首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Abstract

Phosphorus and nitrogen were measured in stream run‐off from the four catchments of the Taita Experimental Basin (41° 11′ S, 174° 58′ E). The land is used as exotic conifer forest, native forest, and hill pasture. Multiple regression analysis was used to estimate chemical losses per unit area in floods and at low flows.

At low flows, the hill pasture (fertilised with lime at 630 kg·ba?1·y?1, and superphosphate at 380 kg·ha?1·y?1) tended to lose more phosphorus and nitrate than the forested land, but differences were small, and not always significant. During large floods, the hill pasture (No. 5 Catchment) lost about 3 times as much reactive phosphate and 2–5 times as much total phosphorus as the forested land, and 130–190 times as much nitrate as land in the Exotic Forest and Native Forest 2 Catchments. Nitrate losses from land in the No. 4 Catchment (mainly native forest) were as high as those from the hill pasture, so high nitrate loss is not associated solely with agriculture.

Losses of total phosphorus via the catchment streams were estimated as: No. 5 Catchment (hill pasture), 293 g·ha?1·y?1; Native Forest 2 Catchment, 201 g·ha?1·y?1; No. 4 Catchment, 124 g·ha?1·y?1; Exotic Forest Catchment, 71 g·ha?1.y?1. Nitrate‐N losses were estimated to have been 1356 g·ha?1·y?1, 11.5 g·ha?1·y?1, 1436 g·ha?1·y?1, and 44 g·ha?1·y?1 respectively. Phosphorus and nitrate concentrations were similar in the Exotic Forest and Native Forest 2 streams, but the Exotic Forest tended to lose smaller amounts because it yielded about 50% less water per unit area.

Over the 2‐y study, an estimated 47–70% of phosphorus losses and up to 83% nitrate losses occurred in large floods; 31% and 48% respectively were apparently lost from the hill pasture catchment in a single flood. Less than 20% of estimated phosphorus losses and as little as 1% of nitrate losses occurred at low flows.

Run‐off of phosphorus and nitrate was spasmodic, and this should be considered in assessing the impact of surface run‐off on the biology and chemistry of receiving waters.  相似文献   

2.
OVERSEER is used in New Zealand to estimate nutrient losses from farmland, but does not quantify subsequent movement through the catchment, or attenuation. This paper uses the ROTAN model, based on the Scandinavian HBV-N model, to route nitrogen losses from 1900–2015 to Lake Rotorua where groundwater age ranges from 14 to 170 years. ROTAN conceptualises three delivery pathways (quickflow, groundwater and streamflow) with different attenuation. When calibrated to measured stream and groundwater concentrations, several combinations of attenuation gave equally good fits largely because of sparse and uncertain input and calibration data. Nevertheless, lake N loads were predicted for current land use (754?±?39?t y?1) and with proposed N loss reductions (431?±?26?t y?1). Probabilities were also calculated that the reductions are more (12%–18%) or less (82%–88%) than required to meet the target lake N load (405?t y?1). ROTAN shows promise for calculating nitrogen movement in catchments dominated by groundwater where there is limited data.  相似文献   

3.
Abstract

The Whangamaire Stream (North Island, New Zealand) has high concentrations of nitrate nitrogen (NO? 3‐N), biochemical oxygen demand (BOD5), and Kjeldahl nitrogen (TKN) as a result of catchment land use practices. The lower reaches of the stream drain intensively farmed land and have dissolved oxygen (DO) levels of 10–50% saturation. The dominant riparian vegetation, Apium nodiflorum, provides a large organic loading by intercepting nutrients in run‐off and then decaying in the stream channel. Water quality and reaeration aspects of the stream were studied in order to explain the observed low DO levels. Measurements of the reaeration coefficient at 20°C, K2 20, using methyl chloride (CH3Cl) as a gas tracer, yielded values of 1.1–3.0 d?1 for the upper part of the study reach and 15.5–16.2 d?1 for the lower reach (overall average 12.5 ± 2.5 d?1). These were in agreement with values inferred from single‐station diurnal curve analysis, which also showed that respiration was dominant in the lower reach where photo‐synthetic activity was inhibited by shade. The relatively large reaeration coefficients ensure that parts of the stream do not become anoxic at night time. Better riparian management and reduced nutrient inputs are likely to improve stream water quality.  相似文献   

