins. A feedback mechanism leads to continued crevassing and increased sedimentation at the location of the proto‐drumlins. The drumlin relief and elongation ratio increases as the glacier erodes the sides and drapes a new till over the landform through successive surges. Our observations of this only known active drumlin field may have implications for the formation and morphological evolution of Pleistocene drumlin fields with similar composition, and our model may be tested on modern drumlins that may become exposed upon future ice retreat.  相似文献   

9.
This study investigates the marginal subglacial bedrock bedforms of Jakobshavns Isbrae, West Greenland, in order to examine the processes governing bedform evolution in ice stream and ice sheet areas, and to reconstruct the interplay between ice stream and ice sheet dynamics. Differences in bedform morphology (roche moutonnee or whaleback) are used to explore contrasts in basal conditions between fast and slow ice flow. Bedform density is higher in ice stream areas and whalebacks are common. We interpret that this is related to higher ice velocities and thicker ice which suppress bed separation. However, modification of whalebacks by plucking occurs during deglaciation due to ice thinning, flow deceleration, crevassing and fluctuations in basal water pressure. The bedform evidence points to widespread basal sliding during past advances of Jakobshavns Isbrae. This was encouraged by increased basal temperatures and melting at depth, as well as the steep marginal gradients of Jakobshavns Isfjord which allowed rapid downslope evacuation of meltwater leading to strong ice/bedrock coupling and scouring. In contrast to soft-bedded ice stream bedforms, the occurrence of fixed basal perturbations and higher bed roughness in rigid bed settings prevents the basal ice subsole from maintaining a stable form which, coupled with secondary plucking, counteracts the development of bedforms with high elongation ratios. Cross-cutting striae and double-plucked, rectilinear bedforms suggest that Jakobshavns Isbrae became partially unconfined during growth phases, causing localised diffluent flow and changes in ice sheet dynamics around Disko Bugt. It is likely that Disko Bugt harboured a convergent ice flow system during repeated glacial cycles, resulting in the formation of a large coalesced ice stream which reached the continental shelf edge.  相似文献   

10.
The Tyne Gap is a wide pass, situated between the Scottish Southern Uplands and the English Pennines that connects western and eastern England. It was a major ice flow drainage pathway of the last British–Irish Ice Sheet. This study presents new glacial geomorphological and sedimentological data from the Tyne Gap region that has allowed detailed reconstructions of palaeo‐ice flow dynamics during the Late Devensian (Marine Isotope Stage 2). Mapped lineations reveal a complex palimpsest pattern which shows that ice flow was subject to multiple switches in direction. These are summarised into three major ice flow phases. Stage I was characterised by convergent Lake District and Scottish ice that flowed east through the Tyne Gap, as a topographically controlled ice stream. This ice stream was identified from glacial geomorphological evidence in the form of convergent bedforms, streamlined subglacial bedforms and evidence for deformable bed conditions; stage II involved northerly migration of the Solway Firth ice divide back into the Southern Uplands, causing the easterly flow of ice to be weakened, and resulting in southeasterly flow of ice down the North Tyne Valley; and stage III was characterised by strong drawdown of ice into the Irish Sea Ice Basin, thus starving the Tyne Gap of ice and causing progressive ice sheet retreat westwards back across the watershed, prior to ice stagnation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Gentoso, M. J., Evenson, E. B., Kodama, K. P., Iverson, N. R., Alley, R. B., Berti, C. & Kozlowski, A. 2012 (January): Exploring till bed kinematics using AMS magnetic fabrics and pebble fabrics: the Weedsport drumlin field, New York State, USA. Boreas, Vol. 41, pp. 31–41. 10.1111/j.1502‐3885.2011.00221.x. ISSN 0300‐9483. Thick, relatively homogeneous basal tills exposed in the drumlins and flutes of the Weedsport drumlin and flute field in New York State exhibit anisotropy of magnetic susceptibility (AMS) and pebble fabrics that are consistently oriented parallel to the streamlined bedforms. The pebble fabrics and AMS fabrics are concordant. In this study, six drumlins and five flutes were sampled. Thermally induced, incremental reduction of isothermal remanent magnetization indicates that AMS is caused by primarily elongate maghaemite grains. The orientations of principal axes of maximum susceptibility (k1) are generally parallel to pebble long‐axis orientations, and tend to plunge mildly up‐glacier. Fabric directions are generally parallel to drumlin long‐axis orientations, but deviate by 12°–23° from flute directions. Fabrics of the flutes are stronger and more unidirectional than those of the drumlins. These results support the use of AMS as a fast and objective method for characterizing fabrics in tills, and suggest hypotheses about basal processes linked to glacially streamlined landforms.  相似文献   

