首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Structural analysis of data displaying trends may be performed with the help of generalized increments, the variance of these increments being a function of a generalized covariance. Generalized covariances are estimated primarily by parametric methods (i. e., methods searching for the best coefficients of a predetermined function), but also may be computed by one known nonparametric alternative. In this paper, a new nonparametric method is proposed. It is founded on the following principles: (1) least-squares residues are generalized increments; and (2) the generalized covariance is not a unique function, but a family of functions (the system is indeterminate). The method is presented in a general context of a k order trend in Rd, although the full solution is given only fork = I in Ri. In Ri, higher order trends may be developed easily with the equations included in this paper. For higher dimensions in space, the problem is more complex, but a research approach is proposed. The method is tested on soil pH data and compared to a parametric and nonparametric method.  相似文献   

2.
On the estimation of the generalized covariance function   总被引:1,自引:0,他引:1  
The estimation of the generalized covariance function, K, is a major problem in the use of intrinsic random functions of order k to obtain kriging estimates. The precise estimation by least-squares regression of the parameters in polynomial models for K is made difficult by the nature of the distribution of the dependent variable and the multicollinearity of the independent variables.  相似文献   

3.
A procedure is proposed that employs first-moment estimation (kriging), cross-validation, and response surface analysis to estimate parameters of a generalized covariance function. Results from application of this procedure to two data sets are given.  相似文献   

4.
In kriging, parametric approaches to covariance (or variogram) estimation require that unknown parameters be inferred from a single realization of the underlying random field. An approach to such an estimation problem is to assume the field to be Gaussian and iteratively minimize a (restricted) negative loglikelihood over the parameter space. In doing so, the associated computational burden can be considerable. Also, it is usually not easy to check whether or not the minimum achieved is global. In this note, we show that in many practical cases, the structure of the covariance (or variogram) function can be exploited so that iterative minimizing algorithms may be advantageously replaced by a procedure that requires the computation of the roots of a simple rational function and the search for the minimum of a function depending on one variable only. As a consequence, our approach allows one to observe in a straightforward fashion the presence of local minima. Furthermore, it is shown that insensitivity of the likelihood function to changes in parameter value can be easily detected. The note concludes with numerical simulations that illustrate some key features of our estimation procedure.  相似文献   

5.
Generalized covariance functions in estimation   总被引:3,自引:0,他引:3  
I discuss the role of generalized covariance functions in best linear unbiased estimation and methods for their selection. It is shown that the experimental variogram (or covariance function) of the detrended data can be used to obtain a preliminary estimate of the generalized covariance function without iterations and I discuss the advantages of other parameter estimation methods.  相似文献   

6.
Fitting trend and error covariance structure iteratively leads to bias in the estimated error variogram. Use of generalized increments overcomes this bias. Certain generalized increments yield difference equations in the variogram which permit graphical checking of the model. These equations extend to the case where errors are intrinsic random functions of order k, k=1, 2, ..., and an unbiased nonparametric graphical approach for investigating the generalized covariance function is developed. Hence, parametric models for the generalized covariance produced by BLUEPACK-3D or other methods may be assessed. Methods are illustrated on a set of coal ash data and a set of soil pH data.  相似文献   

7.
Marshall and Mardia (1985) and Kitanidis (1985) have suggested using minimum norm quadratic estimation as a method to estimate parameters of a generalized covariance function. Unfortunately, this method is difficult to use with large data sets as it requires inversion of an n × n matrix, where n is number of observations. These authors suggest replacing the matrix to be inverted by the identity matrix, which eliminates the computational burden, although with a considerable loss of efficiency. As an alternative, the data set can be broken into subsets, and minimum norm quadratic estimates of parameters of the generalized covariance function can be obtained within each subset. These local estimates can be averaged to obtain global estimates. This procedure also avoids large matrix inversions, but with less loss in efficiency.  相似文献   

8.
Quadratic estimators of components of a nested spatial covariance function are presented. Estimators are unbiased and possess a minimum norm property. Inversion of a covariance matrix is required but, by assuming that spatial correlation is absent, a priori, matrix inversion can be avoided. The loss of efficiency that results from this assumption is discussed. Methods can be generalized to include estimation of components of a generalized polynomial covariance assuming the underlying process to be an intrinsic random function. Particular attention is given to the special case where just two components of spatial covariance exist, one of which represents a nugget effect.  相似文献   

9.
The numerical stability of linear systems arising in kriging, estimation, and simulation of random fields, is studied analytically and numerically. In the state-space formulation of kriging, as developed here, the stability of the kriging system depends on the condition number of the prior, stationary covariance matrix. The same is true for conditional random field generation by the superposition method, which is based on kriging, and the multivariate Gaussian method, which requires factoring a covariance matrix. A large condition number corresponds to an ill-conditioned, numerically unstable system. In the case of stationary covariance matrices and uniform grids, as occurs in kriging of uniformly sampled data, the degree of ill-conditioning generally increases indefinitely with sampling density and, to a limit, with domain size. The precise behavior is, however, highly sensitive to the underlying covariance model. Detailed analytical and numerical results are given for five one-dimensional covariance models: (1) hole-exponential, (2) exponential, (3) linear-exponential, (4) hole-Gaussian, and (5) Gaussian. This list reflects an approximate ranking of the models, from best to worst conditioned. The methods developed in this work can be used to analyze other covariance models. Examples of such representative analyses, conducted in this work, include the spherical and periodic hole-effect (hole-sinusoidal) covariance models. The effect of small-scale variability (nugget) is addressed and extensions to irregular sampling schemes and higher dimensional spaces are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号