首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The distributions of two swimming crabs endemic to the New Zealand region are described, mostly from material obtained at 118 of 2544 New Zealand Oceanographic Institute benthic stations sampled.

Nectocarcinus antarcticus (Jacquinot) was found within the geographic limits 34°S‐51°S and 166° E‐176° W, with concentrations around Cook Strait, the Chatham Rise, Foveaux Strait, and the Auckland Is. N. bennetti (Takeda & Miyake) occurred between 44° S and 53° S, and 165° E and 180°, most frequently in the south and west, on the ‘highs’ of the Campbell Plateau. Although the distributions overlap between 44° S and 51° S, and this overlap zone produced most of the available material, only one joint occurrence of the two species was noted. This apparent separation was not satisfactorily explained by any of the ecological factors recorded. The depth ranges of both species were broadly similar (0–550 m for TV. antarcticus, 20–474 m for JV. bennetti); both were most frequently obtained at depths less than 200 m. Both occurred primarily on the coarser sediment grades, though N. antarcticus occupied a broader range of grades than N. bennetti.

The size ranges of the two species were similar; carapace lengths were 8.0–62.0 mm for N. antarcticus and 5.8–68.0 mm for N. bennetti. The larger specimens of both species were found towards the southern limits of distribution. Larger specimens of N. antarcticus were absent from depths greater than 120 m; smaller N. antarcticus and all N. bennetti occurred throughout their respective depth ranges. Ovigerous N. antarcticus (smallest, 8.8 mm carapace length) were obtained at depths of 17–263 m from May to October; ovigerous N. bennetti (smallest 36.1 mm) were from depths of 150–183 m in May only.  相似文献   

2.
Macrobenthic faunal composition was studied at six different depth ranges (30–50, 51–75, 76–100, 101–150, 151–175 and >176 m) in five transects (off Karaikkal, Parangipettai, Cuddalore‐SIPCOT, Cheyyur and Chennai) in the continental shelf of southeast coast of India. Eleven diverse taxa were found, comprising 113 species of polychaetes, 14 species of bivalves, 10 species of amphipods and ‘others’ (five tanaids, five crabs, four isopods, three echinoderms, two shrimps, two cnidarians, two fishes and one cephalochordate). Polychaetes were the dominant taxa, constituting 88.5% of the total abundance and 30.7% of the total biomass. The number of species (seven per 0.2 m2 at >176 m depth range in Chennai to 46 per 0.2 m2 at 30–50 m in Cheyyur), abundance (216 per 0.2 m2 at >176 m in Karaikkal to 353 per 0.2 m2 at 30–50 m in Cheyyur) and biomass (0.09 g per 0.2 m2 at 151–175 m in Karaikkal and 4.6 g per 0.2 m2 at 30–50 m in Cheyyur) of macrobenthos decreased with increase in depth. DO decreased gradually from 30 m depth; beyond 150 m, the decrease was pronounced due to the presence of the oxygen minimum zone. Using the distance based linear model (DISTLM), it was found that the environmental variables explained about 73.3% of the total variability in macrofaunal distribution. The heavy metals cobalt and mercury, as well as water pressure (proxy for depth), showed a significant relationship with macrofauna, explaining respectively 9, 7.3 and 7% of the total variability. The contribution of other variables was smaller.  相似文献   

3.
A preliminary scuba survey of oligotrophic Lake Rotoma in 1972 revealed a vegetation mainly composed of native hydrophytes in which exotics were at an early stage of colonisation. In 1973 the presence of species was recorded in 5708 quadrats (625 cm2) at 1 m intervals along a total of 50 line transects placed systematically around the lake. Water depth was measured, and quadrat cover and substrate type were subjectively estimated. Species frequency calculations showed that the dominant vegetation pattern was a characean meadow of Chara fibrosa f. acanthopitys (A.Br.) R.D.W., Nitella leptostachys var. leonhardii (R.D.W.) R.D.W., and N. pseudoflabellata var. mucosa (Nordst.) Bailey. The charophytes extended over a depth range of 1–17.5 m on a wide variety of substrates and gradients. Native vascular plants were absent from many transects, and had a depth range only from 0 to 4.5 m, with most occurring above 3.5 m. The Low Mixed Community, found in shallow water less than 1.25 m in depth at the northeast end of the lake, provided this area with a high species diversity. Exotic hydrophytes had established in many areas around the lake. The distribution of Lagarosiphon major (Ridley) Moss and Elodea canadensis Michx. appeared to coincide with boating access and fallen submerged trees over a depth range of 0–6.0 m, although much of the available habitat had not yet been exploited. Emergent species were most abundant within the southwest inlet and also in the lagoons surrounding the lake where sheltered conditions and shallow gradients prevail.  相似文献   

