首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Channagiri Mafic-Ultramafic Complex occupies lowermost section of the Neoarchaean Shimoga supracrustal group in the Western Dharwar Craton. It is a segmented body occupying the interdomal troughs of granitoids. The magnetite deposits occur in the northeastern portion; typically occupying the interface zone between gabbro and anorthositic. Mineralogically, the deposits are simple with abundant magnetite and ilmenite. Hogbomite is a consistent minor mineral. Magnetites are typically vanadiferous (0.7–1.25% V2O5). Ilmenite consistently analyses more MgO and MnO than coexisting magnetite. Chlorite, almost the only silicate present; lies in the range of ripidolite, corundophilite and sheridanite. The chromiferous suit occupying eastern side of Hanumalapur block (HPB) contains Fe-Cr-oxide analysing 37.8–11.9% Cr2O3 and 40.5–80% FeO t . In these too, chlorite, typically chromiferous (0.6–1.2% Cr2O3), is the most dominant silicate mineral. Geochemistry of V-Ti-magnetite is dominated by Fe, Ti and V with Al, Si, Mg and Mn contributing most of the remaining. Cr, Ni, Zn, Co, Cu, Ga and Sc dominate trace element geochemistry. The Cr-magnetite is high in Cr2O3 and PGE. Two separate cycles of mafic magmatism are distinguished in the CMUC. The first phase of first cycle, viz., melagabbro-gabbro, emplaced in the southeastern portion, is devoid of magnetite deposits. The second phase, an evolved ferrogabbroic magma emplaced in differentiated pulses, occupying northeastern portion of the complex, consists of melagabbro→gabbro-anorthosite→V-Ti magnetite→ferrogabbro sequence. Increase in oxygen fugacity facilitated deposition of V-Ti magnetite from ferrogabbroic magma pulse emplaced in late stages. The second cycle of chromiferous PGE mineralized suite comprises fine-grained ultramafite→alternation of pyroxinite-picrite→Crmagnetite sequence formed from fractionation of ferropicritic magma. HPB also includes >65m thick sill-like dioritic phase at the base of the ferriferous suit and a sinuous band of coarse-grained ultramafite enclosed within the chromiferous suit; both unrelated to the two mafic magmatic cycles.  相似文献   

2.
Potential chromite ore deposits of India are situated in Sukinda, Odisha, which may also be considered as a potential resource for platinum group elements (PGEs). This paper reports on PGE geochemistry in twenty six samples covering chromite ores, chromitites and associated ultramafic rocks of the Sukinda ultramafic complex. Platinum group element contents range from 213 to 487 ppb in the chromite ore body, from 63 to 538 ppb in rocks that have chromite dendrites or dissemination and from 38 to 389 ppb in associated olivine–peridotite, serpentinite, pyroxenite and brecciated rocks. The PGEs are divided into two sub‐groups: IPGE (Ir, Os, and Ru) and PPGE (Pd, Pt, and Rh) based on their chemical behaviour. The IPGE and PPGE in these three litho‐members show a contrasting relationship e.g. average IPGE content decreases from chromite to chromitite and associated rocks while PPGE increases in the same order. Appreciable Ag in chromitite (270–842 ppb) is recorded. Positive correlation between IPGE with Cr2O3 and with Al2O3 is observed while these are negatively correlated with MgO. Covariant relationships between Au and Mg in rocks devoid of chromite and between Ag and Fe in chromitite sample are observed. Chromite in all seams and some chromitite samples exhibit an IPGE‐enriched chondrite normalized pattern while PPGE are highly fractionated and show a steep negative slope, thereby indicating that PGE in the parental melt fractionates and IPGE‐compatible elements prefer to settle with chromite. The rocks devoid of chromite and rocks containing accessory chromite exhibit a nearly flat pattern in chondrite‐normalized PGE plots and this suggests a limited fractionation of PGE in these rocks. Variation in the distribution pattern of PGE and Ag in three typical litho‐members of the Sukinda Valley may be related to multiple intrusion of ultramafic magma, containing variable volume percentage of chromite.  相似文献   

