首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A new approach to the investigation of the Sm/Nd evolution of the upper mantle directly from the data on lherzolite xenoliths is described in this paper.It is demonstrated that the model age TCHUR of an unmetasomatic iherzolite zenolith ca represent the mean depletion age of its mantle source, thus presenting a correlation trend between f^Sm/Nd and the mean depletion age of the upper mantle from the data on xenoliths.This correlation trend can also be derived from the data on river suspended loads as well as from granitoids.Based on the correlation trend mentioned above and mean depletion ages of the upper mantle at various geological times, an evolution curve for the mean f^Sm/Nd value of the upper mantle through geological time has been established.It is suggested that the upwilling of lower mantle material into the upper mantle and the recycling of continental crust material during the Archean were more active ,thus maintaining fairly constantf^Sm/Nd and εNd values during this time period. Similarly ,an evolution curve for the mean f^Sm/Nd value of the continental crust through geological time has also been established from the data of continental crust material.In the light of both evolution curves for the upper mantle and continental crust ,a growth curve for the continental crust has been worked out ,suggesting that :(1)about 30%(in volume )of the present crust was present as the continental crust at 3.8 Ga ago ;(2)the growth rate was much lower during the Archean ;and (3)the Proterozoic is another major period of time during which the continental crust wsa built up .  相似文献   

2.
We have determined U-Pb ages, trace element abundances and Hf isotopic compositions of approximately 1000 detrital zircon grains from the Mississippi, Congo, Yangtze and Amazon Rivers. The U-Pb isotopic data reveal the lack of >3.3 Ga zircons in the river sands, and distinct peaks at 2.7-2.5, 2.2-1.9, 1.7-1.6, 1.2-1.0, 0.9-0.4, and <0.3 Ga in the accumulated age distribution. These peaks correspond well with the timing of supercontinent assembly. The Hf isotopic data indicate that many zircons, even those having Archean U-Pb ages, crystallized from magmas involving an older crustal component, suggesting that granitoid magmatism has been the primary agent of differentiation of the continental crust since the Archean era. We calculated Hf isotopic model ages for the zircons to estimate the mean mantle-extraction ages of their source materials. The oldest zircon Hf model ages of about 3.7 Ga for the river sands suggest that some crust generation had taken place by 3.7 Ga, and that it was subsequently reworked into <3.3 Ga granitoid continental crust. The accumulated model age distribution shows peaks at 3.3-3.0, 2.9-2.4, and 2.0-0.9 Ga.The striking attribute of our new data set is the non-uniformitarian secular change in Hf isotopes of granitoid crusts; Hf isotopic compositions of granitoid crusts deviate from the mantle evolution line from about 3.3 to 2.0 Ga, the deviation declines between 2.0 and 1.3 Ga and again increases afterwards. Consideration of mantle-crust mixing models for granitoid genesis suggests that the noted isotopic trends are best explained if the rate of crust generation globally increased in two stages at around (or before) 3.3 and 1.3 Ga, whereas crustal differentiation was important in the evolution of the continental crust at 2.3-2.2 Ga and after 0.6 Ga. Reconciling the isotopic secular change in granitoid crust with that in sedimentary rocks suggests that sedimentary recycling has essentially taken place in continental settings rather than active margin settings and that the sedimentary mass significantly grew through addition of first-cycle sediments from young igneous basements, until after ∼1.3 Ga when sedimentary recycling became the dominant feature of sedimentary evolution. These findings, coupled with the lack of zircons older than 3.3 Ga in river sands, imply the emergence of large-scale continents at about 3.3 Ga with further rapid growth at around 1.3 Ga. This resulted in the major growth of the sedimentary mass between 3.3 and 1.3 Ga and the predominance of its cannibalistic recycling later.  相似文献   

