首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Initial Nd isotopic ratios are reported for 23 samples representing magmatic crustal components in the Svecokarelian terrain of South Finland. U-Pb zircon ages are determined for all geologic units, involving 21 separate upper concordia intercept ages based on more than 100 UP-b analyses. The ages range for all the rocks from 1.90 Ga for primitve plutonic rocks to 1.79 Ga for post-tectonic intrusions. The well-known gabbro-diorite-tonalite-trondhjemite association of the Kalanti district appears to consist of components with different ages: trondhjemites are probably 1.90 Ga or older, diorites/tonalites belong to the main Svecokarelian plutonic eposide at 1.89-1.87 Ga, and at least some gabbro has a post-tectonic age of 1.80 Ga. Nd (T) values range between +2 to +3 for meta-andesites, large gabbros and primitive granitoids to –0.5 for more evolved granitoids. A magma source with Nd of at least +2 to +3 was available during 1.90 to 1.87 Ga, but evolved granitoids have Nd close to zero. The preferred interpretation is that depleted mantle with Nd=+4 to +5 was present beneath the Svecokarelian crust forming during 1.9-1.8 Ga, and that all rocks have been affected more or less by addition of an Archean crustal component with Nd=–9 to –13. The primitive rocks with Nd=+2 to + 3 were only slightly affected, while granitoids with Nd close to zero include a 10% Archean component. The widespread nature of the Archean addition and the distance of up to 500 km to actual exposed Archean crust make it most realistic that the Archean component was added to the form of sediments delivered by subducting Proterozoic ocean crust. The plutonic rocks of the Finnish Svecokarelian crust in areas away from Archean cratons consist of 90% newly mantle-derived material.  相似文献   

2.
Rb-Sr isotopic data for anorthosites, charnockites, ferrodioritic to quartz monzonitic plutons, and high-grade gneisses of the Blue Ridge of central Virginia show evidence of post-emplacement metamorphism, but in some cases retain Grenville ages. The Pedlar River Charnockite Suite yields an isochron age of 1021 +/-36 Ma, (initial 87Sr/86Sr ratio of 0.7047 +/-6), which agrees with published U-Pb zircon ages. Five samples of that unit which contain Paleozoic mylonitic fabrics define a regression line of 683 Ma, interpreted as a mixing line with no age significance. Samples of the Roseland Anorthosite Complex show excessive scatter on a Rb-Sr evolution diagram probably due to Paleozoic (475 m.y.) metamorphism. Data from the ferrodioritic to quartz monzonitic plutons of the area yield an age of 1009 +/-26 Ma (inital ratio=0.7058 +/-4), which is in the range of the U-Pb zircon ages of 1000–1100 Ma. The Stage Road Layered Gneiss yields an age of 1147 +/-34 Ma (initial ratio of 0.7047 +/- 5).Sm-Nd data for the Pedlar River Charnockite Suite reflect a pre-Grenville age of 1489 +/-118 Ma ( Nd=+6.7 +/-1.2). Data for the Roseland Anorthosite Complex and the ferrodioritic to quartz monzonitic plutons yield Grenville isochron ages of 1045 +/44 Ma ( Nd=+1.0 +/-0.3) and 1027 +/-101 Ma ( Nd=+1.4 +/-1.0), respectively. Two Roseland Anorthosite samples plot far above the isochron, demonstrating the effects of post-emplacement disturbance of Sm-Nd systematics, while mylonitized Pedlar River Charnockite Suite samples show no evidence of Sm-Nd redistribution.The disparity of the Sm-Nd age and other isotopic ages for the Pedlar River Charnockite Suite probably reflects a Sm-Nd source age, suggesting the presence of an older crust within this portion of the ca. 1 Ga old basement.  相似文献   

