首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We report some results of a rocket experiment flown on 29 April, 1971. A survey of the solar corona was carried out with a pair of collimated Bragg spectrometers to study the resonance, intersystem and forbidden line emission from the helium-like ions O vii (22 Å) and Ne ix (13 Å). In the direction of dispersion the collimator provided a field of view of 1.7. Also, the continuum radiation near 3 Å was monitored by a collimated proportional counter within a view angle of 4.2. The observed X-ray emission came from the general corona, seven plage regions, and one dynamic feature- the late stage of a small flare. From the intensity of the O vii and Ne ix resonance lines the electron temperature and emission measure of the individual emitting regions are derived on the basis of two models, one (a) in which the region is assumed to be isothermal and another (b) in which the emission measure decreases exponentially with increasing temperature. The latter model, which is the most adequate of the two, yields for the electron temperature of the time-varying feature 2–3 × 106 K, for the other active regions 1.5–2.5 × 106 K, and for the general corona 1.3–1.7 × 106 K. The Ne ix emitting regions are about 1.5 times as hot as the O vii regions. The emission measure ranges from 0.4–2.3 × 1048 cm–3 for all active regions and is about 2 × 1049 cm–3 for one hemisphere of the general corona above 106 K. From an analysis of the ratio, R, of the forbidden and intersystem lines of O vii we conclude that none of the regions producing these lines at the time of the rocket flight had electron densities exceeding about 3 × 109 cm–3. Our data demonstrate a dependence of R upon temperature in agreement with the theory of Blumenthal et al. (1971). The wavelengths for the intersystem, the 1s 22s 2 S e–1s2p2s 2 P 0 satellite, and the forbidden transition show in the case of Ne ix improved agreement with predictions. The observed strength of the satellite lines for both O vii and Ne ix agrees with the predictions of Gabriel's (1972) theory, which attributes their formation to dielectronic recombination.We are saddened to report the death of A. J. Meyerott on 13 November, 1971.  相似文献   

2.
Recent atomic data have been used to analyze a solar flare spectrum obtained with the Goddard Space Flight Center's grating spectrometer on the OSO-5 satellite. There exist in the wavelength region 90–200 Å strong lines from each of the ions Fe xviii-Fe xxiv. The Fe xxi lines can be used as an electron density diagnostic for the 107 K plasma. From our analysis of a particular flare, we find a steep positive slope in the emission measure between 106.5 and 107.2 K and an electron density of 4 × 1011 cm–3 at 107 K. We emphasise the need for high spectral and spatial resolution observations of solar flares in this wavelength region, which has to date been largely neglected.  相似文献   

3.
Results are given of the detailed analysis of fourteen Fe xxv-xxiii lines ( = 1.850–1.870 Å) in the spectra of a solar flare on 16 Nov. 1970. The spectra were obtained with a resolution of about 4 × 10–4 Å, which revealed lines not previously observed and allowed the measurement of line profiles. The measured values of the wavelengths and emission fluxes are presented and compared with theoretical calculations. The analysis of the contour of the Fe xxv line ( = 1.850 Å) leads to the conclusion that there is unidirectional macroscopic gas motion in the flare region with the velocity (projection on the line of sight) ± 90 km s–1.Measurements of the 8.42 Å Mg xii and 9.16 Å Mg xi lines in the absence of solar flares indicate prolonged existence of active regions on the solar disk with T e = 4–6 × 106K and emission measure ME 1048 cm–3. The profile of the Mg xii line indicates a macroscopic ion motion with a velocity up to 100 km s–1.  相似文献   

4.
Observations of impulsive solar flare X-rays 10 keV by the OGO-5 satellite and the measurements of energetic solar electrons made with the Explorer-35 and Explorer-41 (IMP-5) satellites during the period March 1968–September 1969 have been analyzed in order to determine the ion density in the X-ray source region as well as the location of the electron acceleration region in the solar atmosphere. If we assume that the efficiency of escape of the accelerated electrons into interplanetary space is 10–3, the observations are found to be consistent with the following interpretation: (i) the ion density in the X-ray source region varies from event to event and lies between 109 and 1011 ions cm–3 for those events in which the impulsive X-ray emission could be detected; (ii) for those events in which no impulsive emission was detected above threshold, the ion density in the X-ray source was < 109 ions cm–3; (iii) at least in some small solar flares the region where the electrons are accelerated during the flash phase is located in the lower corona.  相似文献   

