共查询到17条相似文献,搜索用时 78 毫秒
1.
高分六号红边特征的农作物识别与评估 总被引:3,自引:0,他引:3
红边作为植被敏感波段,其红边特征的运用是遥感识别农作物并实现精准农业的高新手段之一。以黑龙江松嫩平原北部为研究区,以国内首个提供红边波段的多光谱高分六号影像和玉米、大豆、水稻总计82859个作物样本同时作为研究对象,从以下几个方面研究了红边波段和红边指数波段等红边特征在农作物识别中的表现,并评估了农作物的识别精度。(1) 通过作物样本辐射亮度值的统计特征,初步显示了在两红边波段0.710 μm和0.750 μm处有比其他波段更好的区分;(2) 根据传统归一化植被指数形式构建了红边归一化植被指数NDVI710和NDVI750,综合两指数在J-M距离表征的作物样本类别区分度上比传统NDVI更显著;(3) 通过多种手段筛选了有效波段并且制定了支持向量机(SVM)框架下4种农作物识别的分类策略,分别在5∶5、6∶4、7∶3、8∶2、9∶1等5套随机样本分割方案下完成研究区域农作物的分类预测。在这20类分类精度中kappa系数均高于0.9609,总体精度高于0.9742;列向上5∶5分割方案的精度最高,8∶2的精度最低;横向上分类精度排序如下:SVM-RFE > SVM-RF > SVM-有红边波段 > SVM-无红边波段,该结果表明了红边指数和红边波段的参与显著地提高了作物的识别精度;(4) 由于水域等其他样本的缺少,SVM-RFE方法和SVM-RF方法的分类图像均存在少量错分现象。但从分类精度和图像细节展示上来看,SVM-RFE方法要优于SVM-RF方法,二者分类图像的交叉验证中kappa系数为0.8060,总体精度为0.8743。总之,高分六号红边特征在作物识别中表现优越,使得识别精度显著提高。后续研究者可开发更多与红边相关的植被指数,充分发挥红边特征在精准农业中的作用。 相似文献
2.
水藻污染影响水质,对生态环境造成显著破坏。在湖泊绿藻污染研究中,国产高分宽幅数据应用较少。本文综合利用高分一号、高分六号高光谱、宽幅数据,使用归一化植被指数和引入红边波段的归一化植被指数对南湾湖进行绿藻污染短时序监测,确定污染时间和范围演化。分析得到:(1)2020年7月20日,存在绿藻污染;(2)2020年8月2日和3日,无绿藻污染;(3)2020年8月4日、5日和9日,绿藻在下游某一弯道处有复发。南湾湖绿藻污染及复发情况与实际情况均符合,表明高分数据在短时序湖泊绿藻监测、提取准确率和效率等方面具备应用潜力。 相似文献
3.
6.
高分一号(GF-1)是我国自主研发的第一颗高分辨率遥感卫星,其包含地物信息较为丰富,已应用于土地利用信息提取,但在水利工程库区土地利用调查方面研究较少。本文以峡江水利枢纽工程库区为例,首先对库区影像进行了基于RPC模型的正射校正、几何精纠正等预处理;然后针对GF-1的传感器响应特性,采用基于多元线性波段拟合的方法对多光谱与全色影像进行融合,该方法相对于传统分量替换法具有更好的融合性能;最后综合利用影像的光谱、纹理及形状等特征,采用面向对象的方法对融合后的库区影像进行了地类信息提取与分类精度评价。试验结果表明,融合影像可以有效提取水利工程库区的土地利用信息,总体分类精度达到87.9%,Kappa系数为0.836,能够满足库区土地利用调查和变化监测的要求。 相似文献
7.
以辽宁阜新为研究区,运用支持向量机(SVM)的方法对高分一号8 m,16 m和Landsat8多光谱影像进行土地利用分类对比研究。实验表明,SVM的分类精度高于最小距离和最大似然方法,高分一号多光谱数据的分类精度高于Landsat8数据,可以应用于土地利用的分类。 相似文献
8.
9.
以高分一号影像为数据源,分别应用最大似然分类法和面向对象分类法对影像进行遥感分类,比较不同影像分割尺度,对分类结果进行精度评价,结果显示:面向对象分类方法综合利用多类遥感指数,提高了分类精度,可以有效应用于遥感影像快速分类。面向对象分类方法中分割尺度对分类精度影响较大,但如何设置最优分类尺度仍需进一步研究定量确定方法。 相似文献
10.
高分六号宽幅多光谱数据人工林类型分类 总被引:1,自引:0,他引:1
高分六号(GF-6)卫星于2018年成功发射,2019-03正式投入使用。由于GF-6宽幅相机的WFV(Wide Field of View)影像较GF-1的同类影像新增2个红边波段,将会提高对农业、林业、草原等资源监测能力。为了分析GF-6的WFV影像在人工林分类方面的能力,促进高分数据在林业领域的应用,本文选取广西高峰林场为研究区,以最新的GF-6 WFV影像为数据源,结合地面实测类型数据,进行广西南宁高峰林场的桉树,杉木等人工林类型提取。主要运用随机森林(random forests)的分层分类法:首先计算6种植被指数,并利用随机森林法进行植被指数的特征优选,然后确定4种波段组合数据集的分类方案,4种数据集分别为(1)无红边的前4个波段,(2)有红边的8个波段,(3) 8个波段加上未优化的植被指数特征组合,(4) 8个波段加上优化的植被指数特征组合。再进行WFV影像4种数据集的随机森林分类,随机森林采用分类回归树(CART)算法来生成分类树,结合了bagging和随机选择特征变量的优点,是一种有效的分类方法。最后比较4个方案的分类结果并进行精度验证。结果表明:方案2比方案1精度提高了4.99%,Kappa系数提高了0.058。说明包含红边的8波段数据比4个波段数据精度有大幅提升。方案4的8波段加上优化植被指数特征组合的分类精度最高,达到了85.38%,比方案2包含红边波段组和方案1无红边波段组的精度分别提高了3.98%,8.97%,Kappa系数分别提高了0.046,0.104。说明WFV影像加入红边波段比无红边波段精度明显增高。由结果可知,红边指数的引入,增强了植被信息,能够较准确地反映人工林类型特征差异,明显提升了人工林的分类精度。本研究方法可以有效改善广西人工林类型信息提取效果,为GF-6影像质量的评价及其在林业应用潜力提供科学参考依据。 相似文献
11.