3.
Young volcanic rocks from different sections of the Aleutian Islands-Alaska Peninsula Arc have been measured for 87Sr/86Sr, 143Nd/144Nd and some trace elements. We found the 143Nd/144Nd to be highly restricted in range ( Nd=6 to 7) and low as compared to midocean ridge ba-salts (MORB). This indicates that the source of the Aleutian Arc magmas is different from MORB and remarkably isotopically homogeneous with respect to Nd. The range reported here for arc rocks is substantially smaller than found by other workers. However, the Sr isotope ratios vary considerably ( Sr=–24 to –14). Those samples from small volcanic centers north of the main arc (second arc) are characterized by low Sr. Our data in combination with previous studies suggest that there are slight geochemical differences between discrete sections of the arc. The general uniformity of Nd isotope ratios are thought to be the surface expression of an efficient mixing or homogenization process beneath the arc plate, but which still causes a wide dispersion in Sr isotopic composition.To relate the arc rocks to the broader tectonic setting and to identify possible sources of arc magmas, measurements were done on volcanic and sedimentary rocks from the North Pacific/Bering Sea area. Alkali basalts from the back-arc islands St. George, Nunivak and St. Lawrence and alkali-rich tholeiites from the fore-arc have Nd=+4 to +9 and are correlated on the Sr- Nddiagram parallel to the mantle array but shifted to lower Sr. These samples are thought to be isotopically representative of the mantle transported to that region. A tholeiitic basalt from the Kamchatka Basin ocean floor (back-arc), however, yielded typical MORB values ( Nd=10, Sr=–24). Composite sediment samples were made from DSDP cores in the Aleutian Abyssal Plain, Gulf of Alaska and the Alka Basin which represent mixtures of continentally and arc-derived materials. These composites have intermediate Nd isotopic ( Nd= –2 and +2) and high Sr isotopic values ( Sr=+9 and +37). These data show that possible source materials of the Aleutian Arc volcanics are isotopically different from and much more heterogeneous than the arc rocks themselves.On the basis of this study and of literature data, we developed a set of alternative models for volcanic arc magma generation, based on the restricted range in Nd and the wider range in Sr for arc rocks. Different isotopic and trace element characteristics found in different arcs or arc sections are explained by varying mixing proportions or concentrations in source materials. The basic observations require rather strict mixing ratios to obtain constant Nd. The preferred model is one where the melting of subducted oceanic crust is controlled by the amount of trapped sediment with the melting restricted to the upper part of the altered basaltic layer. Homogenization within the upper part of the oceanic crust is brought about by hydrothermal circulation attending dewatering of the slab during subduction and possibly some oxygen exchange of the magmas on ascent.Division Contribution Number 3849 (411)  相似文献   

4.
Ijolites from the type locality at Iivaara, Finland, form a continuous series of magmatic rocks ranging from urtites to melteigites. Both Ni and Cr, but also the large ion lithophile light-rare-earth elements, Zr, Hf, Nb, Rb, Sr and Ba are low in concentration. The Nd contents equal those of the neighboring fenites, Sr is distinctly less abundant, and there is no significant Eu anomaly. The 143Nd/144Nd and 87Sr/86Sr of the ijolites demonstrate a systematic covariation between the data of carbonaties from the Kola Alkaline Province (Sr – 13.8, Nd + 5.6) and those of the fenites at Iivaara (Sr + 132.9, Nd – 24.7) with Sr varying from +0.3 to +23.9 and Nd varying from-9.2 to-19.3. The trace element abundances and the isotopic data give evidence for a crystallization of the rocks from a liquid generated by melting (rheomorphism) of high-grade fenitized country rocks rather than from a primary mantle-derived magma which was contaminated at crustal levels. The fenitization of wall rocks preceding the ijolite magma formation was clement selective. Mixing of elements during the fenitization process between the designated components carbonatite (or derivative fenitizing fluid) and wall rock should have been dynamical depending on the stability of the wall rock mineral assemblages in contact with the fenitizing fluids, the migration velocity of these fluids, and their capacity of the respective elements. Such dynamical mixing explains best the variation of the isotope ratios withont systematic covariation of the respective element concentrations.  相似文献   

