首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It has recently been shown by Rauch 38 Tremaine that the rate of angular momentum relaxation in nearly Keplerian star clusters is greatly increased by a process termed 'resonant relaxation'; it was also argued, via a series of scaling arguments, that tidal disruption of stars in galactic nuclei containing massive black holes could be noticeably enhanced by this process. We describe here the results of numerical simulations of resonant tidal disruption which quantitatively test the predictions made by Rauch 38 Tremaine. The simulation method is based on an N -body routine incorporating cloning of stars near the loss cone and a semirelativistic symplectic integration scheme. Normalized disruption rates for resonant and non-resonant nuclei are derived at orbital energies both above and below the critical energy, and the corresponding angular momentum distribution functions are found. The black hole mass above which resonant tidal disruption is quenched by relativistic precession is determined. We also briefly describe the discovery of chaos in the Wisdom–Holman symplectic integrator applied to highly eccentric orbits and propose a modified integration scheme that remains robust under these conditions. We find that resonant disruption rates exceed their non-resonant counterparts by an amount consistent with the predictions; in particular, we estimate the net tidal disruption rate for a fully resonant cluster to be about twice that of its non-resonant counterpart. No significant enhancement in rates is observed outside the critical radius. Relativistic quenching of the effect is found to occur for hole masses M  >  M Q  = (8 ± 3) × 107  M . The numerical results combined with the observed properties of galactic nuclei indicate that for most galaxies the resonant enhancement to tidal disruption rates will be very small.  相似文献   

3.
4.
5.
The growth of supermassive black holes by merging and accretion in hierarchical models of galaxy formation is studied by means of Monte Carlo simulations. A tight linear relation between masses of black holes and masses of bulges arises if the mass accreted by supermassive black holes scales linearly with the mass-forming stars and if the redshift evolution of mass accretion tracks closely that of star formation. Differences in redshift evolution between black hole accretion and star formation introduce a considerable scatter in this relation. A non-linear relation between black hole accretion and star formation results in a non-linear relation between masses of remnant black holes and masses of bulges. The relation of black hole mass to bulge luminosity observed in nearby galaxies and its scatter are reproduced reasonably well by models in which black hole accretion and star formation are linearly related but do not track each other in redshift. This suggests that a common mechanism determines the efficiency for black hole accretion and the efficiency for star formation, especially for bright bulges.  相似文献   

6.
7.
8.
9.
10.
We report three new or updated techniques for probing the parameters of active galaxies based on the masses of their central black holes MBH). First, we derived a near-IR analog of the bulge luminosity versus MBH relationship. The low scatter makes it a promising new tool to study the black hole demographics. Next, we present relations between MBH and the10 μm and 2-10 keV nuclear luminosity. They may help to study the MBH evolution over wide redshift ranges. Finally, we measured MBH in quasars from z ∼ 3.4 to z ∼ 0.3 to search directly for MBH growth. Surprisingly, we found no evidence for growth implying that the majority of quasar host galaxies have undergone their last major merger at z ≥ 3. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
We present evidence that there is a significant correlation between the fraction of the mass of a galaxy that lies in its central black hole and the age of the galactic stellar population. Since the absorption-line indices that are used to estimate the age are luminosity-weighted, they essentially measure the time since the last significant episode of star formation in the galaxy. The existence of this correlation is consistent with several theories of galaxy formation, including the currently favoured hierarchical picture of galaxy evolution, which predicts just such a relation between the black hole mass and the time since the last burst of merger-induced star formation. It is not consistent with models in which the massive black hole is primordial, and hence uncoupled from the stellar properties of the galaxy.  相似文献   