4.
粤西海陵湾养殖区邻近海域大型底栖动物生态学特征   总被引:6,自引:5,他引:1  
根据2014—2016年粤西海陵湾养殖区湾内和湾外邻近海域21°27′—21°38′N、111°42′—111°57′E 4个航次调查资料,对其大型底栖动物生态学特征进行了研究。结果表明,共鉴定大型底栖动物64种,春季种类最多为39种,秋季最低为17种。4季均以环节动物种类数最多,软体动物次之。不同季节间优势种有所差异,仅倍棘蛇尾Amphioplus sp.为周年优势种。春、夏、秋和冬季第一优势种分别为倍棘蛇尾、菲律宾蛤仔Ruditapes philippinarum、短吻铲荚螠Listriolobus brevirostris和平蛤蜊Mactra mera。平均丰度和生物量分别为213ind./m~2和15.4g/m~2,其中丰度以春季最高为248ind./m~2,夏季最低为167ind./m~2,而生物量则以秋季最高为28.0g/m~2,春季最低为2.4g/m~2;平面分布总体呈现湾外高于湾内的趋势。底栖动物Pielou均匀度和Shannon-Wiener多样性指数分别为0.95—1.00和1.56—4.07,其中时间分布规律明显,春季最高,秋季最低;空间上,两者无明显分布差异。群落结构时空差异显著,为沉积物类型、水深、底层无机氮和悬浮物以及捕食压力等因素共同影响的结果。  相似文献   

5.
The sandy substrate of Lake Taharoa (west coast, North Island, New Zealand ‐ 35°50'S, 173°41'E) is covered by communities of filamentous algae that extend from the exposed beach down to 21 m depth. The algae bind the sand to form crusts and mats which may break off as discrete plates. The dominant species are the blue‐greens Microcoleus, Nostoc, Phormidium, Lyngbya, Oscillatoria, Scytonema, Stigonema, Shizothrix, Calothrix, Dichothrix, Tolypothrix, and Anabaena, with occasional high concentrations of the desmid Cylindrocystis. Nitrogenase activity, measured by acetylene reduction, showed a wide range of rates (4–150 μmol C2H4 m‐2h‐1). Estimates of annual rates of nitrogen fixation by the Taharoa communities are comparable with those for periphytic blue‐green algae‐dominated systems reported elsewhere.  相似文献   

6.
Bathynerita naticoidea (Gastropoda: Neritidae) and Methanoaricia dendrobranchiata (Polychaeta: Orbiniidae) are two of the most abundant invertebrates associated with cold‐seep mussel beds in the Gulf of Mexico. At the methane seep known as Brine Pool NR‐1 (27 °43.415 N, 91 °16.756 W; 650 m depth), which is surrounded by a broad band of mussels (Bathymodiolus childressi), these species have distinctly different patterns of abundance, with the gastropod being found mostly at the outer edge of the mussel bed (average density in November 2003: 817 individuals·m−2 in outer zone, 20·m−2 in inner zone) and the polychaete being found almost exclusively near the inner edge (average density in November 2003: 3155 individuals·m−2 in inner zone, 0·m−2 in outer zone), adjacent to the brine pool itself. The salinity of the brine pool exceeds 120, so we hypothesized that M. dendrobranchiata should be more tolerant of high salinities than B. naticoidea. The opposite proved to be true. The gastropods were capable of withstanding salinities at least as high as 85, whereas the polychaetes died at salinities higher than 75. Both species were osmoconformers over the range of salinities (35–75) tested. Behavioral responses of B. naticoidea to salinities of 50, 60, and 70 were investigated in inverted vertical haloclines. Gastropods generally did not enter water of salinity greater than 60, but tolerated short periods at 60. Behavioral avoidance of brine should limit the vertical distribution of B. naticoidea in the inner zone to the top 2.5–5 cm of the mussel bed. Behavior is also a likely (though unproven) mechanism for controlling horizontal distribution of this species across the mussel bed. Methanoaricia dendrobranchiata can tolerate short excursions into the brine, but probably avoids hypersaline conditions by aggregating on the tops of the mussels.  相似文献   