5.
New Hf isotopic compositions for island arc basalts from the Luzon arc (Philippines) define a remarkable sub-horizontal trend in Hf–Nd isotopic space with a small range of Hf (+5 to +17) associated with a large variation in Nd (–7 to +8). The data plot above and barely overlap the terrestrial array defined by oceanic basalts and continental crust. Mixing hyperbolas passing through the data intersect fields for depleted mantle and pelagic sediments suggesting that these two components formed the source of the Luzon arc lavas. An exception is the Batan Island where the low Nd ratios are associated with low Hf values. A mixing hyperbola fitting the Batan samples suggests that their mantle source was modified by subducted material prior to contamination by terrigenous clays. More generally, the geochemical relationships in Luzon lavas show that the mixing endmembers are source components rather than melts. The relationship between Nd and Hf isotopic compositions in the Luzon volcanics show that the type of sediment subducted under an island arc is a determining factor in the control of the two isotopic systems in island arc environments.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
Greenstone, blueschist and eclogite metabasaltic blocks from the Franciscan complex of California preserve extensive petrographic and chemical evidence for interaction with hydrous fluids at high-P, low-T metamorphic conditions. The Nd and Sr isotope variations within and among the blocks constrain the origin of the basaltic protoliths, the nature of the fluid metasomatism that occurred within the upper levels (15–45 km) of the paleosubduction zonc, and the character and provenance of the rock that generated the hydrous fluids within the paleosubduction zone. Samples with little or no petrographic evidence of retrograde alteration and unaltered garnet separates have Nd. With increasing degrees of retrograde alteration, Nd isotope compositions are consistently lower, ranging down to Nd(160)=5. Actinolitic alteration rinds which are present on some blocks have the least radiogenic compositions with Nd=1.6 to 6.1. While Nd isotope compositions of unaltered blockes are in the range expected for basalt derived from normal depleted mantle, the Sr isotope compositions are more radiogenic ranging from Sr(160)=–5 to +11. Compositions of unaltered eclogite and blue-schist blocks are consistent with a protolith origin in normal oceanic crust derived from depleted mantle. The Sr isotopy systematics indicate that the protoliths were modified by seawater alteration in an ocean-floor hydrothermal system. Isotopic compositions of samples from parts of blocks that have a retrograde metamorphic overprint show a strong correlation between less radiogenic Nd compositions and the extent of retrograde metamorphism. Maximum Nd isotope ratios of the metasomatizing fluid are provided by analyses of actinolitic rinds, and range from Nd(160)=1.6 to 6.1. A possible source for fluids of this composition is subducted sediment that was derived from a continental craton. Because rind formation occurred while the basaltic blocks were within an ultramafic matrix, the fluids must have migrated from sediments in the accretionary wedge into an overlying wedge of mantle material imbricated with blocks of oceanic crust. This suggests possibly km-scale movement of fluids that carry an amount of the rare-earth elements sufficient to significantly modify the trace-element budget of subducted basalt.  相似文献   

7.
Initial 87Sr/86Sr and 143Nd/144Nd ratios of Phanerozoic granitoids and related intrusions of the New Zealand block display a mixing-type array indicative of the involvement in their sources of old continental crustal material, most likely of Proterozoic age. Sr(T) values range from –4 to +273 (87Sr/86Sr=0.7041–0.7233), while Nd(T) ranges from +2.7 to –11.0. Preexisting metasedimentary rocks have generally higher Sr and lower Nd (ranging to present-day values of +646 and –15.0, respectively), and, particularly for the Mesozoic intrusives, are isotopically appropriate mixing end-members. The widespread, early Paleozoic Greenland Group graywackes, which are derived from Proterozoic sources, are modeled as the source of the crustal end-member mixing with mantle-derived mafic magmas to produce the intrusive rocks. Four different types of models are applied to the isotopic and trace-element (Rb, Sr, Ba, REE) data: simple mixing; mixing with a partial melt of the metasedimentary rock, with or without isotopic equilibrium; and assimilation-fractional crystallization. Based on these models, some constraints may be applied on petrogenesis (e.g., the lack of high Rb concentrations points to the presence of biotite, and HREE depletion points to the presence of garnet); however, the models fail to adequately explain all the data. The New Zealand granitoids show similarities in isotopic character not only to rocks from offshore islands on the New Zealand block, but also to similar-aged granitoids in adjacent regions of Antarctica and Australia. This points to similarities in crustal character between continental blocks formerly proximal in Gondwanaland. We note an overall increase in Nd and decrease in Sr in felsic magmas from the Paleozoic to the Mesozoic to the Cenozoic in New Zealand, indicative of a decrease over time in the level of influence of recycled continental crust in subduction-related magmatism.Division Contribution No. 4538 (582)  相似文献   