3.
研究表明,西天山阿吾拉勒铁铜成矿带中智博铁矿区火山碎屑岩中的富铁岩屑主要由自形针状/板条状钠长石和富铁基质组成,呈辉绿/斑状结构。电子探针分析显示,富铁岩屑中钠长石端员组分变化范围为An=0.38~2.89,Ab=95.2~99.32,Or=0.17~2.79,端员组分平均值为An_(0.94)Ab_(98.01)Or_(1.06),类似于火山岩中钠长石端员组分变化范围(An=0.74~6.75,Ab=92.85~98.91,Or=0.32~1.76,端员组分平均值为An_(2.63)Ab_(96.65)Or_(0.72)),两者均为岩浆成因钠长石,而非热液交代成因钠长石。富铁基质成分变化范围较大且连续(w(SiO_2)为0.08%~50.04%,w(FeO)为24.89%~87.13%,w(Al_2O_3)为0.04%~14.83%,w(TiO_2)为0.01%~2.83%,w(Na_2O)为0~9.76%,w(MgO)为0.03%~4.88%,w(MnO)为0~0.61%),富铁基质中高Ti磁铁矿和低Ti磁铁矿同时发育,总体上成分不均一,且钠长石呈细针状,为浅成-超浅成低压下快速结晶的产物或为火山喷发作用下快速冷凝结晶所致。通过对磁铁矿-磷灰石矿物组合与安山岩中副矿物磷灰石、矿区磁铁矿的对比研究,认为智博铁矿发生磁铁矿-磷灰石岩浆不混溶作用的可能性很小。通过安山岩基质成分与安山岩成分的对比研究,得出安山岩基质比原岩w(SiO_2)、w(Al_2O_3)、w(CaO)有所降低,w(FeO)、w(Na_2O)、w(MgO)有一定升高,但是程度有限,表明岩浆结晶分异不足以使残留岩浆形成富铁矿。钠长石-磁铁矿富铁岩屑的发育是一种碱铁效应的表现,而碱铁效应对于海相火山岩型铁矿的形成具有重要意义。  相似文献   

4.
The late Archean, Luanga mafic-ultramafic complex intrudes an Archean greenstone belt, that is mainly composed of ultramafic and mafic metavolcanics. The Luanga intrusion consists of dunite, peridotite, gabbro and norite; chromitite seams and layers are present in the ultramafic rocks.A metamorphic overprint transformed the primary paragenesis into a serpentine-talc-chlorite-tremolite and magnetite association. The magnetite is commonly altered to Fe-hydroxides. Unaltered chromite commonly displays atoll-like textures and a chemical composition typical of stratiform chromites (Cr2O3 below 45 wt%).Base-metal sulfides, base-metal alloys, platimum-group minerals and platinum group element bearing phases are present in the form of inclusions in the silicate assemblages and in or on the edges of chromite grains. The main minerals detected are pentlandite, pyrrhotite, millerite, chalcopyrite and mackinawite, Fe---Ni alloy, braggite, sperrylite and platinum group elements (PGE) bearing sulfo-arsenides. Braggite is associated with the chromite, whereas sperrylite lies on the edges of or is included in silicates. The PGE content of the massive and disseminated chromities is dominated by Pt (up to 8900 ppb) and the chondrite-normalized PGE profile shows a cuspidal shape with a Pt peak.The main hypothesis for the source of the PGE-rich magma, which fractionated the chromitite-bearing ultramafic magma, consists of a relatively primitive mantle that partially melted in the late Archean.  相似文献   

5.
本文主要对沂水青龙峪出露的超镁铁质岩石和基性麻粒岩进行了锆石SHRIMP U-Pb定年研究。超镁铁质岩石以捕掳体形式存在于沂水杂岩中,不发育鬣刺结构,氧化物组成具有超镁铁质科马提岩的高MgO、富CaO、低SiO2、TiO2、K2O和Na2O含量特征;矿物组合以单斜辉石+橄榄石±斜方辉石+铬铁矿为主;变质矿物以角闪石+蛇纹石化为特征;该岩石以稀土元素总含量(∑REE)低、LREE/HREE=3.35~4.40及Ce和Eu负异常为特征。微量元素组成以Ba、Nb、Zr负异常和Nd、Sm正异常为特征。根据锆石SHRIMP U-Pb定年法对该超镁铁质岩石中捕获的早期岩浆结晶锆石和新生的变质锆石进行的研究,年龄值分别为2657~2702Ma和2551~2585Ma,表明该超镁铁质岩石形成年龄为2585~2657Ma。基性麻粒岩的氧化物组成特征表明其属高Mg的洋岛拉斑玄武岩,麻粒岩相——高角闪岩相变质作用与新太古代的深熔和岩浆侵入作用有关,矿物组合以紫苏辉石+单斜辉石±角闪石+斜长石±石榴子石为特征;晚期蚀变作用与辉长岩墙、辉绿岩脉及石英闪长岩买的侵入有关,矿物组合以滑石化+绢云母化+绿泥石化为特征;稀土元素组成以轻重稀土元素无分异和无Eu异常为特征;微量元素组成以Nb、Zr、P、Ti负异常和Sr、K正异常为特征;锆石SHRIMP U-Pb定年结果表明麻粒岩相——角闪岩相变质作用年龄为2498.4±7.6Ma,导致麻粒岩相——角闪岩相变质的深熔和岩浆结晶年龄为2551±24Ma,晚期蚀变作用的年龄分别为2231~2235Ma和1850±19Ma。  相似文献   