7.
The Arabian Sea is characterized by a mid‐depth layer of reduced dissolved oxygen (DO) concentration or oxygen minimum zone (OMZ ‐DO concentration <0.5 ml·l?1) at ~150–1000 m depth. This OMZ results from the flux of labile organic matter coupled with limited intermediate depth water ventilation. Generally, benthic animals in the OMZ have morphological and physiological adaptations that maximize oxygen uptake in the limited oxygen availability. Characteristics of OMZ benthos have been described from only a few localities in the Arabian Sea. We measured the bottom water DO and studied the characteristics of infaunal macrobenthos of the Indian western continental shelf by collecting samples at 50, 100 and 200 m in depth from 7° to 22° N. The DO values observed at 200 m (0.0005–0.24 ml·l?1) indicated that this area is lying within an OMZ. Five major taxa, namely Platyhelminthes, Sipunculoidea, Echiuroidea, Echinodermata and Cephalochordata were absent from the samples collected from this OMZ. In general, declines in total macrobenthic density and biomass and polychaete species richness and diversity were observed in this OMZ compared with the shallower depths above it. Community analyses of polychaetes revealed the dominance of species belonging to families Spionidae, Cirratulidae and Paraonidae in this OMZ. Low oxygen condition was more pronounced in the northern continental shelf edge (≤0.03 ml·l?1), where the majority of spionids including Prionospio pinnata and cirratulids were absent; whereas amphipod, isopod and bivalve communities were not impacted.  相似文献   

8.
The distributions of CFC (chlorofluorocarbon) in the water column was determined twice in 2000 and 2001 in the northwestern Japan Sea. In 2000 the CFC-11 concentration decreased almost exponentially with depth from 6 pmol/kg at a few hundred m deep to 0.3 pmol/kg or less at the bottom of about 3400 m depth at three stations (40–41°N, 132–133°E) about 300 km off Vladivostok. In 2001 the CFC-11 concentration increased sharply up to 2 pmol/kg in the bottom water, while it did not increase at a station (42.0°N, 136.5°E) about 450 km away to the northeast. This is due to the renewal of the bottom water which is replaced by the surface water flowing down along the continental slope, as suggested by Tsunogai et al. (1999), who proposed the continental shelf pump. Furthermore, an increase in the CFC-11 concentration was observed throughout the entire water column above 3000 m depth, although the proportion of the increase was about 20%, which was one order of magnitude smaller than that in the bottom water. The increase in inventory is almost four times larger than that in the bottom water below 3000 m depth which is equivalent to about 1/6 of the total inventory found in 2000. The increase also means that 3% of the deep water was replaced by the recent surface water, or, if the turnover occurs every year, that the turnover time of the deep water to be about 30 years. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
In Lake Rotoiti, North Island, New Zealand, ‘cyclic change’ apparently occurs among mounds of the ‘Low Mixed Community’ of plants; this is the first evidence of cyclic change in a wholly submerged community. The Low Mixed Community grows on gently sloping, sandy substrates ndar the shores of bays sheltered from the prevailing SW winds, and usually extends to depths of about 1.8 m, where dense beds of Lagarosiphon major begin.

The work we report Was done in 1968–70. We sampled ithe community by transects, various types of quadrats, and by monitoring marked mounds, and from these data we analysed the composition, distribution, growth and fate of mounds at various depths.

We observed that one species of five genera (namely Glossostigma spp., Elarine spp., Lilaeopsis lacustris, Elodea canadensis, and Myriophyllum propinquum) colonised bare sand and trapped more sand; as the mound grew, other species appeared. Mounds in deeper water (> 0.9 m) were larger and floristically richer than those in shallower water, and were thus probably older. In calm conditions, mounds sometimes fused to form a polytypic sward. Typically, however, the backwash of waves eroded the shoreward ends and sides of mounds; the mounds thus became elongated parallel to the wind direction. Provided that their growth at the offshore end at least balanced erosion at their shoreward ends, some marked mounds tended to grow downslope into deeper, less often disturbed water.