5.
The soft X-ray emission of the solar corona is investigated by comparison of the signals of several broad band photometers carried on the Solrad 9 satellite, and sensitive to the region 0.5–20 Å. Temperature from 1.5 × 106 to 25 × 106 K have been measured with emission measure N e 2 dV ranging between 1050 cm–3 to 1047 cm–3.By means of the observational data and assuming magnetic confinement and hydrostatic equilibrium, the model of an active region is investigated. For temperatures larger than 107K the emission is due to flare activity and two sets of emission measure are observed which appear to be related to the evolution of flares.  相似文献   

6.
E. Rolli  A. Magun 《Solar physics》1995,160(1):29-40
The analysis of the dynamic evolution of the chromospheric electron density during solar flares is fundamental for the testing of solar flare models. For this purpose we developed a digital imaging spectrograph for the observation of higher Balmer lines below 400 nm with a time resolution of 1 s and an algorithm for the determination of the electron density from the observed line profiles. On January 5, 1992 a M1/1N flare was observed in H, H and Caii H and the temporal evolution of the electron density was determined. The chromospheric electron density rises several times from less than 3 × 1019 to 1 × 1020 m–3 during the hard X-ray peaks.  相似文献   

7.
Simultaneous observations of a solar limb flare in the X-ray and ultraviolet regions of the spectrum are presented. Temporal and spectral X-ray observations were obtained for the 25–300 keV range while temporal, spectral, and spatial X-ray observations were obtained for the 30–0.3 keV range. The ultraviolet observations were images with a 10 spatial resolution in the lines of O v (T e 2.5 × 105 K) and Fe xxi (T e 1.1 × 107 K). The hard X-ray and O v data indicate that the impulsive phase began in the photosphere or chromosphere and continued for several minutes as material was ejected into the corona. Impulsive excitation was observed up to 30 000 km above the solar surface at specific points in the flare loop. The Fe xxi observations indicate a preheating before the impulsive phase and showed the formation of hot post-flare loops. This later formation was confirmed by soft X-ray observations. These observations provide limitations for current flare models and will provide the data needed for initial conditions in modeling the concurrent coronal transient.  相似文献   

8.
Extreme ultraviolet spectra of several active regions are presented and analyzed. Spectral intensities of 3 active regions observed with the NRL Skylab XUV spectroheliograph (170–630 Å) are derived. From this data density sensitive line ratios of Mg viii, Si x, S xii, Fe ix, Fe x, Fe xi, Fe xii, Fe xiii, Fe xiv, and Fe xv are examined and typically yield, to within a factor of 2, electron pressures of 1 dyne cm–2 (n e T = 6 × 1015 cm–3 K). The differential emission measure of the brightest 35 × 35 portion of an active region is obtained between 1.4 × 104 K and 5 × 106 K from HCO OSO-VI XUV (280–1370 Å) spectra published by Dupree et al. (1973). Stigmatic EUV spectra (1170–1710 Å) obtained by the NRL High Resolution Telescope and Spectrograph (HRTS) are also presented. Doppler velocities as a function of position along the slit are derived in an active region plage and sunspot. The velocities are based on an absolute wavelength scale derived from neutral chromospheric lines and are accurate to ±2 km s–1. Downflows at 105 K are found throughout the plage with typical velocities of 10 km s–1. In the sunspot, downflows are typically 5 to 20 km s–1 over the umbra and zero over the penumbra. In addition localized 90 and 150 km s–1 downflows are found in the umbra in the same 1 × 1 resolution elements which contain the lower velocity downflows. Spectral intensities and velocities in a typical plage 1 resolution element are derived. The velocities are greatest ( 10 km s–1) at 105 K with lower velocities at higher and lower temperatures. The differential emission measure between 1.3 × 104 K and 2 × 106 K is derived and is found to be comparable to that derived from the OSO-VI data. An electron pressure of 1.4 dynes cm–2 (n e T = 1.0 × 1016 cm–3 K) is determined from pressure sensitive line ratios of Si iii, O iv, and N iv. From the data presented it is shown that convection plays a major role in determining the structure and dynamics of the active region transition zone and corona.  相似文献   