6.
产于层状镁铁质-超镁铁质岩体中的太和岩浆型Fe-Ti氧化物矿床是峨眉山大火成岩省内带几个超大型Fe-Ti氧化物矿床之一。太和岩体长超过3km,宽2km,厚约1.2km。根据矿物含量和结构等特征,整个岩体从下向上可划分为下部岩相带、中部岩相带、上部岩相带。下部岩相带主要以(橄榄)辉长岩和厚层不含磷灰石的块状Fe-Ti氧化物矿层组成。中部岩相带韵律旋回发育,(磷灰石)磁铁辉石岩主要位于旋回的底部,旋回上部为(磷灰石)辉长岩。上部岩相带主要是贫Fe-Ti氧化物的磷灰石辉长岩。太和中部岩相带磷灰石磁铁辉石岩含有5%~12%磷灰石、20%~35%Fe-Ti氧化物、50%~60%硅酸盐矿物,且硅酸盐矿物与磷灰石呈堆积结构。磷灰石磁铁辉石岩中磁铁矿显示高TiO2、FeO、MnO、MgO,且变化范围与趋势接近于攀枝花岩体。钛铁矿FeO分别与TiO2、MgO显示负相关,而FeO分别与Fe2O3、MnO显示正的相关,且TiO2、FeO、MnO、MgO含量变化较大,这些特征都暗示磁铁矿和钛铁矿是从富Fe-Ti-P岩浆中分离结晶。因此,可以推断太和磷灰石磁铁矿辉石岩形成于矿物重力分选和堆积。太和下部岩相带包裹在橄榄石中磁铁矿含有相对较高Cr2O3(0.07%~0.21%),而中部岩相带包裹在橄榄石中磁铁矿Cr2O3(0.00%~0.03%)显著降低,且这些磁铁矿Cr2O3含量变化与单斜辉石Cr含量和斜长石An牌号呈正相关。这些特征印证了形成中部岩相带的相对演化的富Fe-Ti-P母岩浆可能是源自中部岩浆房的混合岩浆。上部岩相带磁铁矿和中部岩相带顶部少量磁铁矿显示较低Ti+V可能是由于岩浆房中累积的岩浆热液对磁铁矿成分进行了改造。  相似文献   

7.
The Mazaertag layered intrusion is located in the northwestern part of the Tarim large igneous province where several early Permian layered mafic-ultramafic intrusions host important Fe-Ti oxide deposits. The intrusion covers an area of ~0.13 km~2 and has a vertical stratigraphic thickness of at least300 m. It consists chiefly of olivine clinopyroxenite, and is cut through by the nearby mafic-ultramafic dykes. In this paper, we report new mineral chemistry data and whole-rock chemical and isotopic compositions for the Mazaertag intrusion along with whole-rock isotopic compositions for the nearby mafic dykes. The averaged compositions of cumulus olivine, clinopyroxene and intercumulus plagioclase within individual samples range from Fo_(71-73),Mg~# = 76 to 79 and An_(65-75) but they do not define sustained reversals. The observed mineral compositions are consistent with the differentiation of a single batch of magma in a closed system. Rocks of the Mazaertag intrusion are characterized by enrichment in light REE relative to heavy REE, positive Nb and Ta anomalies and a small range of age-corrected ε_(Nd)(t)(-0.1 to +0.9) and initial ~(87)Sr/~(86)Sr values(0.7044 to 0.7068). The slightly lower ε_(Nd)(t), initial ~(206)Pb/~(204)Pb and higher initial ~(87)Sr/~(86)Sr values of the intrusion compared to those of the least contaminated dykes[ε_(Nd)(t) =+2.8 to +3.4;(~(206)Pb/~(204)Pb)_i = 18.516-18.521;(~(87)Sr/~(86)Sr)_i = 0.7038-0.7041] imply that the Mazaertag magma was subjected to small to modest degrees of contamination by the upper crust. The Sr-Nd isotopic compositions of the least contaminated dykes are consistent with derivation from a FOZO-like mantle source. The parental magma of the Mazaertag intrusion, estimated from clinopyroxene compositions using mineral-melt partition coefficients, has trace element compositions similar to some of the most primitive mafic dykes in the same area. This suggests that the Mazaertag intrusion and mafic dykes shared a similar mantle source. Therefore, the parental magma of the Mazaertag intrusion was interpreted to have originated from a mantle plume. Based on the Cr_2 O_3 contents in titanomagnetite and less-evolved characteristics of the Mazaertag intrusion compared to the Wajilitag Fe-Ti oxide deposit in Bachu, it is speculated that there might not be a potential to find economic Fe-Ti oxide mineralization in the intrusion.  相似文献   