8.
Single zircons from two orthogneiss complexes, the Grey Gneiss and Red Gneiss, the lowermost tectonic units in the Erzgebirge, were dated. The grey Freiberg Gneiss is of igneous origin and has a 207Pb/206Pb emplacement age of 550±7 Ma. A quartz monzonite from Lauenstein contains idiomorphic zircons with a mean 207Pb/206Pb age of 555±7 Ma as well as xenocrysts ranging in age between 850 and 1910 Ma. Red gneisses from the central Erzgebirge contain complex zircon populations, including numerous xenocrysts up to 2464 Ma in age. The youngest, idiomorphic, zircons in all samples yielded uniform 207Pb/206Pb ages between 550±9 and 554±10 Ma. Nd isotopic data support the interpretation of crustal anatexis for the origin of both units. Nd(t) values for the grey gneisses are –7.5 and –6.0 respectively, (mean crustal residence ages of 1.7–1.8 Ga). The red gneisses have a wider range in Nd(t) values from –7.7 to –2.8 (T DM ages of 1.4–1.8 Ga). The zircon ages document a distinct late Proterozoic phase of granitoid magmatism, similar in age to granitoids in the Lusatian block farther north-east. However, Palaeozoic deformation as well as medium pressure metamorphism ( 8 kbar/600–650° C) are identical in both gneiss units and distinguish these rocks from the Lusatian granitoids. The grey and red gneisses were overthrust by units with abundant high-pressure relicts and a contrasting P-T evolution. Zircon xenocryst and Nd model ages in the range 1000–1700 Ma are similar to those in granitoid rocks of Lusatia and the West-Sudetes, and document a pre-Cadomian basement in parts of east-central Europe that, chronologically, has similarities with the Sveconorwegian domain in the Baltic Shield.  相似文献   

9.
Granitoids within the Precambrian basement of north-eastern and southern Somalia are subdivided on the basis of geology, geochronology and petrology into three different assemblages. The post-kinematic assemblage in north-eastern Somalia ( 630 Ma) comprises granodiorites and granites which belong to a medium-K calc-alkaline suite. Average initial Sr, Nd and Pb isotopic ratios [Sri = 0.7048, Nd = –1.8,206Pb/204Pb(i) = 17.704 and207Pb/204Pb(i) = 15.611] indicate that these melts were derived from a mantle or juvenile crustal source with only slight involvement of pre-existing crust as a contaminant. Two different assemblages are found in southern Somalia. The older assemblage is composed of crustal anatectic, synkinematic, parautochthonous granites ( 600 Ma) related to amphibolite facies retrogression of an intensively reworked pre-Pan-African crust [Sri = 0.7100, Nd = –8.4,206Pb/204Pb(i) = 15.403 and207Pb/204Pb(i) = 15.259]. These monzo- and syenogranites are moderately potassic and peraluminous. The younger assemblage ( 470 Ma) consists of post-kinematic monzonites to syenogranites with A-type affinities. Initial Sr, Nd and Pb isotopic data for this metaluminous assemblage [Sri = 0.7114, Nd = –13.1,207Pb/204Pb(i) = 16.913 and207Pb/204Pb(i) = 15.512] indicate a significant lower crustal component but, however, also a mantle signature. The late Proterozoic to early Palaeozoic granitoids in Somalia thus express contrasting regimes, characterized by strong juvenile input in the north, close to the Arabian-Nubian Shield, whereas intense crustal reworking with little addition of juvenile material prevailed in the south. Somalia was definitively not a cratonic area during the Pan-African, but a zone of high crustal mobility.  相似文献   

10.
Sm-Nd systematics for nine whole-rock samples of hornblende norites, pyroxenites and a lamprophyre from various parts of the Cortlandt Complex were analyzed. Six of these samples from the central and eastern parts of the complex give an isochron age of 430±34 (2) Ma with an Nd value of –2.9±0.5, and the other three samples from the western part, including the lamprophyre, define a similar age of 394±33 (2) Ma but with a distinctly different Nd value of –1.4±0.4. The two different initial 143Nd/144Nd ratios corresponding to these -values are interpreted to reflect continental crustal contamination of the lamprophyric parental liquid prior to final emplacement and crystal fractionation to produce the different rock types of the complex. The intrusion age of 430 Ma for the complex clearly post-dates the major metamorphic event of the Taconic orogeny. The Nd-isotopic data also suggest a relationship between the Cortlandt Complex and a belt of lamprophyric dike rocks to the west, known as the Beemerville trend, which cuts across the metamorphic trends of the Taconic (Ratcliffe 1981).  相似文献   