4.
Abstract

Chemical parameters (pH, Eh, carbon, Kjeldahl nitrogen, total phosphorus, 0.5M H2SO4‐extractable phosphorus, organic phosphorus, and water‐soluble phosphorus) were measured in the surface layers of sediments collected from various depths in Lakes Rotowhero, Okaro, Ngapouri, Rotokakahi, Okareka, Tikitapu, Okataina, and. Rotoma during October 1972. The sediments of the productive geothermal lake, Rotowhero, were markedly different from those of the cold‐water lakes: they had relatively low pH values, high carbon (mean 8.5%) and organic phosphorus (mean 4160 μg.g?1) concentrations, and very high total phosphorus concentrations (mean 4770 μg.g?1), probably as a result of enrichment by hot springs.

The mean concentrations in the sediments of the cold‐water lakes were carbon 3.2–7.9%, Kjeldahl nitrogen 3380–8310 μg.g?1 and phosphorus 690–1780 μg.g?1. These concentrations are within the ranges for New Zealand terrestrial topsoils, but the lake sediments appear enriched in phosphorus relative to local topsoils. Total carbon, nitrogen, and phosphorus concentrations of sediments tended to be highest in the eutrophic lakes (Okaro, Ngapouri) although the deep oligotrophic lakes (Okataina, Rotoma) had relatively high total phosphorus concentrations (means 1400, 1510 μg.g?1). Overall, the carbon, nitrogen, and phosphorus concentrations of the sediments showed little relationship to the trophic state of the lake.

Organic phosphorus concentrations of the surface layers of sediments were similar in all the cold‐water lakes (mean 319 μg.g?1). The proportion of the total phosphorus apparently ‘fixed’ in mineral material was minimal (0–1%) in sediments from the eutrophic and mesotrophic lakes, but in the oligotrophic lakes was similar to that in New Zealand topsoils (9–14%). Reducing conditions may cause solution of a high proportion of the ‘fixed’ phosphorus in the eutrophic lakes.

The water‐soluble phosphorus concentrations in the sediments of the five shallow cold‐water lakes (Okaro, Ngapouri, Rotokakahi, Okareka, Tikitapu) correlated positively with trophic state and with concentrations of dissolved phosphorus in the lake waters.

Carbon, nitrogen, and phosphorus concentrations in the sediments tended to vary with overlying water depth. This should be considered when comparisons are made between lakes.  相似文献   

5.
The flux of ammonia, phosphate, silica and radon-222 from Potomac tidal river and estuary sediments is controlled by processes occurring at the sediment-water interface and within surficial sediment. Calculated diffusive fluxes range between 0·6 and 6·5 mmol m?2 day?1 for ammonia, 0·020 and 0·30 mmol m?2 day?1 for phosphate, and 1·3 and 3·8 mmol m?2 day?1 for silica. Measured in situ fluxes range between 1 and 21 mmol m?2 day?1 for ammonia, 0·1 and 2·0 mmol m?2 day?1 for phosphate, and 2 and 19 mmol m?2 day?1 for silica. The ratio of in situ fluxes to diffusive fluxes (flux enhancement) varied between 1·6 and 5·2 in the tidal river, between 2·0 and 20 in the transition zone, and from 1·3 to 5·1 in the lower estuary. The large flux enhancements from transition zone sediments are attributed to macrofaunal irrigation. Nutrient flux enhancements are correlated with radon flux enhancements, suggesting that fluxes may originate from a common region and that nutrients are regenerated within the upper 10–20 cm of the sediment column.The low fluxes of phosphate from tidal viver sediments reflect the control benthic sediment exerts on phosphorus through sorption by sedimentary iron oxyhydroxides. In the tidal river, benthic fluxes of ammonia and phosphate equal one-half and one-third of the nutrient input of the Blue Plains sewage treatment plant. In the tidal Potomac River, benthic sediment regeneration supplies a significant fraction of the nutrients utilized by primary producers in the water column during the summer months.  相似文献   