8.
Composition of chromiferous spinel included in olivines of Mg-rich basalts and gabbros of the Deccan Traps (Gujarat and Western Ghats) are reported here. They vary from Al-rich compositions [Al2O3 = 53wt.%; Cr#, 100Cr/(Cr + Al) = 12] to Cr-rich compositions [Cr2O3 = 51wt.%; Cr# = 84], and from Cr-Al rich compositions towards Cr-rich Ti-magnetite (TiO2 up to 23 wt.%, ulvöspinel up to 67mol.%). The Mg# [100Mg/(Mg + Fe2+)] of spinel decreases from 81 to nearly zero. The highest Cr# has been found in the Bushe Fm., Thakurvadi Fm., and some high-Ti basalts of the Pavagadh section, whereas some of the low-Ti basalts of Saurashtra have Al-rich compositions typical of spinels found in mid-ocean ridge basalts. The chemical composition of the Deccan Trap spinels is completely different compared to that observed in mantle spinel suites, with very few exceptions. The decreasing Al and increasing Fe and Ti of spinel seems to be mainly the result of decrease of Mg in the locally coexisting melts and favourable cationic substitutions in the lattice. There is barely any evidence of general relationships between the composition of the Deccan spinels and inferred mantle sources of the host magmas. Pyroxene inclusions in spinels may witness a high-pressure stage of crystallization, but the possibility of non-equilibrium crystallization, or even magma mixing, cannot be ruled out. Overall, the compositional ranges of chromiferous spinel in the Deccan Traps closely match those observed in the other Large Igneous Provinces having mafic/ultramafic intrusions and mafic magma compositions (e.g., Siberian Traps, Karoo, Emeishan).  相似文献   

9.
Cihai and Cinan are Permian magnetite deposits related to mafic-ultramafic intrusions in the Beishan region, Xinjiang, NW China. The Cihai mafic intrusion is dominantly composed of dolerite, gabbro and fine-grained massive magnetite ore, while gabbro, pyrrhotite + pyrite-bearing clinopyroxenite and magnetite ore comprise the major units in Cinan. Clinopyroxene occurs in both deposits as 0.1–2 mm in diameter subhedral to anhedral grains in dolerite, gabbro and clinopyroxenite. High FeO contents (11.7–28.9 wt%), low SiO2 (43.6–54.3 wt%) and Al2O3 contents (0.15–6.08 wt%), and low total REE and trace element contents of clinopyroxene in the Cinan clinopyroxenite imply crystallization early, at high pressure. This clinopyroxene is FeO-rich and Si and Ti-poor, consistent with the clinopyroxene component of large-scale Cu-Ni sulfide deposits in the Eastern Tianshan and Panxi ares, as well as Tarim mafic intrusion and basalt, implying the Cinan mafic intrusion and sulfide is related to tectonic activity in the Tarim LIP. The similar mineral chemistry of clinopyroxene, apatite and magnetite in the Cihai and Cinan gabbros (e.g., depleted LREE, negative Zr, Hf, Nb and Ta anomalies in clinopyroxene, lack of Eu anomaly in apatite and similarity of oxygen fugacity as indicated by V in magnetite), indicate similar parental magmatic characteristics. Mineral compositions suggest a crystallization sequence of clinopyroxenite/with a small amount of sulfide – gabbro – magnetite ore in the Cinan deposit, and magnetite ore – gabbro – dolerite in Cihai. The basaltic magma was emplaced at depth, with magnetite segregation (and formation of the Cinan magnetite ores) occurring in relatively low fO2 conditions, after clinopyroxenite and gabbro fractional crystallization. The evolved Fe-rich basaltic magma rapidly rose to intermediate or shallow depths, forming an immiscible Fe-Ti oxide magma as fO2 increased and leaving a Fe-poor residual magma in the chamber. The residual magmas was emplaced at different levels in the crust, forming the Cihai gabbro and dolerite, respectively. Finally, the immiscible Fe-Ti oxide magma was emplaced into the earlier formed dolerite because of late magma pulse uplift, resulting in a distinct boundary between the magnetite ores and dolerite.  相似文献   