Although backwash started mound erosion down to 0.6 m depth, it could also erode bare areas in mounds (caused by die‐off of plants, herbicide sprays, and mechanical damage) down to 1.2 m, the depth to which it normally influenced loose substrate. In exceptional easterly storms, backwash might influence plants at greater depths, and perhaps locally destroy the community so that the cycle would have to begin again.

Briefly, we suggest that these characteristic signs of cyclic change in this community result from an interaction between fragile mounds of plants growing on an unstable, sandy substrate which is easily eroded by wave backwash. However, more observations over a longer time will be needed before our prima facie case for the occurrence of cyclic change can be proved.

We also recorded an invasion of Lagarosiphon over mound plants into depths of only 0.9 m, and we proposed for the “Low Mixed Community” the appropriate name Glossostigmatum aquaticae because Glossostigma spp. predominated in all floristic analyses.  相似文献   

10.
Abstract

A pore‐water pressure probe (piezometer) was implanted in Mississippi delta sediments at a preselected site (Block 28, South Pass area, 29°00´N, 89°15´W) 145 m from an offshore production platform (water depth approx. 19 m) in September 1975. Total pore‐water pressures (uw ) were monitored for extended periods of time at depths of approximately 15 and 8 m below the mudline concurrently with hydrostatic pressures (u8 ) measured at depths of 15 m and approximately 1 m below the mudline. Relatively high excess pore‐water pressures, ue = (uw ‐u8 ), were recorded at the time of probe insertion measuring 99 kPa (14.4 psi) at 15 m and 50 kPa (7.3 psi) at 8 m. Six hours after the probe was implanted, excess pore pressures were still high at 81 kPa (11.8 psi, 15 m) and 37 kPa (5.4 psi, 8 m). Pore pressures appeared to become relatively constant at the 8‐m depth after 7 h had elapsed, and at the 15 m depth after 10–12 h. Excess pore‐water pressures averaged 72 kPa (10.4 psi, 15 m) and 32 kPa (4.6 psi, 8 m) prior to the initial effects of Hurricane Eloise, which passed in close proximity to the probe site. Significant variations in pressures were recorded during storm activity. As the effects of the storm subsided, excess pore‐water pressures began to decline slightly at the 15‐m depth; however, concurrently at the 8‐m depth, pore pressures began to increase gradually. During the period of 21–25 days after the probe was implanted, excess pore pressures appeared to become more constant, averaging 24 kPa (3.5 psi) at 15 m and 43 kPa (6.2 psi) at the 8‐m depth. The presence of methane, a common occurrence in these delta muds, may have influenced, or contributed to, the total pore‐water pressures measured during this experiment.  相似文献   

11.
Vertical changes in abundance, biomass and community structure of copepods down to 3000 m depth were studied at a single station of the Aleutian Basin of the Bering Sea (53°28′N, 177°00′W, depth 3779 m) on the 14th June 2006. Both abundance and biomass of copepods were greatest near the surface layer and decreased with increase in depth. Abundance and biomass of copepods integrated over 0–3000 m were 1,390,000 inds. m?2 and 5056 mg C m?2, respectively. Copepod carcasses occurred throughout the layer, and the carcass:living specimen ratio was the greatest in the oxygen minimum layer (750–100 m, the ratio was 2.3). A total of 72 calanoid copepod species belonging to 34 genera and 15 families occurred in the 0–3000 m water column (Cyclopoida, Harpacticoida and Poecilostomatoida were not identified to species level). Cluster analysis separated calanoid copepod communities into 5 groups (A–E). Each group was separated by depth, and the depth range of each group was at 0–75 m (A), 75–500 m (B), 500–750 m (C), 750–1500 m (D) and 1500–3000 m (E). Copepods were divided into four types based on the feeding pattern: suspension feeders, suspension feeders in diapause, detritivores and carnivores. In terms of abundance the most dominant group was suspension feeders (mainly Cyclopoida) in the epipelagic zone, and detritivores (mainly Poecilostomatoida) were dominant in the meso- and bathypelagic zones. In terms of biomass, suspension feeders in diapause (calanoid copepods Neocalanus spp. and Eucalanus bungii) were the major component (ca. 10–45%), especially in the 250–3000 m depth. These results are compared with the previous studies in the same region and that down to greater depths in the worldwide oceans.  相似文献   