6.
The Yeongsan River estuary (YRE) is located downstream of a dam housing an artificial lake on the southwestern coast of Korea. Intermittent discharges of lake water through dam gates control the water level of the lake. This study compares fluxes of dissolved nutrients in discharged water with those of submarine groundwater discharge (SGD) occurring in the YRE in July and October 2008. With the exception of dissolved inorganic phosphorus (DIP) which limits primary production, nutrient concentrations in the YRE are controlled mainly by conservative mixing between lake water and open ocean water during periods of lake water discharge. In comparison with lake water discharge, the magnitude of SGD, based on a 222Rn mass balance model, is relatively small (about 1.5×105 m3 day?1 in July and about 30% higher in October) and dependent on the water elevation in the lake. However, SGD contributes considerably to the input of DIP when discharge of lake water is halted. Our study shows that SGD is more important in the delivery of biogeochemical components into estuaries that are obstructed by artificial dams.  相似文献   

7.
Historical sediment nutrient concentrations and heavy metal distributions were studied in four estuaries in the Gulf of Finland, Baltic Sea to examine the response of these estuaries to temporal changes in human activities. Cores were collected using a 1-m Mackereth corer and dated using 210Pb and 137Cs. The cores were analyzed for total carbon (TC), total nitrogen (TN), total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (IP), biogenic silica (BSi), loss-on-ignition (LOI), Cu, Zn, Al, Fe, Mn, K, Ca, Mg and Na. Principal component analysis (PCA) was used to summarize the trends in the chemical variables and to compare the trends at the different sites. Applying the 1986 137Cs date as a reference point, 210Pb chronologies were constructed for the sites using either the CRS model or a composite model (using both CIC and CRS). Significant increases were observed in sedimentation rates, TP and TN concentrations in all of the cores. Copper showed clear increases from 1850 towards present at all sites. Furthermore, redundancy analysis (RDA) was used to correlate environmental variables (catchment land use, catchment size, estuary surface area, depth and lake percentage) to sediment geochemistry. Based on redundancy analysis (RDA), the percentage of agriculture in the catchment was the most important factor affecting the sediment accumulation rate. Urban land-use types and industry correlate well with sediment Cu and Ca concentrations. Forest areas were related to high sediment BSi concentrations. Catchment land use was the most significant factor affecting sediment geochemical composition and sediment accumulation rates in these coastal embayments. Our results demonstrate that the coastal estuaries of the Gulf of Finland respond to the increased nutrient loading with the increased sedimentation and nutrient accumulation rates.  相似文献   

8.
Abstract

Thirty sites were sampled in three New Zealand rivers (Waikato, Maitai, and Wakapuaka) during late summer 1977. Samples were collected from just below the surface at mid river or in the tailraces below hydro‐electric dams.

Parameters measured included bacterial numbers (direct counts), heterotrophic potential (Vmax ), adenosine triphosphate (ATP), chlorophyll a (Chi a), and concentrations of nitrogen and phosphorus compounds.

Bacterial populations per millilitre fluctuated threefold (6.4–19.4 × 105) along the Waikato River and were lower and more consistent in the two South Island rivers (1.46–2.55 × 105). In contrast, Vmax varied 5000‐fold in the Waikato River, from a characteristically oligotrophic value of 0.0035 μg. l?1·h?1 (Lake Taupo outlet) to a eutrophic value of 18.4 μg. l?1·h?1 at the Mihi bridge. Vmax for the two South Island rivers ranged from 0.0091 to 0.189 μg. l?1 · h?1.

ATP, Chi a, Kjeldahl nitrogen, nitrate nitrogen, and total phosphorus concentrations for the 20 sites on the Waikato River varied in a similar way to the Vmax and bacterial data. There were large peaks at the Mihi bridge, lower values for the dam tailraces and significant increases for the sites below Hamilton. Concentrations for these parameters were lower and more consistent along the lengths of the two South Island rivers.