11.
Rocks with boninitic affinities have been recognised in a number of ophiolites, including the Cambrian Heathcote and Mt Wellington Greenstone Belts of Victoria. Boninites and high-Mg andesites from the Heathcote Greenstone Belt show a restricted range of initial Nd values of between +3.3 to +5.8. Extremely refractory boninites from the Mt Wellington Greenstone Belt have Nd ranging from +1.3 to –9. Ti/Zr is positively correlated with Sm/Nd with the Heathcote lavas generally possessing greater depletion of Ti and enrichment of Zr relative to the middle and heavy REE with increasing LREE/HREE. These data are consistent with the generation of boninites by partial melting of refractory peridotite following invasion by LREE- and Zr-enriched, low Nd fluids. Tholeiites overlying the boninites in both greenstone belts have flat REE patterns and Nd+5, lower than that anticipated for lavas derived from depleted MORB source reservoirs in the Cambrian, suggesting that their source was also contaminated by a LREE-enriched, low Nd component similar to that involved in the generation of the Howqua boninites. The added components have characteristics compatible with their derivation from subducted altered oceanic crust and/or from wet subducted sediments. The identification of boninites and other low-Ti lavas in the Victorian greenstone belts is strong evidence for island arc development in southeastern Australia during the Lower Cambrian and provides further support for a subduction-related origin for many ophiolites.  相似文献   

12.
Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16–9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial Nd values (1 Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20–40% (by mass) wall-rock into magmas that were injected into the upper crust. The low Nd magmas most likely formed via the incorporation of low 18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher 18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13–14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70–80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites may represent a mature stage of magmatism after repeated injection of basaltic magmas, crustal melting, and volcanism cleared sufficient space in the upper crust for large magma bodies to accumulate and differentiate. The TMOV rhyolites and 0–10 Ma old basalts that erupted in southern Nevada all have similar Nd and Sr isotopic compositions, which suggests that silicic and mafic magmatism at the TMOV were genetically related. The distinctive isotopic compositions of the AT member may reflect temporal changes in the isotopic compositions of basaltic magmas entering the upper crust, possibly as a result of increasing basification of a lower crustal magma source by repeated injection of mantle-derived mafic magmas.  相似文献   

13.
The Mariánské Lázn complex (MLC) is located in the Bohemian Massif along the north-western margin of the Teplá-Barrandian microplate and consists of metagabbro, amphibolite and eclogite, with subordinate amounts of serpentinite, felsic gneiss and calcsilicate rocks. The MLC is interpreted as a metaophiolite complex that marks the suture zone between the Saxothuringian rocks to the north-west and the Teplá-Barrandian microplate to the south-east. Sm-Nd geochronology of garnet-omphacite pairs from two eclogite samples yields ages of 377±7, and 367±4 Ma. Samples of eclogite and amphibolite do not define a whole rock Sm-Nd isochron, even though there is a large range in Sm/Nd ratio, implying that the suite of samples may not be cogenetic. Eclogites do not have correlated Nd values and initial 87Sr/86Sr ratios. Five of the eight eclogite samples have high Nd values (+10.2 to +7.1) consistent with derivation from a MORB-like source, but variable 87Sr/86Sr ratios (0.7033 to 0.7059) which probably reflect hydrothermal seawater alteration. Three other eclogite samples have lower Nd values (+ 5.4 to –0.8) and widely variable 87Sr/86Sr ratios (0.7033 to 0.7096). Such low Nd values are inconsistent with derivation from a MORB, source and may reflect a subduction or oceanic island basalt component in their source. The MLC is an important petrotectonic element in the Bohemian Massif, providing evidence for Cambro-Ordovician formation of oceanic crust and interaction with seawater, Late Devonian (Frasnian-Famennian) high- and medium-pressure metamorphism related to closure of a Saxothuringian ocean basin, Early Carboniferous (Viséan) thrusting of the Teplá terrane over Saxothuringian rocks and Late Viséan extension.  相似文献   