10.
The chromiferous ultramafic rocks of Sukinda Valley (21°0'–21°5'N:85°43'–86°0'E) of Orissa are intrusive into the Iron-Ore Supergroup (2,950–3,200 Ma) at the eastern periphery of the Indian Precambrian shield. Both laterally and vertically, chromite occurs as persistent layers, lenses or pockets in the serpentinized and silicified dunite-peridotite extending over a strike length of 25 km. The ultramafic rocks and the chromitite layers are cofolded with the Iron-Ore Supergroup into a plunging syncline. Primary layering, ball and pillow structures, cross laminations, graded bedding etc. can also be detected. The different varieties of chromite ore present in the area are massive, banded and spotted, laminated and friable. The grain size of chromite varies between 0.25 and 4 mm, and the fineness of the grain increases from the bottom to the top layers. The cell dimension of chromite (8.23–8.32 Å) decreases with the increase of Al2O3.Cr2O3 in pure chromite varies between 48 to 61 wt. percent, Al2O3 is 7.10–15.09 wt. percent, whereas Fe2O3 is very low (0.03–3.20 wt. percent). The amount of RO to R2O3 varies within a narrow limit of 0.98–1.13, indicating that the chromite is chemically balanced. The FeO to MgO ratio is intermediate between the stratiform and alpine type. Fe3+ and Al3+ increase with respect to Cr3+ and Mg2+ in the upper chromitite layers. TiO2 lacks significant correlation with the major element composition of chromite.It is concluded that the Sukinda Valley chromitites of Orissa are predominantly stratiform in nature and were presumably formed in situ by crystal settling, the layering having been accentuated by the fluctuation of FO2. The geological features suggest a single magmatic cycle.  相似文献   

11.
The Samchampi-Samteran alkaline igneous complex (SAC) is a near circular, plug-like body approximately 12 km2 area and is emplaced into the Precambrian gneissic terrain of the Karbi Anglong district of Assam. The host rocks, which are exposed in immediate vicinity of the intrusion, comprise granite gneiss, migmatite, granodiorite, amphibolite, pegmatite and quartz veins. The SAC is composed of a wide variety of lithologies identified as syenitic fenite, magnetite ± perovskite ± apatite rock, alkali pyroxenite, ijolite-melteigite, carbonatite, nepheline syenite with leucocratic and mesocratic variants, phonolite, volcanic tuff, phosphatic rock and chert breccia. The magnetite ± perovskite ± apatite rock was generated as a cumulus phase owing to the partitioning of Ti, Fe at a shallow level magma chamber (not evolved DI = O1). The highly alkaline hydrous fluid activity indicated by the presence of strongly alkalic minerals in carbonatites and associated alkaline rocks suggests that the composition of original melt was more alkalic than those now found and represent a silica undersaturated ultramafic rock of carbonated olivine-poor nephelinite which splits with falling temperature into two immiscible fractions—one ultimately crystallises as alkali pyroxenite/ijolite and the other as carbonatite. The spatial distribution of varied lithotypes of SAC and their genetic relationships suggests that the silicate and carbonate melts, produced through liquid immiscibility, during ascent generated into an array of lithotypes and also reaction with the country rocks by alkali emanations produced fenitic aureoles (nephelinisation process). Isotopic studies (δ18O and δ13C) on carbonatites of Samchampi have indicated that the δ13C of the source magma is related to contamination from recycled carbon.  相似文献   