以国产GF-1卫星影像为数据源,选取皇甫川流域内山区细小河流密集的上游1421 km2作为研究区域,针对因山区河流河道狭窄、形态复杂等导致的河流边界提取难度大、精度差、河宽无法自动提取的难题,首先利用改进的变异系数法筛选水体指数,再采用改进的决策树法结合DEM河网精确获取河流边界,最后通过自动化河宽提取算法实现对山区细小河流及其河宽的自动提取。结果表明,本文方法对山区河流判别的总体精度为89.5%,有效地排除了山体阴影等地物的干扰。对河宽为0~10 m的极细河流,本文方法提取河宽的误差为18.54%; 10~30 m的细小河流,提取误差为12.07%。 相似文献
12.
通过对GF-2卫星影像正射校正及波段模拟配准误差试验,分析GF-2卫星正射校正方法的选择以及不同配准误差下对GF-2卫星影像自动分类结果的影响;最后介绍GF-2遥感影像在森林资源监测应用中的初步测试。研究结果表明:正射校正时,当校正精度要求控制在RMS2时,控制点数量选择范围在85~95间较为合理,且控制点数在90个时,RMS值最小;经有理函数模型与卫片模型比较后,卫片模型校正精度较高;以目视判读为主时,实践中建议使用三次卷积重采样法输出结果最好;波段模拟配准误差试验中,配准误差与各地类面积变化间存在显著的线性关系;对于森林面积监测时,配准误差应小于0.3个像元。此研究可为新型国产卫星数据在森林资源监测中的应用提供参考。 相似文献
13.
为研究我国首颗携带红边波段的高分六影像(GF-6)在林地与非林地上的识别贡献,本文选择复杂林地类型的安徽省黄山市作为研究区,采用特征优选(RFE)与随机森林(RF)相结合的方法开展了林地与非林地识别潜力研究。首先根据实地调查、Google Earth影像及林地"一张图"样本数据构建了样本库;然后基于DEM、多时相光谱特征、植被指数、红边指数等特征开展分类,并比较不同模型精度及不同变量的重要度。结果表明:GF-6红边信息对林地非林地识别较为重要,引入红边信息可将总体分类精度提升2%,其他新增波段及地形特征对林地与非林地识别贡献并不明显;多时相数据的运用相比单时相数据可整体提高林地类型的分类精度2.93%~4.1%,单时相分类结果 6月最好,9月次之,12月最差;特征优选可以有效减少数据输入维数(46到15),并取得最高分类精度,在不牺牲精度的同时保证了运算数据量的减少且明确了不同变量的贡献,具有较强的应用意义。 相似文献
14.
15.
卫星激光测高数据在湖泊水位测量方面具有重要的应用价值和独特优势,本文针对国产高分七号卫星上装备的线性体制全波形激光测高仪,开展在大型湖泊水位测量方面的应用探讨.介绍了高分七号卫星的基本参数,并与其他类卫星做了对比,分析了影响湖泊水位测量精度的卫星侧摆、大气散射、回波波形饱和等因素,研究了湖泊水面激光点的提取方法,结合I... 相似文献
16.
湖泊是气候变化的敏感指示器,快速准确地获取湖泊水体信息对区域气候变化研究、区域生态环境保护和治理具有重要意义。本文基于高分六号(GF-6) WFV数据,以可可西里地区4个湖泊为研究对象,分别采用单波段法、波段差值法、归一化差异水体指数(NDWI)法提取了水体面积,并以目视解译所得结果作为参考标准,对不同方法的提取结果进行了精度评价。结果表明,单波段法易受浅水区水体影响,但受积雪的影响较小,而波段差值法和NDWI法受积雪影响较大;NDWI法虽能有效提取浅水区水体,但仍受一定程度湖底沉积物的影响;波段差值法与单波段法和NDWI法相比,能有效区分浅水区水体和背景地物。 相似文献
17.
洪涝灾害给社会、经济造成巨大损失,及时、快速监测洪涝范围在抗灾救灾中具有重要意义。合成孔径雷达(SAR)由于其主动式微波成像的机理,可为全天时、全天候、大范围洪涝灾害监测提供支持。本文首先以高分三号(GF-3)卫星影像为数据源,基于灰度共生矩阵(GLCM)、局部二值模式(LBP)等6种纹理描述方法提取138个SAR影像纹理特征;然后利用随机森林(RF)指标重要性评估功能,筛选出重要性得分较高的纹理特征进行水体信息提取;最后结合数学形态学对初始水体提取结果进行后处理,评估安徽巢湖附近区域洪涝灾害。试验表明,本文方法的水体提取精度优于传统阈值法(Otsu)及分类算法(KNN和SVM),可有效提取洪涝灾害的影响范围,为选取合适的SAR影像纹理特征进行洪涝范围快速监测提供参考。 相似文献