12.
Aario  R. 《GeoJournal》1977,1(6):65-72
Associations of flutings, drumlins, hummocks and transverse ridges were created in the inner marginal zone of the ice sheet, where, nearer the ice margin, the ice was already thinner and the former higher flow velocity had slowed down due to the decreased volume of transported ice. However, as the ice flow mechanics tend to favour certain higher flow velocities, which can, to some extent, even be self-supporting, the speed of the ice did not slow down homogenously throughout the ice mass. Certain parts of the ice continued to move at the higher speed but an increasing number of units appeared, where the velocity had dropped down to a considerably lower level. In the resulting flow pattern, with fast and slow units of ice flowing side by side, a drag effect contributed to a spiral secondary flow between the flow units of differential velocity.Both depositional and erosional processes were involved and, depending on the balance between them, the resulting bed configuration could be formed by either one or by a combined effect of both of these processes. However, faster flow regime more often favoured erosion and in areas of lower regime deposition more often prevailed. Consequently troughs were formed in the areas of higher velocity, while ridges and other positive landforms were created in the areas of lower velocity. The spiral flow frequently transferred drift from the trough area to the area of lower flow regime, and therefore the flute-ridges and drumlins were often formed depositionally by the combined effect of the slow parallel flow and the spiral flow component. Rogen ridges indicate an undulating flow. This could also exist simultaneously with the other kinds of flow and many landforms owe their characteristics to their combined effect.  相似文献   

13.
The presence of a complex bedform arrangement on the sea floor of the continental shelf in the western Amundsen Sea Embayment, West Antarctica, indicates a multi-temporal record of flow related to the activity of one or more ice streams in the past. Mapping and division of the bedforms into distinct landform assemblages reveals their time-transgressive history, which implies that bedforms can neither be considered part of a single downflow continuum nor a direct proxy for palaeo-ice velocity, as suggested previously. A main control on the bedform imprint is the geology of the shelf, which is divided broadly between rough bedrock on the inner shelf, and smooth, dipping sedimentary strata on the middle to outer shelf. Inner shelf bedform variability is well preserved, revealing information about local, complex basal ice conditions, meltwater flow, and ice dynamics over time. These details, which are not apparent at the scale of regional morphological studies, indicate that past ice streams flowed across the entire shelf at times, and often had onset zones that lay within the interior of the Antarctic Ice Sheet today. In contrast, highly elongated subglacial bedforms on sedimentary strata of the middle to outer shelf represent a timeslice snapshot of the last activity of ice stream flow, and may be a truer representation of fast palaeo-ice flow in these locations. A revised model for ice streams on the shelf captures complicated multi-temporal bedform patterns associated with an Antarctic palaeo-ice stream for the first time, and confirms a strong substrate control on a major ice stream system that drained the West Antarctic Ice Sheet during the Late Quaternary.  相似文献   