12.
Summary ?Gabbro Akarem is a Late-Precambrian concentrically-zoned mafic-ultramafic intrusion located along a major fracture zone trending NE-SW in the Eastern Desert of Egypt. It intruded low-grade metasedimentary rocks, and has a contact metamorphic aureole a few meters wide. This intrusion comprises a dunite core enveloped by clinopyroxene hornblende-bearing lherzolite, olivine-hornblende clinopyroxenite and plagioclase hornblendite. The contacts between the rock types are gradational. They have cumulate textures and the observed crystallization sequence is: olivine ( + cotectic spinel)-orthopyroxene (Opx)-clinopyroxene (Cpx)-hornblende. Mafic minerals from the core of the intrusion are highly magnesian, a consistent increase in the Mg# of olivine (from 69 to 87), Opx (from 62 to 89), Cpx (from 85 to 96) and hornblends (from 62 to 88) is observed from the mafic to the ultramafic units. Spinel has a wide range of Cr# and Mg# ratios. The various rock units define a fractionation trend. The mafic rocks are slightly LREE-enriched relative to the ultramafic units and chondrites. In many aspects, the Gabbro Akarem intrusion is similar to Alaskan-type complexes. Mineralogical and geochemical data suggest that the different rock units were fractionated from a hydrous picritic magma with no apparent crustal contamination. A petrogenetic model involving a rapid rise of hydrous mantle magma along a major fracture zone is proposed. Extensive fractional crystallization led to magma chamber stratification; internal circulation and strong vertical stretching up the center of the rapidly rising diapir increased the rate of magma ascent towards the core. Due to cooling and high viscosity the marginal mafic magma was partly crystallized while the unsolidified core ultramafic magma continued its ascent. As a result, different mineral phases crystallized at different pressure-temperature paths. Field relations, geophysical, petrological and experimental studies support this model which explains many of the characteristics of the Gabbro Akarem and some other concentrically zoned mafic-ultramafic intrusions. Received April 24, 2001; revised version accepted November 20, 2001  相似文献   

13.
The differentiation of the Skaergaard Intrusion   总被引:15,自引:4,他引:15  
Previous interpretations of the Skaergaard Intrusion suggested that differentiation involved extreme iron-enrichment but no silica-enrichment until a very late stage. This model is difficult to reconcile with petrological and geochemical evidence, with the behaviour of tholeiitic volcanic suites and with phase equilibria. We propose that the Skaergaard magma evolved on a trend of pronounced silica-enrichment after cumulus magnetite appeared at the top of the Lower Zone. At that stage, the magma was of ferrobasaltic composition with close to 50% SiO2. The Middle and Upper Zones of the intrusion dominantly represent crystal accumulation during differentiation from ferrobasalt through iron-rich basaltic andesite and icelandite to rhyolite, a fractionation sequence common in tholeiitic volcanic provinces. This interpretation requires re-appraisal of the physical processes responsible for the differentiation. In particular, residual liquids became lower in density with fractionation and would have caused the Skaergaard magma chamber to have become compositionally zoned.  相似文献   

14.
The mafic-ultramafic Chimbadzi Hill intrusion in the NW of the Zimbabwe craton is a dyke with inward-dipping margins comprising magnetite peridotite, troctolite and magnetite melatroctolite. The magnetite peridotite is composed of about equal amounts of V- and Ti-bearing magnetite and olivine (Fo60). The troctolite is composed of about 50% olivine (Fo50-54), 40% plagioclase (An53-58), 7% clinopyroxene and minor apatite and magnetite with ilmenite lamellae. Geochemical trends suggest that the Chimbadzi Hill Intrusion formed by fractional crystallisation from a single initial magma. However, the more primitive magnetite peridotite overlies the more evolved troctolite in the intrusion. This ‘apparent’ inverted stratigraphy may be due to emptying of a fractionated magma chamber from the top, or to floor subsidence during intrusion.U–Pb dating on baddeleyite reveals that the age of the Chimbadzi Hill Intrusion is 2262 ± 2 Ma. This age does not correspond to any known tectono-thermal event in the Zimbabwe Craton or adjacent metamorphic belts. It is 300 Ma younger than the late Archean Great Dyke, and 230 Ma older than other Paleoproterozoic events in and around the craton. Therefore, it may represent a so far undocumented very early Proterozoic igneous event in the Zimbabwe Craton. The intrusion represents a vanadium resource for Zimbabwe, with titanium potentially being mined as by-product.  相似文献   

15.
武定迤纳厂矿床位于我国云南省中部,在大地位置上处于扬子板块西缘,康滇地轴云南段,是滇中具有代表性的元古代铁-铜-金-稀土矿床.其矿化作用分为岩浆气液期、交代成矿期、热液成矿期和成矿后热液期4个期次,其中前3个期次是铁成矿的主要期次,分别以角砾状磁铁矿、浸染状磁铁矿和粗粒脉状磁铁矿为代表.各类磁铁矿含有一定量的SiO2、Cr2O3、Al2O3、MgO等,角砾状磁铁矿石的主元素成分与铁成分比值最高,其次为浸染状磁铁矿,最低为脉状磁铁矿.不同类型的磁铁矿微量元素变化很大,浸染状磁铁矿稀土配分具四重效应,角砾状磁铁矿和粗粒脉状磁铁矿稀土配分为右倾型.成矿早期磁铁矿的形成受岩浆作用影响强烈,含铁的岩浆导致围岩碎裂,形成了早期角砾状矿石;交代成矿期的铁质主要源于岩浆演化晚期分异形成的富铁流体,富铁流体与围岩发生强烈的物质交换,导致大量铁质沉淀;随着矿化作用的进行,热液作用逐渐增强,加之外界流体的逐渐加入,对之前形成的磁铁矿进行改造,使其具有热液成因的表象特征.从矿物成分体现出的矿床成因上看,该矿床属于岩浆隐爆-交代型成因,与世界知名的IOCG型矿床有相似之处.  相似文献   