Most parameters were significantly correlated with each other for the Waikato River samples. The strongest correlations were between Vmax and bacterial numbers and between Vmax and nitrate nitrogen. In the Maitai and Wakapuaka River series these correlations were also significant, but the only other significant correlations recorded there were between ATP and nitrate nitrogen, and between ATP and bacterial numbers.  相似文献   

9.
Abstract

Runoff of phosphorus, nitrate, ammonium, calcium, magnesium, sodium, potassium, chloride, and sulphate was measured in 15 storms and at low flows in 3 “nested” experimental catchments converted from scrub to pasture. Multiple regression analysis suggested that over 2#fr1/2> y, fertiliser application had a cumulative effect on the concentrations of calcium, potassium, and sulphate in storm waters leaving the experimental basin, but only in the flood waters from the small wholly‐grassed sub‐catchment (Pukeiti) was there an increase in phosphorus concentrations. A similar pattern was observed at baseflows. Reactive phosphorus losses of up to 1 kg.ha?1 left Pukeiti in post‐fertiliser storm events but mean losses from the whole basin were only about 0.004 kg.ha?1 per storm and there was little evidence of any fertiliser effect. The stream below Pukeiti has well developed riparian vegetation with marsh and scrub.

The phosphorus losses from the basin seem of little significance agriculturally and environmentally. Although the losses from Pukeiti sub‐catchment were of siufficient magnitude to have a strong impact on water quality in waterways and lakes (mean total phosphorus concentration in post‐fertiliser floods 1.91 g.m?3) this sub‐catchment appeared to have little effect on the quality of water eventually leaving the whole basin.

The results are discussed in relation to sub‐catchment differences and it is suggested that they give support to the use of riparian zones along streams to reduce phosphorus runoff.  相似文献   

10.
Abstract

Poor water quality (high concentrations of nitrogen (N), phosphorus (P), suspended solids (SS), and faecal bacteria) in Waiokura Stream, southern Taranaki, New Zealand, is attributed to diffuse and point source (PS) inputs from dairy farming. Trend analysis of concentration time‐series data (2001–2008) and annual yields (i.e., stream load divided by catchment area) showed that significant improvements occurring since 2001 may be attributed to changes in farming practices and riparian management. Yields of filterable reactive P, total P and SS declined by 25–40% as a result of increased riparian protection, a reduction in dairy shed effluent (DSE) pond discharges from 8 to 6 with conversion to land irrigation, and a 25% reduction in the average application rate of P fertiliser. Median annual Escherichia coli concentrations declined at a rate of 116 per 100 ml per year, as a result of fewer PS discharges and improved riparian management. Thus, improvements in stream water quality were attributed to adoption of on‐farm best management practices, fewer DSE discharges and riparian management involving permanent livestock exclusion from stream banks and riparian planting to mitigate runoff from pasture. During 2001–06, N fertiliser use increased by 30% and, with a 130% increase in supplementary cattle feed during 2003–08, led to an increase in average milk solids production 1021 to 1262 kg ha?1 during 2001–06 with the increased production likely associated with increased N leaching losses. Total N and nitrate‐N concentrations and yields increased during 2001–07 as a result of the intensification in land use and increased N cycling. Stream invertebrate surveys using the macroinvertebrate community index (MCI) metric showed little improvement in MCI during 2002–07, probably because of the relatively short timeframe of this study and because water temperatures were not a limiting factor for invertebrate communities. The absence of native forest streams in the proximity of Waiokura Stream that might act as sources of sensitive species to recolonise the restored stream should also be considered as a constraint to improvements in biological community structure.  相似文献   

11.
Availability of soil and sediment phosphorus to a planktonic alga   总被引:1,自引:1,他引:0  
Chlorophyll production by Chlorella vulgaris Beij. var. vulgaris was used to estimate alga‐available phosphorus in clays, soils, and lake sediments suspended in water at concentrations appropriate to lake inflows during floods (100–500 g/m3). Chlorella apparently used 24–81% of 0.5M H2SO4 extractable phosphorus in clays from topsoils, about 25% from lake sediments, and 0.3–1.0% from, subsoils low in phosphorus and with high phosphorus retention.