14.
Ice streams are major dynamic elements of modern ice sheets, and are believed to have significantly influenced the behaviour of past ice sheets. Funen Island exhibits a number of geomorphological and geological features indicative of a Late Weichselian ice stream, a land-based, terminal branch of the major Baltic Ice Stream that drained the Scandinavian Ice Sheet along the Baltic Sea depression. The ice stream in the study area operated during the Young Baltic Advance. Its track on Funen is characterized by a prominent drumlin field with long, attenuated drumlins consisting of till. The field has an arcuate shape indicating ice-flow deflection around the island's interior. Beneath the drumlin-forming till is a major erosional surface with a boulder pavement, the stones of which have heavily faceted and striated upper surfaces. Ploughing marks are found around the boulders. Exact correspondence of striations, till fabric and drumlin orientation indicates a remarkably consistent flow direction during ice streaming. We infer that fast ice flow was facilitated by basal water pressure elevated to the vicinity of the flotation point. The ice movement was by basal sliding and bed deformation under water pressure at the flotation level or slightly below it, respectively. Subglacial channels and eskers post-dating the drumlins mark a drainage phase that terminated the ice-stream activity close to the deglaciation. Identification of other ice streams in the Peribaltic area is essential for better understanding the dynamics of the land-based part of the Scandinavian Ice Sheet during the last glaciation.  相似文献   

15.
We report evidence for a major ice stream that operated over the northwestern Canadian Shield in the Keewatin Sector of the Laurentide Ice Sheet during the last deglaciation 9000–8200 (uncalibrated) yr BP. It is reconstructed at 450 km in length, 140 km in width, and had an estimated catchment area of 190000 km2. Mapping from satellite imagery reveals a suite of bedforms ('flow-set') characterized by a highly convergent onset zone, abrupt lateral margins, and where flow was presumed to have been fastest, a remarkably coherent pattern of mega-scale glacial lineations with lengths approaching 13 km and elongation ratios in excess of 40:1. Spatial variations in bedform elongation within the flow-set match the expected velocity field of a terrestrial ice stream. The flow pattern does not appear to be steered by topography and its location on the hard bedrock of the Canadian Shield is surprising. A soft sedimentary basin may have influenced ice-stream activity by lubricating the bed over the downstream crystalline bedrock, but it is unlikely that it operated over a pervasively deforming till layer. The location of the ice stream challenges the view that they only arise in deep bedrock troughs or over thick deposits of 'soft' fine-grained sediments. We speculate that fast ice flow may have been triggered when a steep ice sheet surface gradient with high driving stresses contacted a proglacial lake. An increase in velocity through calving could have propagated fast ice flow upstream (in the vicinity of the Keewatin Ice Divide) through a series of thermomechanical feedback mechanisms. It exerted a considerable impact on the Laurentide Ice Sheet, forcing the demise of one of the last major ice centres.  相似文献   

16.
Three‐dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1–2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast‐flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The sea-floor morphology of two pronounced across-fjord bedrock thresholds located at the mouths of Ofotfjorden and Tysfjorden, northern Norway, has been analysed based on swath bathymetry and seismic data. The Younger Dryas ice front was located here during the recession of one of the large palaeo-ice streams of the Fennoscandian Ice Sheet. The thresholds are several kilometres long and wide, rising to several hundred metres above the adjacent sea floor, and the slopes are steep, up to 25°. The Ofotfjorden threshold is draped by acoustically discontinuous to chaotic sediments partly infilling the bedrock relief. A pattern of well-developed, subglacial bedforms (e.g. crag-and-tail formations, drumlins and glacial lineations) on top of both thresholds suggests fast-flowing ice. A series of smaller transverse ridges is identified on both thresholds and probably records ice-front oscillations during the final deglaciation. The distal parts of the sediments have been remobilized by slides that occurred after glacial retreat from the thresholds. Earthquake activity due to the isostatic rebound following ice retreat from this area was the most likely triggering mechanism for the slides. The location of the ice front on a prominent bedrock threshold indicates that the basin configuration was important in locating the maximum position of the climatically induced re-advance, i.e. a topographic control on the maximum Younger Dryas position in the Ofotfjorden and Tysfjorden area is suggested.  相似文献   

