首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
如何使用少量的地形特征复原地形地貌一直为地学领域的难题。本文使用开源数据集提取地形特征要素,使用地形特征要素作为约束条件构建了用于生成DEM的条件生成对抗网络(Conditional Generative Adversarial Networks, CGAN),设计了基于开源DEM、开源DEM与遥感影像组合、以及5m高精度DEM提取地形特征要素生成DEM的对比实验,并对结果进行视觉效果、相关性分析以及地形因子的对比与评价。结果表明:(1)在视觉效果上,3种不同方式生成的DEM在视觉效果上均十分逼近原始5 m DEM,都远好于传统插值方法生成DEM,基于开源12.5m DEM提取要素和1m遥感影像的重建效果最接近于原始5 m DEM;(2)在相关性上,三种不同方式生成的DEM与原始5m DEM相关性均能达到0.75以上,组合开源数据提取要素重建DEM与原始5 m DEM相关性可达到0.85以上;(3)在地形因子方面,基于开源12.5 m DEM和1 m遥感影像提取要素重建DEM的坡度和坡向的分布趋势与原始5 m DEM最为一致。本文为高精度DEM建模提供了新的思路,在高精度DEM难以获取...  相似文献   

2.
滑坡严重威胁着人民群众的生命财产安全。完整、准确的滑坡编录图是研究滑坡的重要资料。深度卷积神经网络方法由于众多优势而备受关注,然而卷积神经网络结构复杂,需要大量的训练样本,制约了其在滑坡制图上的发展。提出了融合地形特征的卷积神经网络建模方法。首先在遥感影像上叠加地形因子构建新的滑坡样本,然后设计提取并融合空间与光谱特征的轻量级卷积神经网络(FF-CNN),最后训练最优模型进行滑坡识别。在四川汶川地区进行的消融实验证明:在空间特征基础上融合光谱特征的FF-CNN模型滑坡识别评价指标F1分数和平均交并比(MIoU)分别提高0.020 2和0.014 4;在遥感影像上叠加地形因子后,FF-CNN模型滑坡识别评价指标F1分数和MIoU值分别提高0.066 4和0.048 2。在湖北省三峡库区和四川省都江堰市虹口乡的实验说明FF-CNN模型表现出较强的适用性和迁移能力,在滑坡识别上具有较大潜力。  相似文献   

3.
针对南海区域,使用3种重力信号(垂线偏差、重力异常、垂直重力梯度异常)训练卷积神经网络模型,并将预测结果与船测数据和国外模型结果进行对比分析.将3种重力信号分成4组数据:重力异常,重力异常与垂直重力梯度异常,重力异常与垂线偏差,以及重力异常、垂线偏差和垂直重力梯度异常.4种组合方式的反演结果与船测水深之间的标准差分别为104.780 m、102.778 m、93.788 m、88.289 m,表明随着不同类型重力数据的加入,水深预测精度明显提高,并且在深度大于2 000 m时,反演结果精度提升效果更为显著.将训练集占总数据集的比例分别设置为80%、70%、60%和50%,反演结果与船测水深之间的标准差分别为88.289 m、91.256 m、92.833 m、96.022 m,表明数据量的增多可以有效提高模型学习结果的精度.  相似文献   

4.
多模态影像在辐射特征和几何特征方面存在的显著差异,会造成高精度匹配困难。因此,本文提出了一种融合多尺度深度学习特征的多模态影像匹配方法,主要利用深度残差神经网络结构自主训练学习影像的学习型特征,得到多模态图像之间更为丰富和更为准确的同名特征点对,实现了对多尺度、多时相影像的协同稳健匹配。结果表明,本文方法对于多组实验均能够得到数量丰富且分布相对均匀的同名特征点对,并具有高效、稳健的匹配性能。  相似文献   