3.
One of the major questions of Precambrian research is whether present-day plate tectonic models can be applied to the evolution of the ancient continental crust or whether the tectonic style suggests a unidirectional and therefore non-uniformitarian development in response to gradual changes in the global thermal regime through time.There is no evidence for contemporary plate tectonics in the Archaean although palaeomagnetism indicates that continental drift occurred at least as far back as 2,8 Ga ago. Greenstone belts were most probably deposited in rift-induced large, shallow basins on older sialic crust and were later modified and partly disrupted through tectonicsm and granitoid batholith emplacement. All rock types and associations in greenstones can be explained by a model involving incipient crustal breakup and generation of magmatic rocks through melting in the upper mantle and subsequent further differentiation of dense magmas which did not reach the surface during ascent.In the Proterozoic independent drift of large continental plates defined by the present shields seems established, and the occurrence of collision events along their margins must therefore be assumed and may be documented in a few cases. However, the majority of mobile belts between ca. 2,2 Ga and 1,1 Ga in age appear to be of ensialic origin and the palaeomagnetic record documents a remarkable coherence of individual shields which contain these belts. To account for this evolution not involving large-scale relative motion an ensialic model is presented on the basis of lithospheric delamination and crustal subduction.A nearly complete record for the operation of modern Wilson-cycle tectonics exists in rocks since about 900–1000 Ma ago and signifies the onset of contemporary plate tectonics.The global change in crustal evolution through time is linked to the declining heat flow of the earth and may be a direct response of the growing lithosphere to changes in the convective pattern of the mantle. Therefore, the contrasting tectonic style of Archaean greenstone belts, Proterozoic mobile belts and late Precambrian to Phanerozoic orogenic belts reflects a unidirectional pattern of which the present Wilson-cycle regime is but the latest.
Zusammenfassung Eine zentrale Frage für die Präkambrium-Forschung bleibt weiterhin, inwieweit plattentektonische Modellvorstellungen, die für die rezente Dynamik der Erde zutreffen, auch auf die Entwicklung der frühen Kruste angewandt werden können.Die bisher über das Archaikum vorliegenden Gesteinsverhältnisse lassen keine Ähnlichkeit mit heutigen Prozessen an Plattenrändern erkennen. Weder wurden überzeugende Anzeichen für laterale Ozeanboden-Bildung (sheeted dykes) noch für Subduktionsprozesse gefunden, und die Anwendung vorwiegend geochemischer Kriterien bei der Erstellung von frühen Krustenmodellen stößt auf zunehmenden Widerstand, da sie oft im Widerspruch zu den Geländebefunden stehen. Paläomagnetische Daten deuten bisher lediglich für die Superior-Provinz Kanadas mögliche Kontinentaldrift im späten Archaikum an.Die verbreitete Grünstein-Granit-Gneis-Assoziation des Archaikums hat bisher viele Deutungen erfahren. Nachdem nunmehr in fast allen Kratonen prä-Grünstein granitoide Gesteine gefunden wurden und die Feldverhältnisse für die Bildung ausgedehnter Flachwasserbecken bei der Grünstein-Ablagerung sprechen, muß die Vorstellung einer ensimatischen inselbogenartigen Entwicklung zugunsten eines sialischen Rift-Modelles aufgegeben werden. Alle Gesteinstypen sowie die Tektonik in Grünstein-Becken können durch Krustendehnung, Grabenbildung und evtl. Zerbrechen mit Bildung kleiner Meeresrinnen vom Typ Rotes Meer gebildet werden. Voraussetzung ist lediglich die Bildung einer Magmenkammer unter dem Rift durch Teilaufschmelzung im oberen Mantel und die weitere Differenzierung dichter mafischer Schmelzen, die den Aufstieg zur Oberfläche nicht schaffen.Mit Beginn des Proterozoikums kann die Existenz großer und wahrscheinlich starrer Platten von kontinentalen Ausmaßen mit großer Sicherheit angenommen werden, und die Paläomagnetik weist auf großräumige Bewegungen hin, wobei es offensichtlich wiederholt zum Auseinanderbrechen einer oder zweier Superkontinente kam. Ob es dabei zu alpinotypen Kollisionsorogenen kam, bleibt weiterhin umstritten, einige Anzeichen sprechen für vereinzelte andinotype Plattenrand-Entwicklung ab dem mittleren Proterozoikum. Die große Mehrzahl der sog. mobile belts folgt einer ensialischen Entwicklung, für die ein neues Modell auf der Basis subkrustaler Mantel-Delamination und Krustensubduktion vorgestellt wird.Moderne Plattentektonik mit komplettem Wilson-Zyklus der Ozeanöffnung und Schließung tritt erstmalig gegen Ende des Proterozoikums auf und löst allmählich die Phase der vorwiegend intrakrustalen Orogenese früherer Zeiten ab.Der globale episodische Wechsel im Mechanismus der Krusten-Bildung und -Deformation ist wahrscheinlich auf den abnehmenden Wärmefluß der Erde und auf damit zusammenhängende Veränderungen der Mantelkonvektion und des vertikalen Lithosphären-Wachstums zurückzuführen. Diese Evolution hat zweifellos im Laufe der Erdgeschichte zu wesentlichen Veränderungen in der Lithosphären-Dynamik geführt und folgt damit nicht dem Prinzip des Aktualismus, wobei das durch den Wilson-Zyklus charakterisierte Phanerozoische Bewegungsmuster der Platten lediglich ein weiteres Zwischenstadium der geodynamischen Erdentwicklung darstellt.