12.
The submerged vegetation of Lakes Sumner, Marion, Katrine, Taylor, and Sheppard was surveyed in May 1987. These high‐altitude lakes lie at c. 600 m a.s.l., within the largely unmodified upper Hurunui catchment. Submerged vegetation was diverse and included numerous short shallow‐water species, dense swards of Isoetes alpinus, low covers of taller native vascular plants, and charophyte meadows beyond the depth limit of vascular plants to a maximum of 15 m. A sparse deepwater bryophyte community was observed from 11 to 32 m depth in Lake Sumner. Displacement of native vegetation by dense growths of the adventive oxygen weed Elodea canadensis over mid‐depths of 3–6 m was noted in all lakes, except Lake Marion.  相似文献   

13.
厚壳贻贝是我国东部沿海重要的经济贝类之一,自然环境中栖息范围不甚明确。本文于2014年7月间利用水下摄像的手段,调查和分析了渔山列岛不同断面上厚壳贻贝的自然分布特征。结果表明:渔山列岛潮下带5条断面的生态类型差异显著,不同断面栖息的优势种也不相同;断面间厚壳贻贝的栖息密度均值为37.04~185.80 ind/m2,其中断面A的栖息密度最低,断面E的栖息密度最高,断面C和断面D的栖息密度相差不大,但是不同调查样方内厚壳贻贝的栖息密度从0~388.89 ind/m2不等;厚壳贻贝主要分布在水深3~9 m的水层中,其中以水深5~8 m的水层中最为密集,约占总栖息密度的90%以上;在水深8 m的区带上,厚壳贻贝的栖息密度为160.19 ind/m2,当水深小于1 m和大于11 m时,厚壳贻贝分布极少;经双因素方差分析表明,厚壳贻贝栖息密度在不同断面(F=57.011,P<0.01)和不同水层(F=66.495,P<0.01)中的差异均极显著,断面和水层的交互作用(F=10.483,P<0.01)对厚壳贻贝的自然分布也有极显著差异;经检验,厚壳贻贝栖息密度(A)的自然分布与水深(D)呈正态分布,可以用高斯方程拟合,R2的取值范围为0.8753~0.9997;利用聚类分析发现,调查样方被明显的分为3组,体现了水深在厚壳贻贝自然分布中的显著作用。  相似文献   

14.
Genetic connectivity and habitat characteristics were examined in two species of Acesta clams (Bivalvia: Limidae) from submarine seamounts and continental slopes along the western North America margin. Two species were identified from dive videos obtained with submarine remotely operated vehicles that surveyed a 2200‐km range between 27° and 46° N latitude. Acesta sphoni was only found at shallower habitats (545–860 m depth) in the southern part of this range, whereas Acesta mori was more abundant and widely distributed in deeper habitats (1029–1996 m). Both species occurred on seamounts and on the walls of submarine canyons and continental slopes. Segregation of these species by depth exposes them to correlated differences in water temperatures and dissolved oxygen concentrations. Ninety‐eight individuals sampled from seven seamounts and one escarpment locality were characterized with DNA‐barcodes based on 643 base pairs of mitochondrial cytochrome‐c ‐oxidase subunit I (COI). Further analysis of these sequences revealed no significant geographical subdivision across the sampled range. This lack of differentiation suggests ongoing genetic exchange between the seamount populations and those possibly distributed along the continental margins. Examination of regional bathymetric profiles suggested that an abundance of suitable habitat might exist along these margins.  相似文献   

15.
The successful management of shark populations requires juvenile recruitment success. Thus, conservation initiatives now strive to include the protection of areas used by pre‐adult sharks in order to promote juvenile survivorship. Many shark species use inshore areas for early life stages; however, species often segregate within sites to reduce competition. Using a fisheries‐independent gillnet survey from the Northern Gulf of Mexico (2000–2010) we describe distribution patterns and preferred habitat features of the juveniles of six shark species. Our results suggest that multiple shark species concurrently use the area for early life stages and although they overlap, they exhibit distinct habitat preferences characterized by physical variables. Habitat suitability models suggest that temperature, depth, and salinity are the important factors driving juvenile shark occurrence. Within each site, across the sampled range of physical characteristics, blacktip shark (Carcharhinus limbatus) preferred higher temperature (>30 °C) and mid‐depth (~5.5 m); bonnethead shark (Sphyrna tiburo) preferred higher temperature (>30 °C) and mid‐salinity (30–35 PSU), finetooth shark (Carcharhinus isodon) preferred low salinity (<20 PSU) with mid‐depth (~4 m), scalloped hammerhead shark (Sphyrna lewini) preferred high temperature (>30 °C) and salinity (>35 PSU), Atlantic sharpnose shark (Rhizoprionodon terraenovae) preferred high temperature (>30 °C) and deep water (>6 m), and spinner shark (Carcharhinus brevipinna) preferred deep water (>8 m) and high temperature (>30 °C). The other investigated factors, including year, month, latitude, longitude, bottom type, inlet distance, coastline and human coast were not influential for any species. Combining habitat preferences with the sampled environmental characteristics, we predicted habitat suitability throughout the four sites for which physical characteristics were sampled. Habitat suitability surfaces highlight the differences in habitat use between and within sites. This work provides important insight into the habitat ecology of juvenile shark populations, which can be used to better manage these species and protect critical habitat.  相似文献   