16.
The Baima layered intrusion is located in the central part of the Emeishan Large Igneous Province (ELIP). The N–S striking intrusion is ~ 24 km long and ~ 2 km thick and dips to the west. Based on variations in modal proportions and cumulus mineral assemblages, the intrusion from the base to the top is simply subdivided into a lower zone (LZ) with most of the economic magnetite layers, and an upper zone (UZ) with apatite-bearing troctolite and gabbro. The rock textures suggest crystallization of the Fe–Ti oxide slightly later than plagioclase (An67-54) but relatively earlier than olivine (Fo74-55), followed by clinopyroxene and finally apatite.Relatively low olivine forsterite content and abundant ilmenite exsolution lamellae in clinopyroxene indicate that the Baima parental magma is a highly evolved Fe–Ti-rich magma. Via MELTS model, it demonstrates that under a closed oxygen system, extensive silicate mineral fractionation of a picritic magma might lead to Fe and Ti enrichment and oxygen fugacity elevation in the residual magma. When such Fe–Ti-rich magma ascends to the shallower Baima intrusion, the Fe–Ti oxides may become an early liquidus phase. Well-matched olivine and plagioclase microprobe data with the results of MELTS calculation, combined with relatively low CaO content in olivine (0.02–0.08 wt.%) indicate that wall-rock contamination probably plays a weak role on oxygen fugacity elevation and the early crystallization of Fe–Ti oxides. Several reversals in whole-rock chromium and plagioclase anorthite contents illustrate that multiple recharges of such Fe–Ti-rich magma mainly occurred along the lower part of the Baima magma chamber. Frequent Fe–Ti-rich magma replenishment and gravitational sorting and settling are crucial for the development of thick Fe–Ti oxide layers at the base of the Baima layered intrusion.  相似文献   

17.
镁铁质-超镁铁质岩体是世界上岩浆硫化物(Ni-Cu-PGE)和氧化物(Fe-Ti-V-P)矿床的主要载体.全球主要岩浆硫化物和氧化物矿床均可以产于大火成岩省、克拉通区的裂谷带或伸展环境、褶皱带内的后碰撞伸展环境.寄主岩浆硫化物矿床的岩体规模相差甚大(从6×104km2到<0.1km2),既有超镁铁质岩石组合也有镁铁质岩石组合,但其原生岩浆主要为拉斑玄武质岩浆.含镍铜的铂族元素矿床主要赋存于规模很大的层状岩体中,而镍铜硫化物矿床主要赋存于小岩体中.寄主钒钛磁铁矿或磁铁矿矿床的岩体主要是以辉长岩为主的层状杂岩体.寄主钛铁矿-磷灰石矿床的岩体均为层状的斜长岩-纹长二长岩-紫苏花岗岩岩体.尽管其岩石组合相差很大,但其原生岩浆均属拉斑玄武质.寄主硫化物矿床的岩体相对富Si、Mg、Cr、Ni,而寄主氧化物矿床的岩体相对富Fe-Ti-P-V,造岩矿物晶体化学也反映了这种差异.对全球主要含矿岩体的对比分析表明,导致这种反差的主要控制因素应该是岩浆生成时的压力状态,源区性质和熔融程度的差异可能只在局部范围内起作用.对岩浆硫化物矿床成矿过程的认识集中体现在金川模式和岩浆通道模式上,对岩浆氧化物矿床成矿过程的认识体现在氧化物和磷灰石是堆晶相还是从不混溶的矿浆中结晶的.对比分析表明,成矿过程具有多样性,试图用一种模式概括所有同类矿床成矿过程的想法未必可取.毫无疑问,适宜的氧化还原环境是形成岩浆矿床的必要务件,伴随岩浆演化及成矿过程的氧速度变化及其诱因问题尚待进一步探索.  相似文献   

18.