Résumé Une question centrale pour la recherche précambrienne reste finalement jusqu'où les modèles de la tectonique de plaques, qui s'appliquent à la dynamique récente de la Terre, peuvent l'être aussi au développement de la croûte ancienne.Les relations se présentant jusqu'à présent dans l'Archéen, entre masses rocheuses, ne permettent pas de reconnaître de similarité avec les processus actuels en bordure des plaques. On n'a trouvé aucun indice convainquant en faveur de la formation de fonds océaniques par voie latérale, ni en faveur de processus de subduction; et l'application de critères principalement géochimiques dans l'établissement des modèles crustaux anciens se heurte à une opposition croissante, étant donné qu'ils se trouvent souvent en contradiction avec les faits de terrain. Les données paléomagnétiques indiquent seulement jusqu'à présent, pour la Province supérieure du Canada, une dérive continentale possible à la fin de l'Archéen.L'association, bien répandue dans l'Archéen, roches vertes-granite-gneiss, a jusqu'à présent reçu de nombreuses significations. Maintenant que, dans presque tous les cratons, on a trouvé des roches granitoïdes antérieures aux roches vertes, et qu'en ce qui concerne le dépôt des roches vertes, les faits de terrain plaident pour leur formation dans des bassins de faible profondeur, il faut abandonner l'idée du développement d'un arc insulaire ensimatique en faveur d'un modèle de rift sialique. Tous les types de roches, ainsi que la tectonique des bassins à roches vertes, peuvent être formés par la voie d'une extension de la croûte avec formation de graben et éventuellement rupture avec formation de sillons marins du type Mer Rouge. Il n'est d'autre supposition que la formation d'une chambre magmatique sous le rift par fusion partielle dans le manteau supérieur, et la différentiation ultérieure de liquides mafiques denses sans montée vers la surface.On peut admettre avec grande certitude l'existence, au commencement du Protérozoïque, de grandes plaques de dimensions continentales, probablement rigides, où le paléomagnétisme indique de vastes mouvements grâce auxquels il en est résulté, de façon répétée, la séparation d'un ou de deux supercontinents. S'il s'en est suivi des orogènes alpinotypes par suite d'une collision, reste encore fortement débattu; quelques indices plaident en faveur d'un certain développement d'une bordure de plaque de type andin à partir du Protérozoïque moyen. La grande majorité des ceintures mobiles fait suite à un développement ensialique pour lequel on présente un nouveau modèle sur la base d'une délamination subcrustale du manteau et d'une subduction de la croûte.L'alternance épisodique globale dans le mécanisme de la formation et de la déformation de la croûte est vraisemblement à rapporter à la diminution du flux de chaleur de la Terre, et, par là, à des changements dans la convection au sein du manteau et dans l'accroissement vertical de la lithosphère. Cette évolution a conduit sans aucun doute, au cours de l'histoire de la Terre, à des changements essentiels dans la dynamique de la lithosphère; elle ne respecte donc pas le principe de l'actualisme suivant lequel le modèle de mouvement des plaques, pour le Phanérozoïque, caractérisé par le cycle de Wilson, n'est qu'un autre stade intermédiaire du développement géodynamique de la Terre.

- , , . , , - , . (sheeted dykes), , , . . . . , . , - , , . , , , , . , , , . , , , , , , , . , . . . , . . , , . , , , ; .
  相似文献   

4.
翟明国 《岩石学报》2017,33(5):1369-1380
地球是宇宙中迄今唯一发现有花岗岩的星球。从物质组成而言,大洋的核心问题是玄武岩,大陆的核心问题是花岗岩。花岗岩从被发现的那一天起,围绕它的产状、成因和演化过程及其地质意义的争论就没有停止过。最早的陆壳由长英质片麻岩TTG组成,TTG不能从地幔中直接熔出,是地幔熔融的玄武岩再次熔融形成的。初始的陆壳富钠,太古宙以后的陆壳开始明显富钾。洋壳的寿命仅2~3亿年,陆壳的寿命可长达40~44亿年。花岗岩记录了大陆形成与演化的全过程,大陆演化对于认知地球具有无法替代的作用。因此,花岗岩在某种程度上可以作为陆壳的代用词。20世纪60年代兴起的板块构造理论是地球科学的一次革命,但是,板块构造理论并未解决大陆形成、演化和改造的根本问题。此外,花岗岩与大陆成矿作用关系也非常密切。花岗岩成因还存在诸多待解难题。对花岗岩的研究,只有跳出岩石学和岩石地球化学的范畴,才能真正理解大陆构造的问题。花岗岩所凝聚的科学问题是对板块构造理论的巨大挑战,也是固体地球科学理论创新的重大机遇。花岗岩研究从岩石地球化学层面跃升到陆壳演化层面,是研究思维和理论创新的突破,是21世纪花岗岩研究的重大转折。  相似文献   

5.
第五春荣 《岩石学报》2021,37(2):317-340
太古宙约占地球已有演化历史的三分之一强,这一时期涉及到大陆地壳起源、陆壳的巨量生长和稳定以及板块构造作用的启动、建立等诸多最根本的全球性重大地质事件。太古宙岩石在华北克拉通南部的涑水、登封、太华、霍邱和五河等杂岩中广泛出露,这为解析上述重大科学问题提供难得的素材。近十年来,在华北克拉通南部古生代-中生代火山岩或早前寒武纪变沉积岩中陆续发现冥古宙-古太古代的捕获/碎屑锆石,暗示南部地块依然尚存地球形成最初期的陆壳物质。根据华北克拉通南部太古宙岩石年龄统计结果显示有2850~2700Ma和2580~2480Ma两个突出年龄区间,对应的峰值年龄分别为~2.76Ga和~2.52Ga。其中~2.76Ga的岩石主要出露于南部的鲁山、霍邱、五河和中条山地区。此外,在华北克拉通诸多地区,诸如怀安、阜平、五台、中条等地区的花岗质片麻岩和变质沉积岩中也均发现年龄为~2.76Ga的碎屑锆石或者继承锆石,暗示华北克拉通2.85~2.70Ga岩石的分布似乎比现今出露范围更为广泛。与整个华北克拉通类似,2.58~2.48Ga岩石亦在克拉通南部广泛分布,尤其是嵩箕地区的登封杂岩几乎全部是由新太古代晚期的岩石组成。~2.52Ga是华北克拉通南部,乃至整个克拉通太古宙地壳演化最突出、最重要的岩浆-构造事件,明显有别于全球其它诸多典型克拉通。已有的同位素资料研究表明华北克拉通南部,乃至整个克拉通在太古宙经历了两期明显的地壳生长事件:一期发生在2.85~2.70Ga左右,以形成于此时期的涑水杂岩中花岗质岩石和鲁山太华片麻岩系中深成侵入岩和斜长角闪岩为代表;另一期发生在2.58~2.48Ga,以登封杂岩、涑水杂岩以及小秦岭地区太华杂岩中~2.52Ga各类花岗质岩石和变基性岩为代表。华北克拉通正是经过这两期陆壳巨量生长事件之后完成初始的克拉通化。我们在登封杂岩中识别出形成于俯冲汇聚环境的TTG质片麻岩、类似于赞岐岩的变闪长岩和具有N-MORB地球化学特征的变基性火山岩,提出其构成"新太古代构造混杂岩",标志着新太古代末期具有现代体制的板块构造在华北克拉通南部已经开始启动。最近,在登封杂岩中识别出的新太古代双变质带也支持上述观点。  相似文献   