16.
Like many other loliginid squid, Doryteuthis (Loligo) opalescens deposits egg cases on the ocean floor. Depending upon temperature, egg cases may persist for 5–12 weeks before the paralarvae hatch. Because of this relatively long duration and squid’s pelagic life history, egg cases provide a practical life stage to survey. During 2001–2002, squid egg beds in Monterey Bay, Carmel Bay, and around the California Channel Islands were surveyed using a remotely operated vehicle with the goal of delineating the habitat of egg beds that are spawned during active commercial fishing. Egg cases were highly aggregated and densities reached 1338 capsules m−2. Squid eggs were significantly shallower in Central California. Egg cases occurred between 20 and 93 m around the Channel Islands, and in Central California they were between 13 and 61 m. The temperatures in both regions were similar (10–12 °C), with some eggs in Southern California found up to 14.4 °C. Ninety-five percent of eggs were found on sand, suggesting that temperature and substrate are stronger behavioral cues than depth to stimulate spawning. Suitable spawning habitat was defined by three criteria: sandy benthic substrate, temperatures between 10 and 14.4 °C, and depths between 20 and 70 m when the first two criteria hold. Additionally, within this defined area, oxygen concentration is quantified. The greatest commercial landings of market squid occur in both Central and Southern California during a time of year when water temperatures of 10–12 °C are prevalent in the 20–70 m depth range.  相似文献   

17.
The density of red crab Geryon maritae between 18°00′ and 18°30′S and in depths of 350-1 000 m was quantitatively examined by photography. This area, estimated to be approximately 92 000 ha, is part of the commercial crab ground off South West Africa. The biomass of red crab, up to 55,5 kg·ha?1, is one of the highest recorded off the African coast for the species. Density of red crab was highest in depths exceeding 600 m, the greatest density (350,2 crabs·ha?1) being recorded in the 600-699 m depth zone. Another crab, Bathynectes piperitus, was also photographed in the shallower depths of the survey area (300-500 m), and some density estimates for this species at those depths are presented.  相似文献   

18.
Several cold vents are observed at the northern Cascadia margin offshore Vancouver Island in a 10 km2 region around Integrated Ocean Drilling Program Expedition 311 Site U1328. All vents are linked to fault systems that provide pathways for upward migrating fluids and at three vents methane plumes were detected acoustically in the water column. Downhole temperature measurements at Site U1328 revealed a geothermal gradient of 0.056 ± 0.004°C/m. With the measured in situ pore-water salinities the base of methane hydrate stability is predicted at 218–245 meters below seafloor. Heat-probe measurements conducted across Site U1328 and other nearby vents showed an average thermal gradient of 0.054 ± 0.004°C/m. Assuming that the bottom-simulating reflector (BSR) marks the base of the gas hydrate stability zone variations in BSR depths were used to investigate the linkages between the base of the gas hydrate stability zone and fluid migration. Variations in BSR depth can be attributed to lithology-related velocity changes or variations of in situ pore-fluid compositions. Prominent BSR depressions and reduced heat flow are seen below topographic highs, but only a portion of the heat flow reduction can be due to topography-linked cooling. More than half of the reduction may be due to thrust faulting or to pore-water freshening. Distinct changes in BSR depth below seafloor are observed at all cold vents studied and some portion of the observed decrease in the BSR depth was attributed to fault-related upwelling of warmer fluids. The observed decrease in BSR depth below seafloor underneath the vents ranges between 7 and 24 m (equivalent to temperature shifts of 0.07–0.15°C).  相似文献   

