首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
5.
6.
A gravimetric and magnetometric study was carried out in the north-eastern portion of the Cuyania terrane and adjacent Pampia terrane. Gravimetric models permitted to interpret the occurrence of dense materials at the suture zone between the latter terranes. Magnetometric models led to propose the existence of different susceptibilities on either side of the suture. The Curie temperature point depth, representing the lower boundary of the magnetised crust, was found to be located at 25 km, consistent with the lower limit of the brittle crust delineated by seismic data; this unusually thick portion of the crust is thought to release stress producing significant seismicity.

Moho depths determined from seismic studies near western Sierras Pampeanas are significantly greater than those obtained from gravimetric crustal models.

Considering mass and gravity changes originated by the flat-slab Nazca plate along Cuyania and western Pampia terranes, it is possible to reconcile Moho thickness obtained either by seismic or by gravity data. Thus, topography and crustal thickness are controlled not only by erosion and shortening but by upper mantle heterogeneities produced by: (a) the oceanic subducted Nazca plate with “normal slope” also including asthenospheric materials between both continental and oceanic lithospheres; (b) flat-slab subducted Nazca plate (as shown in this work) without significant asthenospheric materials between both lithospheres. These changes influence the relationship between topographic altitudes and crustal thickness in different ways, differing from the simple Airy system relationship and modifying the crustal scale shortening calculation. These changes are significantly enlarged in the study area. Future changes in Nazca Plate slope will produce changes in the isostatic balance.  相似文献   


7.
8.
9.
10.
11.
The western retroarc of the Southern Andes between 38° and 40° S is formed by a NNW-elongated ridge not associated with stacked thrust sheets. On the contrary, during the last 4–3 Ma this ridge was affected by extensional deformation, regional uplift and related folding on a very broad scale. Receiver function analysis shows that the drainage divide area and adjacent retroarc lie over an attenuated crust. Expected crustal thickness at these latitudes is around 38 km, whereas in this part of the retroarc the thickness is less than 32 km. The causes for such attenuation have been linked to a moderate steepening of the subducted Nazca plate beneath the South American plate, which is suggested by a westward shift and narrowing of the magmatic arc during the last 4 to 5 Ma. Gravimetric studies show that the upper plate did not react homogeneously to slab steepening, but ancient sutures and lithospheric discontinuities deeply buried under Mesozoic to Cenozoic sequences in the retroarc were locally reactivated. These processes resulted in an asthenospheric anomaly that correlates at the surface with the area of Pliocene to Quaternary doming, widespread extension and three radial troughs. Two of the troughs have accommodated substantial amounts of extension, but the third was probably aborted at an early stage. Moreover, the presence of an anomalous concentration of calderas and large volcanic centers over the proposed asthenospheric anomaly, and their age distribution, may indicate minor migration of the asthenospheric anomaly between 4 and 2 Ma through the western South American plate.  相似文献   

12.
Talc is one of the weakest minerals that is associated with fault zones. Triaxial friction experiments conducted on water-saturated talc gouge at room temperature yield values of the coefficient of friction, μ (shear stress, τ/effective normal stress, σ′N) in the range 0.16–0.23, and μ increases with increasing σ′N. Talc gouge heated to temperatures of 100°–400 °C is consistently weaker than at room temperature, and μ < 0.1 at slow strain rates in some heated experiments. Talc also is characterized by inherently stable, velocity-strengthening behavior (strength increases with increasing shear rate) at all conditions tested. The low strength of talc is a consequence of its layered crystal structure and, in particular, its very weak interlayer bond. Its hydrophobic character may be responsible for the relatively small increase in μ with increasing σ′N at room temperature compared to other sheet silicates.Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.  相似文献   