The presence of suspended soil material did not reduce the availability to Chlorella of inorganic phosphorus added to the cultures. Increasing the Chlorella population by adding inorganic phosphorus resulted in an apparent increase in availability of phosphorus from the soil, possibly as a result of enzymic mineralisation of organic soil phosphorus. The amount of available phosphorus in lake sediments was not a reliable guide to the trophic condition, of the lake.

Suspended material from sediments, soils, and especially clay eroded from fertilised topsoils may provide phosphorus for algal growth in lakes. If allophanic clays are applied to lakes to sorb phosphorus and hence control eutrophication, the particles must settle out before planktonic algae in the photic zone can use the adsorbed phosphorus.  相似文献   

12.
ABSTRACT

This study investigated the impact of pastoral land use and nutrient and fine sediment inputs on Microcoleus autumnalis and filamentous algae-dominated mats, and benthic chlorophyll-a in streams (lower North Island, New Zealand). Surveying and sampling was undertaken monthly at 61 sites spanning a wide gradient in catchment cover and environmental conditions. Two boosted regression tree models were built. The first models included pastoral land cover and five environmental variables as predictors. In the second model pastoral land cover was replaced by nutrient/sediment data. The abundance of the two mat types and chlorophyll-a increased when pastoral land cover was between 20% and 70% (model 1). Replacement of pastoral land cover by nutrient/sediment data (model 2) slightly improved the model fit for all three periphyton variables. Microcoleus autumnalis-dominant mats increased with dissolved inorganic nitrogen concentrations up to ca. 0.6?mg?L?1, and in streams with more frequent flushes. In contrast, filamentous algal-dominated mats increased with turbidity, and in streams with less frequent flushes. Chlorophyll-a generally followed the response of the dominant periphyton type. Increased knowledge on responses of specific periphyton types, rather than total biomass, to environmental variables is essential to guide effective management strategies.  相似文献   

13.
Budgets for conservative tracers are used to determine the flow through the Irish Sea and combined with available data on nutrient distributions and inputs to estimate non-conservative nutrient fluxes. Steady state salinity and caesium-137 balances yield consistent estimates of the flow through the Irish Sea of Φ≈6×104 m3s−1. Using both tracers together with a mass balance allows the inclusion of separate diffusive flux terms and results in a diffusivity estimate ofK≈450 m2s−1and a reduced flow of Φ≈4×104 m3s−1. These values are, however, sensitive to the gradients of salinity and caesium-137 concentration, which are not well defined by the observations.Following the LOICZ procedures, salinity and mass balances were combined with analogous statements for dissolved inorganic phosphorus (DIP) and dissolved inorganic nitrogen (DIN), in order to assess the non-conservative process rates. With regard to phosphorus it was found that the Irish Sea is close to balance with a slight net uptake of dissolved inorganic phosphorus, but the implied excess of uptake over release is not significant on account of uncertainties in the observations of boundary values and inputs. The DIN budget is subject to comparable uncertainties in the input data but does, however, indicate a significant imbalance with an average rate of denitrification of the order 0·3 mol N m−2y−1.The implications of these budget results and their limitations are considered in relation to the application of the budgeting approach to areas with sparse data coverage. While the application of box model disciplines to conservative tracers can lead to satisfactory estimates of advective transport, the extension to non-conservative components requires extensive data to adequately specify the boundary values and input parameters averaged over the seasonal cycle.  相似文献   