14.
Initial Nd and Sr isotopic ratios were obtained for middle Miocene igneous rocks as well as for related rocks from the Outer Zone of Southwest Japan to investigate the petrogenesis of acidic magmas and their relation to a peculiar tectonic environment bearing on the back-arc spreading of the Japan Sea. On the Nd- Sr diagram, data points for the acidic rocks fall in the – Nd, + Sr quadrant occupying different positions from those for sedimentary and old crustal rocks, and seem to define several subparallel lines which extend towards the lower-righthand sedimentary field. The S-type acidic rocks occupy an intermediate position between I-type rocks and sedimentary ones, a fact suggesting mixing of an igneous component and a sedimentary one. The linear mixing trend observed on the Nd- Sr diagram can be attained in the restricted case that the igneous component has similar Sr/Nd concentration ratios to that of the sedimentary one, which implies an intermediate to acidic composition for the igneous component. Inconsistency between the elemental and isotopic variations observed may be reconciled by considering that mixing, probably in the relatively deep part of the crust, might have occured prior to chemical differentiation processes. The episodic igneous activity and the high heat energy required to melt such materials involving sedimentary rocks may be explained by a model in which a hot mantle region probably corresponding to the rising part of the mantle convection supplied the heating energy to the Outer Zone of Southwest Japan when passing beneath Southwest Japan in the course of movement of the hot rising part from the Shikoku basin areas to the Japan Sea area.  相似文献   

15.
Sm-Nd and Rb-Sr isotopic analyses are reported for granulite facies orthogneisses from Fiordland southwest New Zealand. Whole-rock samples define a Rb-Sr isochron age of 120±15 Ma and an initial 87Sr/86Sr ratio of 0.70391±4. Nd values (at 120 Ma) show a relatively wide range of from –0.4 to 2.7 indicating decoupling of Sr-Nd isotope systems. Associated ultramafic rocks have initial 87Sr/86Sr ratios of from 0.70380 to 0.70430 and Nd values of from 0.1 to 3.0. The different initial ratios suggest that the various intrusions, although contemporaneous, were not derived through fractionation of a single parent magma. A metasedimentary enclave incorporated during emplacement of the granulitic rocks preserves a Proterozoic isotopic signature with a measured Nd(0) value of –10.2, 87Sr/86Sr ratio of 0.73679 and a T Nd provenance age of 1490 Ma. The Rb-Sr whole rock age of the granulites is the same as obtained from recent U-Pb zircon dating (Mattinson et al. 1986) and is interpreted as the time of magmatic emplacement and essentially contemporaneous granulite facies metamorphism. Rb-Sr and Sm-Nd analyses of mineral systems indicate that the terrain had cooled below 300° C by 100 Ma providing further evidence that high grade metamorphism was of exceptionally short duration.Unmetamorphosed leucogabbros from the Early Cretaceous Darran Complex of eastern Fiordland have significantly higher Nd values (3.9 to 4.6) and slightly lower 87Sr/ 86Sr (0.70373 to 0.70386) than the western Fiordland granulites. This indicates that the western and eastern Fiordland complexes are not correlative although both have geochemical similarities to Phanerozoic calc-alkaline island-arc suites. The Fiordland granulites are LREE enriched (LaN/ YbN=12 to 40) and have trace element characteristics (e.g. high K/Rb and low Rb/Sr ratios) typical of many Rb-depleted Precambrian granulite terrains. The Fiordland trace element trends, however are attributed to magmatic, not metamorphic processes, reflecting the character of the Early Cretaceous magma sources. The range of Nd values, but uniform initial 87Sr/86Sr of the western Fiordland granulites is consistent with derivation of the parent Early Cretaceous magmas at least in part from a LREE enriched, low Rb/Sr protoliths of mid-to late-Paleozoic age. Partial melting of this protolith occurred during or immediately preceding a period of great crustal thickening culminating in rapid thickening of existing crust by 20 km following emplacement of the granulitic rocks. The rapid crustal thickening was probably a consequence of a collisional event in which an Early Cretaceous magmatic arc was over-ridden by one or more thrust sheets.  相似文献   

16.
The polyphasal magmatic evolution of the Caledonian Karmøy Ophiolite Complex includes: (1) formation of an axis sequence from island-arc tholeiitic (IAT) and more MORB-like magmas (493+7/-4 Ma); (2) intrusion of magmas of boninitic affinity (485±2 Ma); (3) intrusion of MORB- and IAT-like magmas; (4) intrusion and extrusion of calc-alkaline magmas (470+9/-5 Ma); (5) intrusion and extrusion of basalts with alkaline trace-element affinity. Repeated intrusion of MORB and IAT-like magmas may be explained by intermittent magmatism involving magma-chamber solidification and remelting of a source characterized by initial Nd of approximately +6.5. The boninitic rocks may have formed from two LREE-depleted sources: the primary source of the axis-sequence magmas and the residual source left after extraction of these magmas. These sources have been enriched in LREE, Th and Zr from subducted material exhibiting a continental Nd-isotope signature with initial Nd less than-8. Covariation between Nd and Th, Zr, Nd, Y and Yb may be explained by metasomatic enrichment of a LREE-depleted mantle source by a LREE-enriched subduction component, followed by partial melting during which the degree of melting of the metasomatized mantle source increased linearly with the amount of subduction component added to the mantle source. The calc-alkaline magmas may have formed by remelting of a highly depleted source, which became enriched in some trace elements derived from the source of the subsequent alkaline magmatism. The geology and geochemistry of the Karmøy Ophiolite Complex suggest growth of an island-arc upon newly-formed oceanic crust, followed by arc-splitting and the development of a new basin.  相似文献   