5.
针对目前基于深度学习与高分辨率遥感影像的建筑物提取研究现状,本文提出了一种综合ResNet中的ResBlock残差模块和Attention注意力机制的改进型Unet网络(Res_AttentionUnet),并将其应用于高分辨率遥感影像建筑物提取,有效地提高了建筑物的提取精度。具体优化方法为:在传统的Unet语义分割网络卷积层中加入针对初高级特征加强提取的ResBlock残差模块,并在网络阶跃连接部分加入Attention注意力机制模块。其中,ResBlock残差模块使卷积后的特征图获取更多的底层信息,增强卷积结构的鲁棒性,从而防止欠拟合;Attention注意力机制可增强对建筑物区域像素的特征学习,使特征提取更完善,从而提高建筑物提取的准确率。本研究采用武汉大学季顺平团队提供的开放数据集(WHU Building Dataset)作为实验数据,并从中选取3个具有不同建筑物特征和代表性的实验区域,然后分别对不同实验区域进行预处理(包括滑动裁剪和图像增强等),最后分别使用Unet、ResUnet、AttentionUnet和Res_AttentionUnet 4种不同的网络模型对3个不同实验区进行建筑物提取实验,并对实验结果进行交叉对比分析。实验结果表明,与其他3种网络相比,本文所提出的Res_AttentionUnet在基于高分辨率遥感影像的建筑物提取中具有更高的精度,平均提取精度达到95.81%,相较于原始Unet网络提升17.94%,同时相较于仅加入残差模块的Unet网络(ResUnet)提升2.19%,能够显著地提升高分辨率遥感影像中建筑物提取的效果。  相似文献   

6.
文章针对甘蔗种植区域提取的精度和效率等问题,提出了一种基于深度学习的高分辨率卫星遥感提取甘蔗种植区域的方法,设计了一种高效、准确、自动化的卷积神经网络(Sugarcane Extraction Convolutional Neural Network,以下简称SE-CNN).SE-CNN无需人为设计规则,能够自动学习甘...  相似文献   

7.
随着高分辨率航空影像空间分辨率的提高,地物纹理信息变得更加丰富和复杂,使得从高分辨影像中提取建筑物信息面临巨大挑战.因此采用一种基于全卷积神经网络的高分辨率航空影像中建筑物提取方法,实现端到端的建筑物位置等信息提取.整个模型框架以SegNet模型为基础,在上采样阶段结合SegNet模型中的存储最大池化索引和U-Net模...  相似文献   

8.
介绍了一种在不规则三角网上进行地形特征点生成的方法,可以自动实现地形特征分析、特征信息提取、地形正负向趋势判断、以及地形细节精细化等,较好地解决了用等高线做数据源构建不规则三角网时出现的地形细节信息不足以及地形细节信息丢失等问题,可以广泛应用于DEM数据更新精化、水文分析、地学分析等领域。  相似文献   

9.
随着村镇经济建设发展,生活垃圾和工业固体废弃物造成的污染问题日益突出,已经成为制约新农村建设发展和生态文明建设的关键问题,而目前针对乡镇非正规固体废弃物的调查与统计主要依赖全国各乡镇相关部门逐级调查上报,工作量较大。本文基于高分辨率遥感影像,将深度学习模型和条件随机场模型相结合引入到乡镇固体废弃物的提取研究中,探索一种基于深度卷积神经网络的乡镇固体废弃物提取模型。由于固体废弃物在影像上表现为面积小,分布破碎等特点,为了提高工作效率,将模型特分为识别和提取2个部分:① 通过全连接卷积网络(CNN)对固体废弃物进行快速识别判断,筛选感兴趣区域影像块;② 在传统的全卷积神经网络(FCN)的基础上加入条件随机场模型(CRF)提取固体废弃物边界,提高整体分割精度。根据安徽、山西等地区相关部门上报固体废弃物堆放点以及住房与城乡建设部城乡规划管理中心进行野外检查的结果,实验最终识别精度达到86.87%以上;形状提取精度为89.84%,Kappa系数为0.7851,识别与提取精度均优于传统分类方法。同时,该方法已经逐步应用于住房和城乡建设部有关成都、兰州、河北等部分乡镇非正规固体废弃物的核查工作,取得了较为满意的结果。  相似文献   

10.
高分辨率遥感影像中,道路光谱信息丰富,且空间几何结构更清晰。但是,基于高分遥感影像的道路提取面临道路尺寸变化大、容易受树木、建筑物及阴影遮挡等因素影响,导致提取结果不完整。此外,高分遥感影像中同物异谱和异物同谱现象较为严重,从而影响道路提取结果连续性及细小道路信息完整性,而且难以区分道路和非道路不透水层。因此,本文提出基于双注意力残差网络的道路提取模型DARNet,利用深度编码网络,获取细粒度高阶语义信息,增强网络对细小道路的提取能力,通过嵌入串联式通道-空间双重注意力模块,获取道路特征图逐通道的全局语义信息,实现道路特征的高效表达及多尺度道路信息的深层融合,增强阴影和遮挡环境下网络模型的鲁棒性,改善道路提取细节缺失现象,实现复杂环境下高效、准确的道路自动化提取。本文在3个实验数据集对DARNet和DLinkNet、DeepLabV3+等5个对比模型进行对比试验和定量评估,结果表明,本文DARNet模型的F1分别为77.92%、67.88%和80.37%,高于对比模型。此外,定性比较表明,本文提出模型可以有效克服由于物体阴影、遮挡和高分影像光谱变化导致道路提取不准确与不完整问题,改善细...  相似文献   