14.
Algal blooms in Tolo Harbour, Hong Kong have received much attention and submarine groundwater discharge is speculated to be a significant pathway carrying nutrients into the constricted estuary. Plover Cove, a small cove in the Harbour, was selected for SGD analysis using 222Rn budget. The volumetric SGD rates are estimated to be about 8000 m3/day for neap tide and about 17,000 m3/day for spring tide. Result of nutrient analysis of the porewater indicates that the nutrient loading through this pathway is speculated to be crucial for eutrophication in Tolo Harbour. Current practice for the management of algal blooms in Hong Kong, in which nutrient loading through SGD was ignored, has to be reviewed and the control measures of groundwater contamination are obviously required.  相似文献   

15.
The UNEP (1977) study concerning the terrestrial discharges of phosphorus and nitrogen into the Mediterranean Sea is used in this work, along with the calculated values of the water fluxes (Bethoux, 1979, 1980). Owing to the phosphorus concentrations in the deep waters and the terrestrial discharges, the balance of this element requires low concentrations in the surface layers (< 0.1 μg P l?1) which appear to be in agreement with the measured phosphate concentrations in the Strait of Gibraltar and in the Strait of Sicily. The phosphorus cycle in the Mediterranean Sea is characterised by the transfer of the terrestrial and Atlantic influxes from the surface layer to the intermediate and deep layers.The geographic distribution of the terrestrial discharges is highly asymmetric, and the vertical movements of the water masses in certain regions induce an important hydrologic recycling of phosphorus. The potential fertility (linked to the assimilation of the available phosphorus) is estimated from the local surface phosphorus flows and from the hydrologic recycling. Its values range, in the Western basin, between 9 and 86 g C m?2y?1 in the Southern and Northern parts of this basin, respectively. In addition to biological reasons, the nitrogen budget in the Mediterranean Sea should be comparable to that of phosphorus because the geographical variations of the nitrate concentrations in the deep waters and the distribution of terrestrial discharges are similar to those of phosphorus. However, the relatively low values of terrestrial discharges of nitrogen proposed by UNEP (compensating about 28% of the outflowing nitrate fluxes in the Strait of Gibraltar) do not allow a balance of this nutrient unless we introduce a high concentration (too high in the author's opinion) in the Atlantic surface waters.  相似文献   

16.
Abstract

The density and biomass of fish and crayfish, and the production of eels, was compared among streams in native forest, exotic forest, and pasture. Populations were estimated by multiple‐pass electroshocking at 11 sites in hill‐country streams in the Waikato region, North Island. Three sites were in native forest, four in exotic forest, and four in pasture. Length of stream sampled at each site was 46–94 m (41–246 m2 in area), and catchment areas up stream of the sites ranged from 0.44 to 2.01 km2.

A total of 487 fish were caught. The species were longfinned and shortfinned eels, banded kokopu, Cran's and redfinned bullies, and common smelt. Eels were the most abundant fish in all three land‐use types, and shortfinned eels were more abundant at pastoral sites (mean density 1.11 fish m?2) than longfinned eels (mean density 0.129 fish m?2). Banded kokopu were present only at forested sites. Mean fish densities were greater at pastoral sites (1.55 fish m?2) than under either native forest (0.130 fish m?2) or exotic forest (0.229 fish m?2). Mean fish biomass was also greater at pastoral sites (89.7 g m?2) than under native forest (12.8 g m?2) or exotic forest (19.3 g m?2). Longfinned eels made a greater contribution to the fish biomass at all sites than did shortfinned eels. Densities of crayfish were high (0.46–5.40 crayfish m?2), but were not significantly different between land‐use types. Crayfish biomass ranged from 1.79 to 11.2 g m?2. Total eel production was greater at pastoral sites (mean 17.9 g m?2 year1) than at forest sites (mean 2.39 gm?2 year?1).  相似文献   