9.
On 23 May 1967 energetic (10–50 keV) solar flare X-rays were observed by the OGO-III ion chamber during the period 1808–2100 UT. The time-intensity profile for the X-ray event showed three distinct peaks at 1810, 1841 and 1942 UT. The second peak, which is equivalent to 2.9 × 10–3 ergs cm–2sec–1 above 20 keV, is the largest X-ray burst observed so far by the OGO-I and OGO-III ion chambers. The soft (2–12 Å) X-ray observations reported by Van Allen (1968) also show similar peaks, roughly proportional in magnitude to the energetic X-ray peaks. However, the intensity of energetic X-rays peaked in each case 5–10 min earlier than the soft X-ray intensity indicating a relatively hard photon energy spectrum near the peak of the energetic X-ray emission. The corresponding time-intensity profile for the solar radio emission also showed three peaks in the microwave region nearly coincident with the energetic X-ray peaks. The third radio peak was relatively rich in the metric emission. Beyond this peak both the energetic X-rays and the microwave emission decayed with a time constant of 8 min while the corresponding time constant for the soft X-rays was 43 min. In view of the earlier findings about the energetic X-rays it is indicated that the 23 May solar X-ray event was similar to those observed earlier. During the 23 May event the integral energy flux spectrum at the time of peak intensity is found to be consistent with the form e –E/E 0, E 0 being about 3.4 and 3.7 keV for the peaks at 1841 and 1942 UT, respectively. Assumption of a similar spectrum during the decay phase indicates that the spectral index E 0 decreased nearly exponentially with time.The OGO-III ion chamber, which is also sensitive to protons 12 MeV, observed a solar particle event starting at 2100 UT on 23 May. It could not be determined uniquely which of the two principal X-ray peaks was associated with the particle event, and in fact both may have contributed. The particle intensity reached its maximum value at 1003 UT on 25 May 1967. The equivalent peak radiation dosage was 24 R/hour behind the 0.22 g cm–2 thick aluminum wall of the chamber. This peak radiation dosage was considerably smaller than the maximum dosage (60 R/hour) during the 2 September 1966 solar particle event, the largest event observed so far by the OGO-I and OGO-III satellites. The temporal relationship between the solar X-ray and particle events on 23 May 1967 was similar to that observed in the solar flare events on 7 July 1966, 28 August 1966 and 27 February 1967.  相似文献   

10.
The observation of extreme ultraviolet (EUV) emission lines of Fe ix through Fe xvi made by Orbiting Solar Observatory-1 are discussed and applied to a study of the solar corona above active regions. Ultraviolet and radio emission are determined and compared for several levels of activity classified according to the type of sunspot group associated with the active region. Both radio emission and line radiation from Fe xvi, the highest stage of ionization of Fe observed, are observed to increase rapidly with the onset of activity and are most intense over an E-spot group early in the lifetime of the active region. As activity diminishes, radiation from Fe xv and Fe xvi becomes relatively more prominent. The observations imply that the coronal temperature reaches a maximum during the period of highest activity, as indicated by sunspot-group complexity and the occurrence of chromospheric flares. A maximum coronal electron temperature of 4.0 × 106 °K is estimated when taking into account the mechanism of dielectronic recombination. Concurrently, the average coronal electron density increases by a factor of 10–12. Both electron temperature and density decrease as activity subsides. The coronal temperature above the remaining Ca ii plage is estimated to be 2.5–3.0 × 106 °K after flare activity has ceased and sunspots have disappeared.  相似文献   

11.
The physical parameters for the kernels of three solar X-ray flare events have been deduced using photographic data from the S-054 X-ray telescope on Skylab as the primary data source and 1–8 and 8–20 Å fluxes from Solrad 9 as the secondary data source. The kernels had diameters of 5–7 and in two cases electron densities at least as high as 3 × 1011 cm–3. The lifetimes of the kernels were 5–10 min. The presence of thermal conduction during the decay phases is used to argue: (1) that kernels are entire, not small portions of, coronal loop structures, and (2) that flare heating must continue during the decay phase.We suggest a simple geometric model to explain the role of kernels in flares in which kernels are identified with emerging flux regions. The flare is triggered at the neutral sheet between the EFR and a larger loop structure. We associate the X-ray kernels with H kernels, which previously associated (incorrectly, we believe) with the nonthermal impulsive phases of flares.Most of this work was completed while the author was a Visiting Scientist at the Center for Astrophysics, Cambridge, Massachusetts 02138.  相似文献   

12.
E. Kirsch 《Solar physics》1973,28(1):233-246
Solar neutron emission during large flares is investigated by using neutron monitor data from the mountain stations Chacaltaya (Bolivia), Mina Aguilar (Argentine), Pic-du-Midi (France) and Jungfraujoch (Switzerland). Registrations from such days on which large flares appeared around the local noon time of the monitor station are superimposed with the time of the optical flare as reference point.No positive evidence for a solar neutron emission was found with this method, However, by using an extrapolation of the neutron transport functions given by Alsmiller and Boughner a rough estimation of mean upper limits for the solar neutron flux is possible. The flux limits are compared with Lingenfelter's model calculations.From the Chacaltaya measurements it follows: N 02.8 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P0 = 125 MV N 01.4 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV and from Pic-du-Midi measurements: N 06.7 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 125 MV N 04 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV P 0 = characteristic rigidity of the producing proton spectrum on the Sun.The flux limits estimated for some special proton flares are consistent with Lingenfelter's predictions for the acceleration phase but are too small for the slowing down phase. Therefore it is believed that Lingenfelter's assumption of isotropic proton emission from the flare region is not fulfilled.  相似文献   