12.
13.
In large spheroidal stellar systems, such as elliptical galaxies, one invariably finds a  106–109 M  supermassive black hole at their centre. In contrast, within dwarf elliptical galaxies one predominantly observes a  105–107 M  nuclear star cluster. To date, few galaxies have been found with both types of nuclei coexisting and even less have had the masses determined for both central components. Here, we identify one dozen galaxies housing nuclear star clusters and supermassive black holes whose masses have been measured. This doubles the known number of such hermaphrodite nuclei – which are expected to be fruitful sources of gravitational radiation. Over the host spheroid (stellar) mass range  108–1011 M  , we find that a galaxy's nucleus-to-spheroid (baryon) mass ratio is not a constant value but decreases from a few per cent to ∼0.3 per cent such that  log[( M BH+ M NC)/ M sph]=−(0.39 ± 0.07) log[ M sph/1010 M]− (2.18 ± 0.07)  . Once dry merging commences and the nuclear star clusters disappear, this ratio is expected to become a constant value.
As a byproduct of our investigation, we have found that the projected flux from resolved nuclear star clusters is well approximated with Sérsic functions having a range of indices from ∼0.5 to ∼3, the latter index describing the Milky Way's nuclear star cluster.  相似文献   

14.
We explore the relationship between black hole mass (MBH) and the motion of the jet components for a sample of blazars. The Very Long Baseline Array (VLBA) 2cm Survey and its continuation: Monitoring of Jets in active galactic nuclei (AGNs) with VLBA Experiments (MOJAVE) have observed 278 radio-loud AGNs, of which 146 blazars have reliable measurements of their apparent velocities of the jet components. We calculate the minimal Lorentz factors for these sources from their measured apparent velocities, and their black hole masses ate estimated with their broad-line widths. A sig-nificant intrinsic correlation is found between black hole masses and the minimal Lorentz factors of the jet components. The Eddington ratio is only weakly correlated with the min-imal Lorentz factor, which may imply that the Blandford-Znajek (BZ) mechanism may dominate over the Blandford-Payne (BP) mechanism for the jet acceleration (at least) in blazars.  相似文献   

15.
16.
Under the assumption that accretion on to massive black holes (BHs) powers active galactic nuclei (AGNs), the mass function (MF) of the BHs responsible for their past activity is estimated. For this, we take into account not only the activity related to the optically selected AGNs, but also that required to produce the hard X-ray background (HXRB). The MF of the massive dark objects (MDOs) in nearby quiescent galaxies is computed by means of the most recent results on their demography. The two mass functions match well under the assumption that the activity is concentrated in a single significant burst with λ L L Edd being a weakly increasing function of luminosity. This behaviour may be indicative of some level of recurrence and/or of accretion rates insufficient to maintain the Eddington rates in low-luminosity/low-redshift objects. Our results support the scenario in which the early phase of intense nuclear activity occurred mainly in early-type galaxies (E/S0) during the relatively short period in which they still had an abundant interstellar medium. Only recently, with the decline of the quasi-stellar object (QSO) luminosities, did the activity in late‐type galaxies (Sa/Sab) become statistically significant.  相似文献   

17.
18.
19.
We introduce a multipolar scheme for describing the structure of stationary, axisymmetric, force-free black hole magnetospheres in the '3+1' formalism. We focus here on Schwarzschild spacetime, giving a complete classification of the separable solutions of the stream equation. We show a transparent term-by-term analogy of our solutions with the familiar multipoles of flat-space electrodynamics. We discuss electrodynamic processes around disc-fed black holes in which our solutions find natural applications: (i) 'interior' solutions in studies of the BlandfordZnajek process of extracting the rotational energy of holes, and of the formation of relativistic jets in active galactic nuclei and 'microquasars'; (ii) 'exterior' solutions in studies of accretion disc dynamos, disc-driven winds and jets. On the strength of existing numerical studies, we argue that the poloidal field structures found here are also expected to hold with good accuracy for rotating black holes, except for the cases of the maximum possible rotation rates. We show that the closed-loop exterior solutions found here are not in contradiction with the MacdonaldThorne theorem, as these solutions, which diverge logarithmically on the horizon of the hole , only apply to those regions that exclude .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号