6.
中国大陆地壳铅同位素演化的动力学模型   总被引:29,自引:9,他引:29  
根据中国大陆中、新生代花岗岩长铅同位素数据库,沿用“铅构造模型”的基本思想并作部分改进,建立了中国大陆地壳铅同位素的动力学演化模型。与全球平均的铅同位素演化曲线相比,中国大陆地壳的原始物质相对较贫铀富钍,并且中国大陆的上地壳和下地壳在演化过程中分异得更加彻底。将本模型应用于大别地区中生代花岗岩长石铅同位素数据,结果发现它们具有壳幔铅混合的特征,并且以上下地壳物质混合产生的类地幔铅为主,花岗岩源岩中含有较高的富Th下地壳组分。  相似文献   

7.
Large areas of north-east Africa were dominated by regional extension in the Late Phanerozoic. Widespread rifting occurred in the Late Jurassic, with regional extension culminating in the Cretaceous and resulting in the greatest areal extent and degree of interconnection of the west, central and north African rift systems. Basin reactivation continued in the Paleocene and Eocene and new rifts probably formed in the Red Sea and western Kenya. In the Oligocene and Early Miocene, rifts in Kenya, Ethiopia and the Red Sea linked and expanded to form the new east African rift system.This complex history of rifting resulted in failed rift basins with low to high strain geometries, a range of associated volcanism and varying degrees of interaction with older structures. One system, the Red Sea rift, has partially attained active seafloor spreading. From a comparison of these basins, a general model of three-dimensional rift evolution is proposed. Asymmetrical crustal geometries dominated the early phases of these basins, accompanied by low angle normal faulting that has been observed at least locally in outcrop. As rifting progressed, the original fault and basin forms were modified to produce larger, more through-going structures. Some basins were abandoned, others experienced reversals in regional dip and, in general, extension and subsidence became focused along narrower zones near the rift axes. The final transition to oceanic spreading was accomplished in the Red Sea by a change to high angle, planar normal faulting and diffuse dike injection, followed by the organization of an axial magma chamber.  相似文献   

8.
Until the middle of the 20th century, the continental crust was considered to be dominantly granitic. This hypothesis was revised after the Second World War when several new studies led to the realization that the continental crust is dominantly made of metamorphic rocks. Magmatic rocks were emplaced at peak metamorphic conditions in domains, which can be defined by geophysical discontinuities. Low to medium-grade metamorphic rocks constitute the upper crust, granitic migmatites and intrusive granites occur in the middle crust, and the lower crust, situated between the Conrad and Moho discontinuities, comprises charnockites and granulites. The continental crust acquired its final structure during metamorphic episodes associated with mantle upwelling, which mostly occurred in supercontinents prior to their disruption, during which the base of the crust experienced ultrahigh temperatures (>1000 °C, ultrahigh temperature granulite-facies metamorphism). Heat is provided by underplating of mantle-derived mafic magmas, as well as by a massive influx of low H2O activity mantle fluids, i.e. high-density CO2 and high-salinity brines. These fluids are initially stored in ultrahigh temperature domains, and subsequently infiltrate the lower crust, where they generate anhydrous granulite mineral assemblages. The brines can reach upper crustal levels, possibly even the surface, along major shear zones, where granitoids are generated through brine streaming in addition to those formed by dehydration melting in upper crustal levels.  相似文献   

9.
10.
Continental recycling and true continental growth   总被引:1,自引:0,他引:1  
Continental crust is very important for evolution of life because most bioessential elements are supplied from continent to ocean. In addition, the distribution of continent affects climate because continents have much higher albedo than ocean, equivalent to cloud. Conventional views suggest that continental crust is gradually growing through the geologic time and that most continental crust was formed in the Phanerozoic and late Proterozoic. However, the thermal evolution of the Earth implies that much amounts of continental crust should be formed in the early Earth. This is “Continental crust paradox”.Continental crust comprises granitoid, accretionary complex, and sedimentary and metamorphic rocks. The latter three components originate from erosion of continental crust because the accretionary and metamorphic complexes mainly consist of clastic materials. Granitoid has two components: a juvenile component through slab-melting and a recycling component by remelting of continental materials. Namely, only the juvenile component contributes to net continental growth. The remains originate from recycling of continental crust. Continental recycling has three components: intracrustal recycling, crustal reworking, and crust–mantle recycling, respectively. The estimate of continental growth is highly varied. Thermal history implied the rapid growth in the early Earth, whereas the present distribution of continental crust suggests the slow growth. The former regards continental recycling as important whereas the latter regarded as insignificant, suggesting that the variation of estimate for the continental growth is due to involvement of continental recycling.We estimated erosion rate of continental crust and calculated secular changes of continental formation and destruction to fit four conditions: present distribution of continental crust (no continental recycling), geochronology of zircons (intracontinental recycling), Hf isotope ratios of zircons (crustal reworking) and secular change of mantle temperature. The calculation suggests some important insights. (1) The distribution of continental crust around at 2.7 Ga is equivalent to the modern amounts. (2) Especially, the distribution of continental crust from 2.7 to 1.6 Ga was much larger than at present, and the sizes of the total continental crust around 2.4, 1.7, and 0.8 Ga became maximum. The distribution of continental crust has been decreasing since then. More amounts of continental crust were formed at higher mantle temperatures at 2.7, 1.9, and 0.9 Ga, and more amounts were destructed after then. As a result, the mantle overturns led to both the abrupt continental formation and destruction, and extinguished older continental crust. The timing of large distribution of continental crust apparently corresponds to the timing of icehouse periods in Precambrian.  相似文献   