17.
ABSTRACT

Knowledge of trophic status is fundamental to understanding the condition and function of lake ecosystems. We developed regression models to predict chlorophyll a concentrations (chl a) in New Zealand lakes for reference and current states, based on an existing dataset of total nitrogen (TN) and total phosphorus (TP) concentrations for 1031 lakes. Models were then developed to predict Secchi depth based on chl a and a sediment resuspension term applicable to shallow lakes. Estimates of all four Trophic Level Index (TLI) variables (chl a, TN, TP and Secchi depth) were analysed to estimate reference and current state TLI for the nationally representative sample of 1031 lakes. There was a trend of eutrophication between reference and current states, with systematic differences among lake geomorphic types. Mean chl a increased 3.5-fold (2.42?mg?m?3 vs. 8.32?mg?m?3) and mean Secchi depth decreased (indicating lower clarity) by approximately one-third (9.62?m vs. 6.48?m) between reference and current states. On average, TLI increased by 0.67, with the TLI increase >1 in approximately one-third (31%) of lakes. This study informs the status of lake ecosystems in NZ and provides benchmarks to guide management and assessment.  相似文献   

18.
We describe the impact of an open-ocean convection event on nutrient budgets, carbon budget, elemental stoichiometry, phytoplankton biomass and activity in the Northwestern Mediterranean Sea (NWM). In the convective episode examined here we estimated an input of nutrients to the surface layer of 7.0, 8.0 and 0.4×108 mol of silicate, nitrate and phosphate, respectively. These quantities correspond to the annual nutrient input by river discharges and atmospheric depositions in the Gulf of Lion. Such nutrient input is sufficient to sustain new primary production from 46 to 63 g C m−2 y−1, which is the same order of magnitude found in the NWM open waters. Our results together with satellite data analysis, propose new scenarios that explain the origin of the spring phytoplankton bloom occurring in NWM.  相似文献   

19.
Volumes of seawater filtered through the intertidal zone were measured on three modally reflective microtidal beaches in Western Australia. The filtered volumes were large, 19 m3 m?1 day?1 and 73 m3 m?1 day?1 on two ‘clean’ beaches but only 0·4 m3 m?1 per tidal cycle on a beach covered in kelp and seagrass wrack. The mean residence times of this water in the interstitial system and its percolation paths were both short, 1–7 h and 2–5 m respectively. Water input was greater across a beach cusp horn than across a cusp embayment. Most input occurred in the upper swash zone where the water table was less than 20 cm deep. Tidal variations in input volumes were evident even with tide ranges of only 20 cm. The inshore zone off these beaches filters on average 0·07 m3 m?2 day?1 at an average depth of 5·5 m under 0·4 m waves of 6·5 s duration. The importance of these procedures in the mineralization of organic materials and the regeneration of nutrients for an inshore ‘lagoon ecosystem’ is estimated and discused.  相似文献   

20.
Chemical extraction techniques show that the majority of the arsenic in North Atlantic deep-sea sediments is associated with an iron phase compositionally similar to that found in deep-sea ferromanganese nodules (As/Fe ~ 11 · 10?4) and is probably of seawater origin. Some sediments also contain As associated with Fe oxides produced by continental weathering. A minority (~8%) of the arsenic is of detrital origin but is not associated with Fe or Mn oxides; it has a content (1.7 ppm) similar to the average crustal abundance. In the Eastern Mediterranean Sea, near-shore sediments contain As associated with land-derived Fe oxides (As/Fe ~ 2 · 10?4), but As/Fe ratios increase to ~ 13 · 10?4 in deep-sea sediments as the contribution of seawater derived arsenic becomes dominant. Arsenic is enriched in metalliferous sediments (As/Fe ~ 20?50 · 10?4) but As/P ratios of metalliferous sediments, deep-sea ferromanganese nodules and deep-ocean water are all similar. Although a hydrothermal contribution cannot be discounted, it is likely that the arsenic is also of seawater origin, suggesting that hydrothermal iron oxyhydroxides remove As more efficiently from seawater than do iron phases (goethite) in deep-sea sediments and nodules. Arsenic accumulates in deep-sea sediments (~ 6 μg cm?2 10?3 yr?1) at sediments (~ 120 μg cm?2 10?3 yr?1) at rate sufficient to balance river input input (~3 · 1010 g yr?1). These estimates give an oceanic residence time for arsenic of 1–2 · 105 yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号