17.
The area of Gebeit Mine in the northern Red Sea Hills, Sudan, is built up of voluminous volcanic rocks and minor volcaniclastic and clastic sequences. According to their chemical and modal compositions the Gebeit volcanics can be devided into four groups: (a) cpx-physic basalts with clinopyroxene and plagioclase as the dominant phenocrysts and minor opaques; (b) hbl-physic basalts with hornblende, clinopyroxene, plagioclase and subordinate magnetite including one rare dacite; (c) pl-phyric andesites with plagioclase phenocrysts in a matrix that is rich in magnetite; and (d) aphyric basalts. The compositional variation within the distinct volcanic groups can only partly be explained by fractional crystallization, and more than one magma source reservoir is required.Mineral and whole rock Sm/Nd data for the cpx-physic and hbl-physic basalts yield an isochron age of 832 ± 26 Ma (NdT = 6.74 ± 0.19, MSWD = 0.12) which is interpreted as the age of eruption. The Ndt values for the aphyric basalts and pl-physic andesites range from 6.7 to 8.3, indicating the involvement of different depleted magma sources. The Nd and Sr isotopic data rule out any significant influence of older continental crust in the formation of the Gebeit volcanics and indicate an intraoceanic origin. This implies that the Gebeit terrane is a segment of juvenile crust that originated in a subduction-related environment and supports the arc accretion model for the Arabian-Nubian Shield.  相似文献   

18.
The late Archean, north-south trending Kolar Schist Belt in south India, 4 km wide by 80 km long, is thought to be a suture between two gneiss terranes (Krogstad et al. 1989). Within this volcanics-dominated belt are recognized both tholeiitic and high Mg (komatiitic and picritic) amphibolites, which make up some 70% and 5% respectively of the exposed outcrops. A massive tholeiitic amphibolite separates the belt into western and eastern parts. A Pb-Pb whole-rock age of 2732±155 Ma on samples from a single outcrop of massive tholeiite is a minimum age for this rock. Samples of this rock have Nd values at 2700 Ma that range between +3.8 and +6.8, 1 (initial 238U/204Pb) of 7.5 and K 1 (initial 232Th/238U) of about 4. Two different types of high-Mg amphibolites are recognized from the western part of the belt: a picritic or P-type, and a komatiitic or K-type. The P-type have highly variable Ce/Al ratios all greater than chondritic, Nd/Yb ratios greater than chondritic, Nd at 2700 Ma of +1.5 to +8, and Pb isotope compositions variable in 207Pb/204Pb with 1 of about 8.0 and k 1 of about 4. The trace-element data suggest that the light-REE enrichment is a character of the mantle source and is not due to residual garnet. The K-type amphibolites have near chondritic Ce/Al and Nd/Yb ratios, Nd at 2700 Ma of +1.5 to +8, and 1 of about 8 and k 1 of about 4. Although the P-type is light-REE enriched compared to the K-type, both types have similar Ce/Nd ratios as well as initial Pb and Nd isotopes. If the 2696±136 Ma age for the Sm-Nd isochron which includes both types of high-Mg amphibolite has any significance it dates the time of light-REE enrichment of the mantle source for the P-type komatiitic amphibolites. The high-Mg amphibolites in the eastern part of the belt are light-REE enriched, have Pb isotopic compositions that are variable in 207Pb/204Pb with a 1 about 8.5 and Nd at 2700 Ma of +1.8 to +4.5. Hydrothermal fluids associated with metamorphism and shearing prior to about 2400 Ma ago were responsible for the introduction of gold-quartz-carbonate veins into the Kolar Schist Belt. The Pb isotope composition of galena in these veins suggests that these fluids may have also introduced extraneous Pb from adjacent older granitoid gneisses into the amphibolites, which could be responsible for the variability in the 207Pb/204Pb ratios of the samples. This extraneous Pb probably is not responsible for the distinct Pb isotope character of each type of amphibolite.  相似文献   