13.
The analysis of the high temperature plasma in Fe xxiii–xxiv in the 15 June 1973 flare is presented. The observations were obtained with the NRLXUV spectroheliograph on Skylab. The results are: (1) There was preheating of the active region in which the flare occurred. In particular, a large loop in the vicinity of the flaring region showed enhanced brightness for many hours before the flare. The loop disappeared when the flare occurred, and returned in the postflare phase, as if the energy flux which had been heating the large loop was blocked during the flare and restored after the flare was gone. The large magnetic fields did not change significantly. (2) The flare occurred in low-lying loop or loops. The spatial distribution of flare emission shows that there was a temperature gradient along the loop. (3) The high temperature plasma emitting Fe xxiii and xxiv had an initial upward motion with a velocity of about 80 km s–1. (4) There was large turbulent mass motion in the high temperature plasma with a random velocity of 100 to 160 km s–1. (5) The peak temperature of the hot plasma, determined from the Fe xxiii and xxiv intensity ratio, was 14 × 106 K. It decreased slightly and then, for a period of 4 min, remained at 12.6 × 106 K before dropping sharply to below 10 × 106 K. The density of the central core of the hot plasma, determined from absolute intensity of Fe xxiv 255 Å line, was of the order of 1011 cm–3.The persistence of the high level of turbulence and of the high temperature plateau in the decaying phase of the flare indicates the presence of secondary energy release. From the energy balance equation the required energy source is calculated to be about 3 to 7 ergs cm–3 s–1.Ball Brothers Research Corporation.  相似文献   

14.
Observations and analyses of the 1B/M3 flare of 15 June, 1973 in active region NOAA 131 (McMath 12379) are presented. The X-ray observations, consisting of broadband photographs and proportional counter data from the Skylab/ATM NASA-MSFC/Aerospace S-056 experiment, are used to infer temperatures, emission measures, and densities for the flaring plasma. The peak temperature from the spatially resolved photographs is 25 × 106 K, while the temperature from the full-disk proportional counter data is 15 × 106 K. The density is 3 × 1010cm–3. The X-ray flare emission appears to come primarily from two low-lying curvilinear features lying perpendicular to and centered on the line where the photospheric longitudinal magnetic field is zero. Similarities in the preflare and postflare X-ray emission patterns indicate that no large-scale relaxation of the coronal magnetic configuration was observed. Also discussed are H and magnetic field observations of the flare and the active region. Finally, results of numerical calculations, including thermal conduction, radiative loss and chromospheric evaporation, are in qualitative agreement with the decay phase observations.Presently at NASA/Marshall Space Flight Center.  相似文献   

15.
Observations of solar X-ray line emission using crystal spectrometers during a large chromospheric flare have provided a list of wavelengths with a precision of 0.003 Å in first order of diffraction and correspondingly better in higher orders. In addition to the resonance, intersystem (1 1 S 0-2 3 P 1) and forbidden (1 1 S 0-2 3 S 1) transitions of ions of the Hei isoelectronic sequence, we have recorded satellite lines arising from ions in the Lii, Bei and Bi isoelectronic sequences. These satellite features are most prominent in the iron spectrum. Apparent decreases in the ratio of forbidden and intersystem line intensities of Mgxi and Sixiii during the flare are used to derive electron densities possibly as high as 1 × 1013 cm–3 in the Mgxi emitting region and 1 × 1014 cm–3 in the Sixiii region during the event. A search for satellite lines on the long-wavelength side of the Lyman-alpha line of Hi-like ions has yielded no positive identifications.  相似文献   

16.
Stepanov  A.V.  Tsap  Y.T. 《Solar physics》2002,211(1-2):135-154
Interaction of the 30–300 keV electrons with whistlers in solar coronal loops is studied using a quasi-linear approach. We show that the electron–whistler interaction may play a dominant role in the formation of fast electron spectra within the solar flare loops with the plasma temperature 107 K and plasma density 1011 cm–3. It is found that Landau damping of whistlers provides weak and intermediate pitch-angle diffusion regimes of fast electrons in coronal loops. The level of whistler turbulence in the weak diffusion regime under flare conditions is estimated as 10–7 of the energy density in the thermal particles. The `top – footpoint' relations between the hard X-ray flux densities and spectra are derived. The reason for a `broken' spectrum of the flare microwave emission is discussed.  相似文献   