18.
The range of genetic and climatic interpretations of Scottish ‘hummocky moraine’ is reviewed, and new data are presented from the Isle of Skye, western Scotland, which are used as the basis of a genetic classification. ‘Hummocky moraine’ on Skye is shown to consist of three principal sediment-landform associations: (1) recessional moraines; (2) chaotic ice-stagnation moraines; and (3) drumlins and fluted moraines. The recessional moraines consist of transverse moraine ridges and chains of mounds, and were formed by a combination of glaciotectonics and debris accumulation at active ice margins. Second, chaotic moraines consist of randomly-distributed hummocks, mounds and rim-ridges and record deposition in contact with inactive ice. Finally, drumlins and fluted moraines are longitudinally-oriented subglacial bedforms formed by a combination of lodgement and sediment deformation. Individual occurrences of ‘hummocky moraine’ may comprise one, two or all of these associations. The detailed study and differentiation of Scottish ‘hummocky moraine’ provides a valuable source of information on former glacier dynamics and landscape change.  相似文献   

19.
This paper examines marine geophysical and geological data, and new multibeam bathymetry data to describe the Pleistocene sediment and landform record of a large ice‐stream system that drained ~3% of the entire British?Irish Ice Sheet at its maximum extent. Starting on the outer continental shelf NW of Scotland we describe: the ice‐stream terminus environment and depocentre on the outer shelf and continental slope; sediment architecture and subglacial landforms on the mid‐shelf and in a large marine embayment (the Minch); moraines and grounding line features on the inner shelf and in the fjordic zone. We identify new soft‐bed (sediment) and hard‐bed (bedrock) subglacial landform assemblages in the central and inner parts of the Minch that confirm the spatial distribution, coherence and trajectory of a grounded fast‐flowing ice‐sheet corridor. These include strongly streamlined bedrock forms and megagrooves indicating a high degree of ice‐bed coupling in a zone of flow convergence associated with ice‐stream onset; and a downstream bedform evolution (short drumlins to km‐scale glacial lineations) suggesting an ice‐flow velocity transition associated with a bed substrate and roughness change in the ice‐stream trunk. Chronology is still lacking for the timing of ice‐stream demise; however, the seismic stratigraphy, absence of moraines or grounding‐line features, and presence of well‐preserved subglacial bedforms and iceberg scours, combined with the landward deepening bathymetry, all suggest that frontal retreat in the Minch was probably rapid, via widespread calving, before stabilization in the nearshore zone. Large moraine complexes recording a coherent, apparently long‐lived, ice‐sheet margin position only 5–15 km offshore strongly support this model. Reconstructed ice‐discharge values for the Minch ice stream (12–20 Gt a?1) are comparable to high mass‐flux ice streams today, underlining it as an excellent palaeo‐analogue for recent rapid change at the margins of the Greenland and West Antarctic Ice Sheets.  相似文献   

20.
Large‐scale streamlined glacial landforms are identified in 11 areas of northwest Scotland, from the Isle of Skye in the south to the Butt of Lewis in the north. These ice‐directional features occur in bedrock and superficial deposits, generally below 350 m above sea level, and where best developed have elongation ratios of >20:1. Sidescan sonar and multibeam echo‐sounding data from The Minch show elongate streamlined ridges and grooves on the seabed, with elongation ratios of up to 70:1. These bedforms are interpreted as mega‐scale glacial lineations. All the features identified formed beneath The Minch palaeo‐ice stream which was ca. 200 km long, up to 50 km wide and drained ca. 15 000 km2 of the northwest sector of the last British‐Irish Ice Sheet (Late Devensian Glaciation). Nine ice‐stream tributaries and palaeo‐onset zones are also identified, on the basis of geomorphological evidence. The spatial distribution and pattern of streamlined bedforms around The Minch has enabled the catchment, flow paths and basal shear stresses of the palaeo‐ice stream and its tributaries to be tentatively reconstructed. © British Geological Survey/Natural Environment Research Council copyright 2007. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号