19.
The Peräpohja schist belt in northern Finland rests unconformably on Archaean granitoids, and marks the early stages of Proterozoic crustal evolution in the Fennoscandian (Baltic) shield. 2440 Ma old layered mafic intrusions predate the supracrustal , and ca. 2200 Ma old sills of the gabbro-wehrlite association intrude the lowest quartzites and volcanics (Runkaus) of the sequence. The Sm-Nd mineral isochron of the Penikat layered intrusion gives an age of 2410±64 Ma. The initial Nd-values of the Penikat intrusion (Nd(2440) = –1.6) and the Runkausvaara sill (Nd(2200) 0) suggest that these mafic magmas were contaminated by older crustal material. The Sm-Nd and Pb isotopic results on the 2.44–2.2 Ga old Runkaus volcanics indicate mobility of Pb, fractionation of Sm/Nd during late greenschist facies metamorphism, and crustal contamination. The Pb-Pb data provide an age of 1972±80 Ma with a high initial 207Pb/204Pb ratio (1 = 8.49), while scattered Sm-Nd data result in an imprecise age of 2330±180 Ma, with an initial Nd-value of about zero. Secondary titanite gives an U-Pb age of ca. 2250 Ma. The Jouttiaapa basalts, in contrast, ascended from the mantle without interaction with older crust. These LREE depleted tholeiites mark a break in continental sedimentation, and yield a Sm-Nd age of 2090±70 Ma. Their initial Nd = + 4.2 ±0.5 implies that the subcontinental early Proterozoic mantle had been depleted in LREE for a long period of time. The first lava flows are strongly depleted in LREE, suggesting that their source was significantly more depleted than the source of mid-ocean ridge basalts today.  相似文献   

20.
Zircons from a suite of basic to acidic calcalkaline igneous rocks from the southern Adamello batholith (S AB), Southern Alps, N Italy, display complex U–Pb isotopic patterns which are mainly due to the presence of variable amounts of isotopically heterogeneous, inherited radiogenic Pb, and to minor postmagmatic loss of Pb. Inherited Pb is mainly composed of 1) a 1100 Ma Pb component located in zircons devoid of visible cores and 2) a 450 Ma component associated with conspicuous bubble-rich turbid cores. In concordia representation the data points conform to lower intercept ages of 40 Ma. A linear fit of three samples devoid of visible cores from the granodiorite defines an intrusion age of 39.3 Ma. U–Pb systematics of zircon (in particular U content) and crystal morphology are clearly related. Zircons of type G1, which form relatively late in the zircon crystallization sequence, consistently show the highest U contents in each zircon population. These late zircons, however, are not devoid of inherited radiogenic lead. In a population from a granodiorite, cores are randomly distributed throughout the morphological spectrum. The presence of old inherited zircon components in all investigated samples furnishes proof for involvement of crustal material in the genesis of the S AB rocks. Samples characterized by crustal Nd and Sr values usually show enhanced zircon inheritance. Inheritance varies with differentiation and reaches a maximum for intermediate to acidic members; these compositions show the highest Zr saturation temperatures calculated for the rock spectrum studied. Textural relations between zircon and major phases indicate that the magmas of the leucocratic rocks were saturated with Zr at an early stage of crystallization. On the other hand, Zr solubilities and textural relations consistently show, that melts of basic to intermediate rocks were not saturated with Zr. Extension of the Zr solubility model to mineral/melt mixtures of tonalitic bulk composition demonstrates that Zr solubility in the residual melt is drastically reduced by crystallization of plagioclase and amphibole. Survival of xenocrystic zircons in the mafic to intermediate rocks of the S AB can best be explained in terms of dissolution kinetics. Since temperature and H2O content of these Zr-undersaturated melts were favourable for relatively rapid zircon dissolution, inherited zircons (in particular trace-element rich unstable cores) cannot have been exposed to such conditions over extended time periods. Therefore, the tonalitic or more basic magmas of the S AB cannot have been derived from crustal sources by slow processes such as burial metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号