17.
The burst component of the solar X-ray flux in the soft wavelength range 2 < < 12 Å observed from Explorer 33 and Explorer 35 from July 1966 to September 1968 was analyzed. In this period 4028 burst peaks were identified.The differential distributions of the temporal and intensity parameters of the bursts revealed no separation into more than one class of bursts. The most frequently observed value for rise time was 4 min and for decay time was 12 min. The distribution of the ratio of rise to decay time can be represented by an exponential with exponent -2.31 from a ratio of 0.3 to 2.7; the maximum in this distribution occurred at a ratio of 0.3. The values of the total observed flux, divided by the background flux at burst maximum, can be represented by a power law with exponent -2.62 for ratios between 1.5 and 32. The distribution of peak burst fluxes can be represented by a power law with exponent - 1.75 over the range 1–100 milli-erg (cm2 sec)–1. The flux time integral values are given by a power law with exponent -1.44 over the range 1–50 erg cm–2.The distribution of peak burst flux as a function of H importance revealed a general tendency for larger peak X-ray fluxes to occur with both larger H flare areas and with brighter H flares. There is no significant dependence of X-ray burst occurrence on heliographic longitude; the emission thus lacks directivity.The theory of free-free emission by a thermal electron distribution was applied to a composite quantitative discussion of hard X-ray fluxes (data from Arnoldy et al., 1968; Kane and Winckler, 1969; and Hudson et al., 1969) and soft X-ray fluxes during solar X-ray bursts. Using bursts yielding measured X-ray intensities in three different energy intervals, covering a total range of 1–50 keV, temperatures and emission measures were derived. The emission measure was found to vary from event to event. The peak time of hard X-ray events was found to occur an average of 3 min before the peak time of the corresponding soft X-ray bursts. Thus a changing emission measure during the event is also required. A free-free emission process with temperatures of 12–39 × 106K and with an emission measure in the range 3.6 × 1047 to 2.1 × 1050 cm–3 which varies both from event to event and within an individual event is required by the data examined.Now at Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey.  相似文献   

18.
New theoretical emission line ratios for the Be-sequence ions Mgix and Sixi are presented. A comparison with observational data for two solar flares and an active region loop obtained with the Harvard EUV spectrometer and NRL XUV spectroheliograph aboard Skylab reveals that these plasmas are in ionization equilibrium at coronal temperatures. Unfortunately most of the density diagnostics are not particularly useful under solar plasma conditions, as they vary only slightly over the electron density range 108–1013cm–3. However the Sixi ratioI(3 P e 2 -3 P o 2)/I(3 P o 11 S e 0) is density sensitive in the range 108 to 1010cm–3, which is representative of electron densities found in solar active regions or small flares.  相似文献   

19.
Brabban  D. H. 《Solar physics》1974,38(2):449-464
A rocket-borne, collimated spectrometer has obtained the soft X-ray (1.0–2.2 nm) spectra of three solar active regions. The principal features of the spectra are described and are then used to determine the conditions in the active regions. An isothermal (single temperature) model is not able to describe the observed spectra so that a continuous distribution of emission measure with temperature is introduced.This distribution, based on that proposed by Chambe, is then used to investigate the structure of the active regions. Several simple models are considered. It is shown that each active region has a hot, dense core surrounded by a large outer volume through which the temperature and density fall until normal coronal conditions are reached.Two of the regions exhibited similar characteristics with the cores having electron densities 1010 cm–3 and temperatures of at least 4 × 106K. Even the third region, which was much less impressive and quite compact in H, appears to have had a small amount of this dense plasma in its central core.  相似文献   

20.
On the basis of solar flare forecasts, balloon flights were made from Hyderabad, India (vertical geomagnetic threshold rigidity of 16.9 GV), to detect the possible emission of high energy neutrons during solar flares. The detector comprised of a central plastic scintillator, completely surrounded by an anticoincidence plastic scintillator shield. The instrument responds to neutrons of about 15–150 MeV and gamma rays of about 5–30 MeV with about the same efficiency. The detector was flown to an atmospheric depth of 25 g cm-2 on February 26, 1969; while the balloon was at ceiling a flare of importance 2B and one of 1N occurred. No perceptible flare associated increase in the counting rate was observed. Using the observed counting rates, an upper limit of 1.2 × 10-2 neutrons cm-2 sec-1 is obtained for the first time for a flare of importance 2B for neutrons of energy 15–150 MeV. The corresponding upper limit for gamma rays of energy 5–30 MeV is found to be 10-2 photons cm-2 sec-1. The neutron flux limits are compared with the recent calculations of Lingenfelter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号