13.
Precipitation in northern Chile is controlled by two great wind belts—the southern westerlies over the southern Atacama and points south (> 24° S) and the tropical easterlies over the northern and central Atacama Desert (16–24° S). At the intersection of these summer and winter rainfall regimes, respectively, is a Mars‐like landscape consisting of expansive surfaces devoid of vegetation (i.e. absolute desert) except in canyons that originate high enough to experience runoff once every few years. Pollen assemblages from 39 fossil rodent middens in one of these canyons, Quebrada del Chaco (25° 30′ S), were used to infer the history of vegetation and precipitation at three elevations (2670–2800 m; 3100–3200 m; 3450–3500 m) over the past 50 000 years. When compared to modern conditions and fossil records to the north and south, the pollen evidence indicates more winter precipitation at > 52, 40–33, 24–17 k cal. yr BP, more precipitation in both seasons at 17–14 k cal. yr BP, and more summer precipitation from 14–11 k cal. yr BP. Younger middens are scarce at Quebrada del Chaco, and the few Holocene samples indicate hyperarid conditions comparable to today. The only exception is a pollen assemblage that indicates a brief but significant interlude of increased winter precipitation in the last millennium. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The N–S oriented Coastal Cordillera of South Central Chile shows marked lithological contrasts along strike at 38°S. Here, the sinistral NW–SE-striking Lanalhue Fault Zone (nomen novum) juxtaposes Permo-Carboniferous magmatic arc granitoids and associated, frontally accreted metasediments (Eastern Series) in the northeast with a Late Carboniferous to Triassic basal-accretionary forearc wedge complex (Western Series) in the southwest. The fault is interpreted as an initially ductile deformation zone with divergent character, located in the eastern flank of the basally growing, upwarping, and exhuming Western Series. It was later transformed and reactivated as a semiductile to brittle sinistral transform fault. Rb–Sr data and fluid inclusion studies of late-stage fault-related mineralizations revealed Early Permian ages between 280 and 270 Ma for fault activity, with subsequent minor erosion. Regionally, crystallization of arc intrusives and related metamorphism occurred between 306 and 286 Ma, preceded by early increments of convergence-related deformation. Basal Western Series accretion started at >290 Ma and lasted to 250 Ma. North of the Lanalhue fault, Late Paleozoic magmatic arc granitoids are nearly 100 km closer to the present day Andean trench than further south. We hypothesize that this marked difference in paleo-forearc width is due to an Early Permian period of subduction erosion north of 38°S, contrasting with ongoing accretion further south, which kinematically triggered the evolution of the Lanalhue Fault Zone. Permo-Triassic margin segmentation was due to differential forearc accretion and denudation characteristics, and is now expressed in contrasting lithologies and metamorphic signatures in todays Andean forearc region north and south of the Lanalhue Fault Zone.  相似文献   

15.
High resolution seafloor studies of the Peru Trench between 10°S and 14°S with the GLORIA long-range side-scan sonar system show that the Nazca plate is broken by numerous normal faults as it bends into the trench. These bending-induced faults strike subparallel to the trench axis and overprint and cut across spreading fabric structures of the plate. They commonly form grabens having widths and spacings of 3–5 km and extend for as much as 100 km along strike. Vertical displacements are generally 200 m or more by the time they reach the trench axis. Turbidite deposits are found in the trench north of 11.5°S. Both turbidite and pelagic sediments are folded and temporarily accreted to the base of the overriding plate along the length of the trench axis. They are apparently subsequently implaced in the grabens by slumping and subducted with the Nazca plate. The Mendaña Fracture Zone, which intersects the trench between 9°40′S and 10°35′S, appears to be the locus of a seaward propagating rift that is forming in response to subduction-induced extensional stresses in the Nazca plate.  相似文献   

16.
17.
Zabuye Salt Lake in Tibet, China is a carbonate-type salt lake, which has some unique characteristics that make it different from other types of salt lakes. The lake is at the latter period in its evolution and contains liquid and solid resources. Its brine is rich in Li, B, K and other useful minor elements that are of great economic value. We studied the concentration behavior of these elements and the crystallization paths of salts during isothermal evaporation of brine at 15°C and 25°C. The crystallization sequence of the primary salts from the brine at 25°C is halite (NaCl) → aphthitalite (3K2SO4·Na2SO4) → zabuyelite (Li2CO3)→ trona (Na2CO3·NaHCO3·2H2O) → thermonatrite (Na2CO3·H2O) → sylvite (KCl), while the sequence is halite (NaCl) → sylvite (KCl) → trona (Na2CO3·NaHCO3·2H2O) → zabuyelite (Li2CO3) → thermonatrite (Na2CO3·H2O) → aphthitalite (3K2SO4·Na2SO4) at 15°C. They are in accordance with the metastable phase diagram of the Na+, K+-Cl?, CO32?, SO42?-H2O quinary system at 25°C, except for Na2CO3·7H2O which is replaced by trona and thermonatrite. In the 25°C experiment, zabuyelite (Li2CO3) was precipitated in the early stage because Li2CO3 is supersaturated in the brine at 25°C, in contrast with that at 15°C, it precipitated in the later stage. Potash was precipitated in the middle and late stages in both experiments, while boron was concentrated in the early and middle stages and precipitated in the late stage.  相似文献   