11.
Seismic imaging of lithospheric discontinuities and continental evolution   总被引:1,自引:0,他引:1  
M. G. Bostock 《Lithos》1999,48(1-4):1-16
Discontinuities in physical properties within the continental lithosphere reflect a range of processes that have contributed to craton stabilization and evolution. A survey of recent seismological studies concerning lithospheric discontinuities is made in an attempt to document their essential characteristics. Results from long-period seismology are inconsistent with the presence of continuous, laterally invariant, isotropic boundaries within the upper mantle at the global scale. At regional scales, two well-defined interfaces termed H (60 km depth) and L (200 km depth) of continental affinity are identified, with the latter boundary generally exhibiting an anisotropic character. Long-range refraction profiles are frequently characterized by subcontinental mantle that exhibits a complex stratification within the top 200 km. The shallow layering of this package can behave as an imperfect waveguide giving rise to the so-called teleseismic Pn phase, while the L-discontinuity may define its lower base as the culmination of a low velocity zone. High-resolution, seismic reflection profiling provides sufficient detail in a number of cases to document the merging of mantle interfaces into lower continental crust below former collisional sutures and magmatic arcs, thus unambiguously identifying some lithospheric discontinuities with thrust faults and subducted oceanic lithosphere. Collectively, these and other seismic observations point to a continental lithosphere whose internal structure is dominated by a laterally variable, subhorizontal layering. This stratigraphy appears to be more pronounced at shallower lithospheric levels, includes dense, anisotropic layers of order 10 km in thickness, and exhibits horizontal correlation lengths comparable to the lateral dimensions of overlying crustal blocks. A model of craton evolution which relies on shallow subduction as a principal agent of craton stabilization is shown to be broadly compatible with these characteristics.  相似文献   

12.
稀有金属成矿全球时空分布与大陆演化   总被引:1,自引:0,他引:1  
王汝成  邬斌  谢磊  车旭东  向路  刘晨 《地质学报》2021,95(1):182-193
花岗岩是大陆地壳的主要组成,是陆壳的特征性物质。花岗岩的形成及演化往往伴随着金属元素的不断富集和广泛的成矿作用,进而形成与之相关的大陆成矿体系。稀有金属成矿是大陆成矿体系的重要内容,毫无疑问,与花岗岩有关的稀有金属成矿作用是大陆演化的直接产物,因此,稀有金属成矿学是大陆动力学的研究内容之一。花岗伟晶岩是锂、铍、钽最重要的成矿母岩,碱性岩(花岗岩、伟晶岩和碳酸岩)与铌、锆等成矿作用有关。全球稀有金属成矿时代集中在太古代3.0~2.6Ga、古元古代1.8Ga、新元古代1.0~0.9Ga、古生代450~400Ma、早中生代250~200Ma、晚中生代160~130Ma和新生代中新世35~10Ma,直接反映了稀有金属成矿与超大陆演化重大事件具有密切的成因关系。最古老的稀有金属成矿作用始于乌尔-诺基兰超大陆,形成了现今分布于北美、非洲南部、西澳等地的重要钽成矿带,其它时期成矿作用相继对应于哥伦比亚超大陆、罗迪尼亚超大陆、冈瓦纳超大陆和潘吉亚超大陆聚合、裂解作用,并终结于新生代发生的印度板块与亚洲板块的碰撞作用。值得关注的是,稀有金属矿物与稀有金属成矿总是共演化,锂辉石、锂电气石、绿柱石和铌铁矿-...  相似文献   