19.
Zooplankton was sampled through eight depth intervals above about 500 m along a transect of the eastern tropical Pacific (ETP), 23°N to 3°S, encompassing four environments. (1) The California Current—ETP transition off Baja California and the mouth of the Gulf of California is inhabited by California Current species at their southern limits, and by the galatheid ‘red crab’ Pleuroncodes planipes together with euphausiids (e.g. Euphausia eximia) of an abundance-based recurrent group of species, distinguished using the criterion of > x abundance (Numbers under unit area of sea surface) at common localities, adapted to productive zones marginal to the O2-deficient part of the ETP. Tropical species appear here where water with surface temperature > 26°C and [O2] of < 0.1 ml l?1 beneath a shoaling thermocline replaces the upwelling environment off Baja California. (1) The zone 22° to 10°N harbors euphausiids of two groups: the vertically migrating tropical species (e.g. Euphausia diomedeae) which tolerate intense O2-deficiency at their daytime depths and enter the oxygenated mixed layer at night, and non-migrating Stylocheiron species which have vertical ranges extending up into the mixed layer. Nevertheless, most of these ‘ETP-adapted’ species are denser farther south, in the north equatorial countercurrent, but three ETP endemics (e.g. E. distinguenda), all vertical migrators belonging in one subgeneric division of Euphausia, are densest in the O2-deficient regions. (3) The zone of the North Equatorial Countercurrent maintains high densities of three groups: the widely-ranging, ETP-adapted tropical species, the four common Stylocheiron species which, while recurring in abundance at the same localities, differ in depth and the mesopelagic tropical-subtropical species, not tolerant of O2-deficiency, which occur here in easterly tongues of range. (4) At the equator (93°W), easterly ranging species (e.g. E. paragibba) and westerly Nyctiphanes simplex appear to migrate between equatorial currents which differ in direction with depth, thereby maintaining their narrow ranges along the equator. The ‘marginal proliferators’ such as E. eximia, prominent off Baja California, are again abundant here, availing of the equatorial divergence for high productivity and of the oppositely-directed currents for geographical stability.A second recurrent grouping of species, based on presence of their larvae at common localities, yielded groups also distinguishable by whether the larvae lived within or beneath the mixed layer.Ontogenetic strengthening of vertical migration capability is demonstrated by many species, with older larvae, juveniles and adults showing ranges, respectively, increasing from a few meters to up to 400 m. The pattern is the same in O2-deficient regions as elsewhere.Regional distribution of euphausiid volume (wet displacement biomass) tended to agree with zooplankton volume, with maxima at the equator, 8°N, and at some localities off Baja California and the Gulf of California where red crab volume peaked. The depth at which euphausiid volume is equal in amount day and night, across which vertical migration takes place, is designated the equilibrium depth (EqD) for euphausiid volume. EqD for euphausiids generally agreed with EqD for zooplankton volume, indicating that euphausiids play a role in determining depth of EqD for zooplankton volume. Euphausiids comprised 13% (x) of zooplankton volume. 80% (x) of euphausiid volume migrated across EqD, the value showing no significant regional differences. 37% (x) of zooplankton volume engaged in such migration, but in the region south of 14°N encompassing the broad O2-deficient zone, the value was 26%, which compares with 18% previously determined for biomass transferring in a comparable way between epiplankton and planktostad in the same region.  相似文献   

20.
Volumes of seawater filtered through the intertidal zone were measured on three modally reflective microtidal beaches in Western Australia. The filtered volumes were large, 19 m3 m?1 day?1 and 73 m3 m?1 day?1 on two ‘clean’ beaches but only 0·4 m3 m?1 per tidal cycle on a beach covered in kelp and seagrass wrack. The mean residence times of this water in the interstitial system and its percolation paths were both short, 1–7 h and 2–5 m respectively. Water input was greater across a beach cusp horn than across a cusp embayment. Most input occurred in the upper swash zone where the water table was less than 20 cm deep. Tidal variations in input volumes were evident even with tide ranges of only 20 cm. The inshore zone off these beaches filters on average 0·07 m3 m?2 day?1 at an average depth of 5·5 m under 0·4 m waves of 6·5 s duration. The importance of these procedures in the mineralization of organic materials and the regeneration of nutrients for an inshore ‘lagoon ecosystem’ is estimated and discused.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号