18.
This paper reports a new 1° × 1° global thermal model for the continental lithosphere (TC1). Geotherms for continental terranes of different ages (> 3.6 Ga to present) constrained by reliable data on borehole heat flow measurements (Artemieva, I.M., Mooney, W.D. 2001. Thermal structure and evolution of Precambrian lithosphere: a global study. J. Geophys. Res 106, 16387–16414.), are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low-quality heat flow data (ca. 60% of the continents). These data are supplemented by cratonic geotherms based on electromagnetic and xenolith data; the latter indicate the existence of Archean cratons with two characteristic thicknesses, ca. 200 and > 250 km. A map of tectono-thermal ages of lithospheric terranes complied for the continents on a 1° × 1° grid and combined with the statistical age relationship of continental geotherms (z = 0.04  t + 93.6, where z is lithospheric thermal thickness in km and t is age in Ma) formed the basis for a new global thermal model of the continental lithosphere (TC1). The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle, with the strongest lateral temperature variations (as large as 800 °C) in the shallow mantle. A map of the depth to a 550 °C isotherm (Curie isotherm for magnetite) in continental upper mantle is presented as a proxy to the thickness of the magnetic crust; the same map provides a rough estimate of elastic thickness of old (> 200 Ma) continental lithosphere, in which flexural rigidity is dominated by olivine rheology of the mantle.Statistical analysis of continental geotherms reveals that thick (> 250 km) lithosphere is restricted solely to young Archean terranes (3.0–2.6 Ga), while in old Archean cratons (3.6–3.0 Ga) lithospheric roots do not extend deeper than 200–220 km. It is proposed that the former were formed by tectonic stacking and underplating during paleocollision of continental nuclei; it is likely that such exceptionally thick lithospheric roots have a limited lateral extent and are restricted to paleoterrane boundaries. This conclusion is supported by an analysis of the growth rate of the lithosphere since the Archean, which does not reveal a peak in lithospheric volume at 2.7–2.6 Ga as expected from growth curves for juvenile crust.A pronounced peak in the rate of lithospheric growth (10–18 km3/year) at 2.1–1.7 Ga (as compared to 5–8 km3/year in the Archean) well correlates with a peak in the growth of juvenile crust and with a consequent global extraction of massif-type anorthosites. It is proposed that large-scale variations in lithospheric thickness at cratonic margins and at paleoterrane boundaries controlled anorogenic magmatism. In particular, mid-Proterozoic anorogenic magmatism at the cratonic margins was caused by edge-driven convection triggered by a fast growth of the lithospheric mantle at 2.1–1.7 Ga. Belts of anorogenic magmatism within cratonic interiors can be caused by a deflection of mantle heat by a locally thickened lithosphere at paleosutures and, thus, can be surface manifestations of exceptionally thick lithospheric roots. The present volume of continental lithosphere as estimated from the new global map of lithospheric thermal thickness is 27.8 (± 7.0) × 109 km3 (excluding submerged terranes with continental crust); preserved continental crust comprises ca. 7.7 × 109 km3. About 50% of the present continental lithosphere existed by 1.8 Ga.  相似文献   

19.
The marine sediments of the area of Verde Peninsula-Jabali Island(39°28′S/62°19′W-40°28′S/62°11′W) Holocene in age(3-2 ky),and modern beaches contain a significant amount of bioeroded mollusc shells.Fifteen sites were analyzed,in which 20.11%of the mollusc shells(2168 valves) presented bioerosion traces,in 54 species(30 bivalves and 24 gastropods).Fourteen ichnogenera were reported:Entobia,Maeandropoiydora,Iramena,Caulostrepsis,Pennatichnus,Pinaceocladichnus,Trypanites,and Gastrochaenolites(Domichnia),Gnathichnus and Radulichnus(Pascichnia),Finichnus and Centrichnus(Fixichnia),Oichnus(Praedicnia)(macrobioerosion),y Semidendrina(microbioerosion),the latter is first reported in mollusc shells in Argentina.Eleven ichnospecies were identified Finichnus peristroma,Maeandropoiydora sulcans,Gnathichnus pentax,Pinaceocladichnus onubensis,Caulostrepsis taeniola,Centrichnus eccentricus,Radulichnus inopinatus,Oichnus simplex,Oichnus paraboloides,Oichnus gradatus,and Gastrochaenolites torpedo(lithic remains).The dominant ichnogenera in the Holocene deposits are Iramena,Entobia and Oichnus.The same ichnogenera are constant with different abundance in the modern beaches,and increasing representation of Pinaceocladichnus and Pennatichnus.The dominant ichnofacies in the Holocene deposits is Trypanites,revealing a benthonic marine community composed of cheilostome bryzoans,clionaid sponges,predator gastropods,regular echinoids,polychaete annelids,bivalves,thallophytas and fungi.Generally,the area was described as a sublittoral,low-energy,stable environment with high rate of oxygenation,and sandy bottoms,with rocky bottoms at Villalonga locality.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号