13.
The Marguerite Amphibolite and associated rocks in northern Fiordland, New Zealand, contain evidence for retention of Carboniferous metamorphic assemblages through Cretaceous collision of an arc, emplacement of large volumes of mafic magma, high‐P metamorphism and then extensional exhumation. The amphibolite occurs as five dismembered aluminous meta‐gabbroic xenoliths up to 2 km wide that are enclosed within meta‐leucotonalite of the Lake Hankinson Complex. A first metamorphic event (M1) is manifest in the amphibolite as a pervasively lineated pargasite–anorthite–kyanite or corundum ± rutile assemblage, and as diffusion‐zoned garnet in pelitic schist xenoliths within the amphibolite. Thin zones of metasomatically Al‐enriched leucotonalite directly at the margins of each amphibolite xenolith indicate element redistribution during M1 and equilibration at 6.6 ± 0.8 kbar and 618 ± 25 °C. A second phase of recrystallization (M2) formed patchy and static margarite ± kyanite–staurolite–chlorite–plagioclase–epidote assemblages in the amphibolite, pseudomorphs of coronas in gabbronorite, and thin high‐grossular garnet rims in the pelitic schists. Conditions of M2, 8.8 ± 0.6 kbar and 643 ± 27 °C, are recorded from the rims of garnet in the pelitic schists. Cathodoluminescence imaging and simultaneous acquisition of U‐Th‐Pb isotopes and trace elements by depth‐profiling zircon grains from one pelitic schist reveals four stages of growth, two of which are metamorphic. The first metamorphic stage, dated as 340.2 ± 2.2 Ma, is correlated with M1 on the basis that the unusual zircon trace element compositions indicate growth from a metasomatic fluid derived from the surrounding amphibolite during penetrative deformation. A second phase of zircon overgrowth coupled with crosscutting relationships date M2 to between 119 and 117 Ma. The Early Carboniferous event has not previously been recognized in northern Fiordland, whereas the latter event, which has been identified in Early Cretaceous batholiths, their xenoliths, and rocks directly at batholith margins, is here shown to have also affected the country rock. However, the effects of M2 are fragmentary due to limited element mobility, lack of deformation, distance from a heat source and short residence time in the lower crust during peak P and T. It is possible that many parts of the Fiordland continental arc achieved high‐P conditions in the Early Cretaceous but retain earlier metamorphic or igneous assemblages.  相似文献   

14.
《China Geology》2018,1(1):109-136
The mainland of China is composed of the North China Craton, the South China Craton, the Tarim Craton and other young orogenic belts. Amongst the three cratons, the North China Craton has been studied most and noted for its widely-distributed Archean basement rocks. In this paper, we assess and compare the geology, rock types, formation age and geochemical composition features of the Archean basements of the three cratons. They have some common characteristics, including the fact that the crustal rocks prior to the Paleoarchean and the supracrustal rocks of the Neoarchean were preserved, and Tonalite-Trondhjemtite-Granodiorite (TTG) magmatism and tectono-magmatism occurred at about 2.7 Ga and about 2.5 Ga respectively. The Tarim Craton and the North China Craton show more similarities in their early Precambrian crustal evolution. Significant findings on the Archean basement of the North China Craton are concluded to be: (1) the tectonic regime in the early stage (>3.1 Ga) is distinct from modern plate tectonics; (2) the continental crust accretion occurred mostly from the late Mesoarchean to the early Neoarchean period; (3) a huge linear tectonic belt already existed in the late Neoarchean period, suggesting the beginning of plate tectonics; and (4) the preliminary cratonization had already been completed by about 2.5 Ga. Hadean detrital zircons were found at a total of nine locations within China. Most of them show clear oscillatory zoning, sharing similar textures with magmatic zircons from intermediate-felsic magmatic rocks. This indicates that a fair quantity of continental material had already developed on Earth at that time.  相似文献   

15.
《Gondwana Research》2013,24(4):1241-1260
An overview is presented for the formation and evolution of Precambrian continental lithosphere in South China. This is primarily based on an integrated study of zircon U–Pb ages and Lu–Hf isotopes in crustal rocks, with additional constraints from Re–Os isotopes in mantle-derived rocks. Available Re–Os isotope data on xenolith peridotites suggest that the oldest subcontinental lithospheric mantle beneath South China is primarily of Paleoproterozoic age. The zircon U–Pb ages and Lu–Hf isotope studies reveal growth and reworking of the juvenile crust at different ages. Both the Yangtze and Cathaysia terranes contain crustal materials of Archean U–Pb ages. Nevertheless, zircon U–Pb ages exhibit two peaks at 2.9–3.0 Ga and ~ 2.5 Ga in Yangtze but only one peak at ~ 2.5 Ga in Cathaysia. Both massive rocks and crustal remnants (i.e., zircon) of Archean U–Pb ages occur in Yangtze, but only crustal remnants of Archean U–Pb ages occur in Cathaysia. Zircon U–Pb and Lu–Hf isotopes in the Kongling complex of Yangtze suggest the earliest episode of crustal growth in the Paleoarchean and two episodes of crustal reworking at 3.1–3.3 Ga and 2.8–3.0 Ga. Both negative and positive εHf(t) values are associated with Archean U–Pb ages of zircon in South China, indicating both the growth of juvenile crust and the reworking of ancient crust in the Archean. Paleoproterozoic rocks in Yangtze exhibit four groups of U–Pb ages at 2.1 Ga, 1.9–2.0 Ga, ~ 1.85 Ga and ~ 1.7 Ga, respectively. They are associated not only with reworking of the ancient Archean crust in the interior of Yangtze, but also with the growth of the contemporaneous juvenile crust in the periphery of Yangtze. In contrast, Paleoproterozoic rocks in Cathaysia were primarily derived from reworking of Archean crust at 1.8–1.9 Ga. The exposure of Mesoproterozoic rocks are very limited in South China, but zircon Hf model ages suggest the growth of juvenile crust in this period due to island arc magmatism of the Grenvillian oceanic subduction. Magmatic rocks of middle Neoproterozoic U–Pb ages are widespread in South China, exhibiting two peaks at about 830–800 Ma and 780–740 Ma, respectively. Both negative and positive εHf(t) values are associated with the middle Neoproterozoic U–Pb ages of zircon, suggesting not only growth and reworking of the juvenile Mesoproterozoic crust but also reworking of the ancient Archean and Paleoproterozoic crust in the middle Neoproterozoic. The tectonic setting for this period of magmatism would be transformed from arc–continent collision to continental rifting with reference to the plate tectonic regime in South China.  相似文献   