Shephards Discordant Zone is a 500–600 m thick interlayered sequence of deformed, altered and metamorphosed magnetite metagabbro and about 50 layers or lenses of magnetitite (> 80–90% magnetite). The sequence shows progressive magmatic fractionation upwards: Ti and Ti/Fe increase, and V, V/Ti and Cr decrease upwards in magnetite and in whole‐rock compositions. The main magnetite‐rich sequence (about 400 m thick) is deeply weathered, with 40 m of saprolite showing vertical zonation of weathering minerals due to progressive weathering. Magnetitites (average 1% V2O3) are resistant to weathering and show little chemical change, but magnetite gabbros (average 0.27% V2O3) are extensively weathered and show progressive loss of Ca, Na, Mg and S. Plagioclase, magnetite (1.37% V2O3), chlorite (up to 0.35% V2O3), actinolite, epidote and minor sulfides in unweathered rocks weather to kaolinite, hematite, goethite and minor vermiculite, ilmenite remaining largely unaffected. Vanadium is essentially immobile during weathering and is unaffected during weathering of magnetitites (1% V2O3), but is slightly depleted during weathering of magnetite gabbros (0.23% V2O3).  相似文献   

19.
The tholeiitic Basistoppen sill was intruded into the upper part of the Skaergaard complex shortly after the Skaergaard magma had solidified. Heat from the cooling Basistoppen magma caused disequilibrium partial melting in the adjacent Skaergaard ferrogabbros. Olivine, ferrobustamite, and magnetite were selectively melted and removed from the rock as an iron-rich melagabbro magma. Plagioclase acted as a refractory phase during partial melting and was left behind as an anorthositic gabbro restite. Modal and grain-size layering formed rheomorphically in the previously solidified host rocks as a result of partial melting and recrystallization. The rheomorphic layers are distinct from those found elsewhere in the intrusion.The extreme degree of contact metamorphism adjacent to the Basistoppen sill is a consequence of the intrusion of the sill into host rocks that were already near their melting temperature. It is suggested that the slow reaction rates between plagioclase and magma inhibited the dissolution of plagioclase relative to olivine, pyroxene, and opaque oxides and resulted in disequilibrium partial melting. The presence of anorthositic gabbro blocks within the Middle Zone of the Skaergaard intrusion indicates that disequilibrium partial melting may also occur during the assimilation of gabbroic xenoliths by magmas.  相似文献   

20.
The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of China. The Sidingheishan intrusion is mainly composed of wehrlite, olivine websterite, olivine gabbro, gabbro and hornblende gabbro. At least two pulses of magma were involved in the formation of the intrusion. The first pulse of magma produced an olivine-free unit and the second pulse produced an olivine-bearing unit. The magmas intruded the Devonian granites and granodiorites.An age of 351.4±5.8 Ma(Early Carboniferous) for the Sidingheishan intrusion has been determined by U-Pb SHRIMP analysis of zircon grains separated from the olivine gabbro unit. A U-Pb age of 359.2±6.4 Ma from the gabbro unit has been obtained by LA-ICP-MS. Olivine of the Sidingheishan intrusion reaches 82.52 mole% Fo and 1414 ppm Ni. On the basis of olivine-liquid equilibria, it has been calculated that the MgO and FeO included in the parental magma of a wehrlite sample were approximately10.43 wt% and 13.14 wt%, respectively. The Sidingheishan intrusive rocks are characterized by moderate enrichments in Th and Sm, slight enrichments in light REE, and depletions in Nb, Ta, Zr and Hf. The ε_(Nd)(t) values in the rock units vary from +6.70 to +9.64, and initial ~(87)Sr/~(86)Sr ratios range between 0.7035 and0.7042. Initial ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb values fall in the ranges of 17.23-17.91,15.45-15.54 and 37.54-38.09 respectively. These characteristics are collectively similar to the Heishan intrusion and the Early Carboniferous subduction related volcanic rocks in the Santanghu Basin, North Tianshan and Beishan area. The low(La/Gd)_(PM) values between 0.26 and 1.77 indicate that the magma of the Sidingheishan intrusion was most likely derived from a depleted spinel-peridotite mantle.(Th/Nb)_(PM)ratios from 0.59 to 20.25 indicate contamination of the parental magma in the upper crust.Crystallization modeling methods suggest that the parental magma of the Sidingheishan intrusion was generated by flush melting of the asthenosphere and subsequently there was about 10 vol%contamination from a granitic melt. This was followed by about 5 vol% assimilation of upper crustal rocks. Thus, the high-Mg basaltic parental magma of Sidingheishan intrusion is interpreted to have formed from partial melting of the asthenosphere during the break-off of a subducted slab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号