16.
中国花岗岩与大陆地壳生长方式初步研究   总被引:15,自引:15,他引:15       下载免费PDF全文
中国大陆造山带花岗岩可分为东西两个区,西区的中亚造山带、秦祁昆造山带和青藏高原冈底斯造山带为与大洋发育有关的造山带花岗岩,东区主体的东北、华北和华南是形成于中国大陆拼合之后的燕山期造山带花岗岩。根据不同造山带花岗岩的形成背景、地质地球化学特征差异,以阿尔泰、东昆仑、华北燕山、东北和南岭造山带花岗岩为例讨论花岗岩与大陆地壳生长的关系,区分出中国大陆的5种大陆地壳生长方式:阿尔泰式是古亚洲洋背景上形成的古生代对流地幔物质、热输入和上地壳混合为主的方式;东昆仑式是元古代造山带TTG陆壳背景基础上古生代一早中生代对流地幔物质和热输入,改造元古宙造山带基底的方式;东北式是燕山期中亚造山带背景上对流地幔物质和热输入改造显生宙陆壳的生长方式;燕山式是燕山期对流地幔物质和热输入改造太古宙基底的方式;南岭式燕山期对流地幔输入大陆的是以热为主、物质为辅,大陆地壳生长是以陆壳物质再循环为主(零增长)的生长方式。它们构成中国大陆显生宙地壳生长的基本方式。  相似文献   

17.
《Gondwana Research》2014,25(1):48-102
The Asian continent formed during the past 800 m.y. during late Neoproterozoic through Jurassic closure of the Tethyan ocean basins, followed by late Mesozoic circum-Pacific and Cenozoic Himalayan orogenies. The oldest gold deposits in Asia reflect accretionary events along the margins of the Siberia, Kazakhstan, North China, Tarim–Karakum, South China, and Indochina Precambrian blocks while they were isolated within the Paleotethys and surrounding Panthalassa Oceans. Orogenic gold deposits are associated with large-scale, terrane-bounding fault systems and broad areas of deformation that existed along many of the active margins of the Precambrian blocks. Deposits typically formed during regional transpressional to transtensional events immediately after to as much as 100 m.y. subsequent to the onset of accretion or collision. Major orogenic gold provinces associated with this growth of the Asian continental mass include: (1) the ca. 750 Ma Yenisei Ridge, ca. 500 Ma East Sayan, and ca. 450–350 Ma Patom provinces along the southern margins of the Siberia craton; (2) the 450 Ma Charsk belt of north-central Kazakhstan; (3) the 310–280 Ma Kalba belt of NE Kazakhstan, extending into adjacent NW Xinjiang, along the Siberia–Kazakhstan suture; (4) the ca. 300–280 Ma deposits within the Central Asian southern and middle Tien Shan (e.g., Kumtor, Zarmitan, Muruntau), marking the closure of the Turkestan Ocean between Kazakhstan and the Tarim–Karakum block; (5) the ca. 190–125 Ma Transbaikal deposits along the site of Permian to Late Jurassic diachronous closure of the Mongol–Okhotsk Ocean between Siberia and Mongolia/North China; (6) the probable Late Silurian–Early Devonian Jiagnan belt formed along the margin of Gondwana at the site of collision between the Yangtze and Cathaysia blocks; (7) Triassic deposits of the Paleozoic Qilian Shan and West Qinling orogens along the SW margin of the North China block developed during collision of South China; and (8) Jurassic(?) ores on the margins of the Subumusu block in Myanmar and Malaysia. Circum-Pacific tectonism led to major orogenic gold province formation along the length of the eastern side of Asia between ca. 135 and 120 Ma, although such deposits are slightly older in South Korea and slightly younger in the Amur region of the Russian Southeast. Deformation related to collision of the Kolyma–Omolon microcontinent with the Pacific margin of the Siberia craton led to formation of 136–125 Ma ores of the Yana–Kolyma belt (Natalka, Sarylakh) and 125–119 Ma ores of the South Verkhoyansk synclinorium (Nezhdaninskoe). Giant ca. 125 Ma gold provinces developed in the Late Archean uplifted basement of the decratonized North China block, within its NE edge and into adjacent North Korea, in the Jiaodong Peninsula, and in the Qinling Mountains. The oldest gold-bearing magmatic–hydrothermal deposits of Asia include the ca. 485 Ma Duobaoshan porphyry within a part of the Tuva–Mongol arc, ca. 355 Ma low-sulfidation epithermal deposits (Kubaka) of the Omolon terrane accreted to eastern Russia, and porphyries (Bozshakol, Taldy Bulak) within Ordovican to Early Devonian oceanic arcs formed off the Kazakhstan microcontinent. The Late Devonian to Carboniferous was marked by widespread gold-rich porphyry development along the margins of the closing Ob–Zaisan, Junggar–Balkhash, and Turkestan basins (Amalyk, Oyu Tolgoi); most were formed in continental arcs, although the giant Oyu Tolgoi porphyry was part of a near-shore oceanic arc. Permian subduction-related deformation along the east side of the Indochina block led to ca. 300 Ma gold-bearing skarn and disseminated gold ore formation in the Truong Son fold belt of Laos, and along the west side to ca. 250 Ma gold-bearing skarns and epithermal deposits in the Loei fold belt of Laos and Thailand. In the Mesozoic Transbaikal region, extension along the basin margins subsequent to Mongol–Okhotsk closure was associated with ca. 150–125 Ma formation of important auriferous epithermal (Balei), skarn (Bystray), and porphyry (Kultuminskoe) deposits. In northeastern Russia, Early Cretaceous Pacific margin subduction and Late Cretaceous extension were associated with epithermal gold-deposit formation in the Uda–Murgal (Julietta) and Okhotsk–Chukotka (Dukat, Kupol) volcanic belts, respectively. In southeastern Russia, latest Cretaceous to Oligocene extension correlates with other low-sulfidation epithermal ores that formed in the East Sikhote–Alin volcanic belt. Other extensional events, likely related to changing plate dynamics along the Pacific margin of Asia, relate to epithermal–skarn–porphyry districts that formed at ca. 125–85 Ma in northeastmost China and ca. 105–90 Ma in the Coast Volcanic belt of SE China. The onset of strike slip along a part of the southeastern Pacific margin appears to correlate with the giant 148–135 Ma gold-rich porphyry–skarn province of the lower and middle Yangtze River. It is still controversial as to whether true Carlin-like gold deposits exist in Asia. Those deposits that most closely resemble the Nevada (USA) ores are those in the Permo-Triassic Youjiang basin of SW China and NE Vietnam, and are probably Late Triassic in age, although this is not certain. Other Carlin-like deposits have been suggested to exist in the Sepon basin of Laos and in the Mongol–Okhotsk region (Kuranakh) of Transbaikal.  相似文献   

18.
Mary Douglas 《GeoJournal》1999,47(3):411-415
Cultural theory works with a parsimonious model of four cultural types, each emanating from a specific form of organisation. The four types are identified as attitudes and values that justify the organisation. The hierarchical type, with its ranked levels and symmetrical branchings, depends on the adoption of hierarchical values and the expression of matching judgements. Likewise for the enclavist culture, the individualist culture and that of the isolates. There is no assumption of fixity, on the contrary, the four types are represented in any community, and social life is in permanent tension and flux. This article gives a summary of the early history of the theory. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
We propose that the europium excess in Precambrian sedimentary rocks, relative to those of younger age is derived from volcanic rocks of ancient island arcs, which were the source materials for the sediments. Precambrian sedimentary rocks and present-day volcanic rocks of island arcs have similar REE patterns, total REE abundances and excess Eu, relative to the North American shale composite. The present upper crustal REE pattern, as exemplified by that of sediments, is depleted in Eu, relative to chondrites. This depletion is considered to be a consequence of development of a grandioritic upper crust by partial melting in the lower crust, which selectively retains europium.  相似文献   

20.
区域变质作用与中国大陆地壳的形成与演化   总被引:4,自引:4,他引:4  
在编制1∶500万中国变质地质图的基础上,本文总结了中国主要变质带的演化以及各变质带与中国大陆地壳形成演化之间的内在联系。虽然在华北和华南克拉通都有古太古代到中太古代的变质年代记录,但是由于后期改造其变质作用的特点及与区域构造背景的联系已难以追索。新太古代末-古元古代初期的变质作用在华北克拉通表现最明显,这期变质作用紧随大规模的TTG岩浆作用,普遍具有逆时针的P-T演化轨迹,反映了地幔柱主导的岩浆-变质事件特点。古元古代晚期的变质事件在华北、华南、塔里木克拉通都有强烈反映。这期变质作用以形成具有顺时针P-T演化轨迹的高压麻粒岩为特点,与形成Columbia超大陆的一些造山带的特点类似,但是这三个不同克拉通在与Columbia聚合的时间和空间方位上存在差异。华南克拉通是相对年轻的克拉通,是沿新元古代江南造山带扬子和华夏地块拼合的产物。新元古代江南造山带的火山岩形成时代和变质作用程度从北东向南西迁移,反映了造山过程逐渐迁移和剪刀式闭合的特点。形成华南克拉通后,在其东南缘又先后经历了加里东期和印支期的变质改造,并且由北西向南东变质带从加里东期转变为印支期,但是这两期变质作用的构造背景尚不很清楚。中国南北大陆的聚合首先从西昆仑-阿尔金-北祁连-北秦岭-桐柏开始,所反映的变质作用是早古生代的蓝片岩相和榴辉岩相变质岩相伴产出,表明经历了从洋壳俯冲到陆陆碰撞的演化过程。中国东部的南北大陆到印支期才最终汇聚,相应的变质作用以南部出现高压蓝片岩相、北部出现超高压的榴辉岩相变质带为特点,表明南方大陆向北方大陆的俯冲。超高压带内普遍含有柯石英,意味着大规模的陆壳深俯冲。华北克拉通和塔里木克拉通以北的中亚造山带内存在多条从早古生代到晚古生代的变质带和多条蓝片岩相变质带,表明这是一个由多阶段、多条变质带组成的造山区。但是其变质作用的空间和时间演化还有待进一步深入。青藏高原变质带具有北老南新的空间分布特点,最北部的印支期龙木错-双湖-澜沧江变质带反映了原特提斯和古特提斯洋的碰撞拼合过程,北部的燕山期班公湖-怒江变质带和中部的喜马拉雅早期雅鲁藏布江变质带反映了新特提斯洋的两次碰撞拼合过程,南部喜马拉雅晚期的高喜马拉雅变质带反映了印度板块向北俯冲导致的高原快速隆升过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号