11.
为更有效地获取地形特征信息,提出一种机载LiDAR地形特征信息快速提取算法。首先,通过构建二次曲面拟合模型,建立实测LiDAR地形数据与拟合曲面的几何规则;然后,采用LM算法迭代参数寻优,获得最优化结果下的地形拟合参数,计算拟合时间及拟合精度;最后,以地形拟合模型为基础,进行地形特征信息的快速提取。通过机载LiDAR实测数据验证,当最优搜索半径为2 m时,地形曲面的拟合时间仅为0.02 s,RMSE仅为5.09 cm。该算法保证了地形特征信息提取效率和精度,能够有效满足机载LiDAR科学研究和工程应用的技术需求。  相似文献   

12.
局部型地形因子并行计算方法研究   总被引:2,自引:0,他引:2  
 随着分析区域的扩展及需求精度的提高,数据-计算密集型地形分析亟需通过并行化来满足用户的时间响应需求。局部型地形因子是以一定半径的分析窗口(通常为3×3)计算且具有单元计算结果独立性的地形信息,是数字地形分析的基本参数。本文在分析局部型地形因子串行算法特征的基础上,以坡度算法为样本,对局部型地形因子的并行计算方法进行了深入研究。从数据并行的角度,对并行计算环境下的数据划分粒度、方式及结果融合策略进行了分析,构建了局部型地形因子的并行计算方法。利用SRTM陆地表面地形DEM数据,设计了坡度并行计算的实验以验证其方法的正确性和实用性。实验结果表明,本文提出的并行计算方法顾及了任务、数据及计算环境,可快速对局部型地形因子串行算法进行并行化改造,提高算法的执行效率,具有较好的并行性能。  相似文献   

13.
针对航空影像电力线提取过程中,背景线特征(电力杆塔、道路和植被等)干扰问题和电力线提取准确性问题,提出一种基于梯度对称性的电力线特征判别方法。采用Line Segment Detector(LSD)算法,对航空影像进行线特征提取;基于电力线附近梯度的对称性特征,实现从大量线段中准确筛选电力线段;采用缓冲区序列化线段连接算法,实现了电力线的自动连接。通过实验证明,提出的方法能够排除背景干扰并准确、完整地提取整条电力线。  相似文献   

14.
基于四叉树的LOD地形模型及其数据组织方法研究   总被引:2,自引:0,他引:2  
针对大规模地形可视化中地形数据的组织方法进行了研究,设计了一种基于线性四叉树结构的静态LOD地形模型,采用重采样、分层分块的方法来组织任意格网大小的海量地形数据。在此基础上,对数据动态调度过程中的相关问题进行了分析,地形块的快速索引、边界裂缝消除等方法的运用,提高了地形漫游的效率与可视化效果。实验结果表明,该研究成果可以满足大规模地形数据的实时可视化操作要求。  相似文献   

15.
针对关系型数据库无法满足海量地形小文件存储的高效性和扩展性,非关系型数据库通过最终一致性保证了高效的入库效率和可扩展架构,但存在入库安全隐患的现状。本文提出了基于非关系型分布式数据库Mongo DB的海量地形小文件入库优化方法。该方法充分发挥MongoDB内存文件映射方式带来的性能优势,通过客户端周期性阻塞实现内外存同步,以保证海量地形小文件并发写入的安全性;将入库的文件信息批量写入日志,支持工程级别的数据库回滚,以保持数据库的正确性。通过客户端周期阻塞与日志批量入库的协同,极大地保证了地形高效入库的安全性。  相似文献   

16.
针对城市三维激光点云中,道路与地面高程相差小、激光反射强度相近使得道路提取困难;广场、停车场等地物的高程、反射强度与道路极为相近,容易产生错误提取的问题。本文设计了一种描述道路条带信息的局部二进制特征(Stripe Local Binary Feature, SLBF),结合LiDAR数据中的三维信息和多光谱信息获得基于强度、密度和平坦度等统计特征(Statistics-Based Feature, SBF),并采用随机森林分类器实现了机载点云中道路面点云和非道路面点云的有效提取。通过欧式聚类精化道路点云和迭代腐蚀边界细化中心线,进而获得矢量化的道路中心线。以Waddenzee区域的多光谱机载点云数据进行实验验证,道路中心线提取结果的完整度达到94.15%,准确度达到97.95%,精度达到92.28%。实验结果表明,该方法可以有效地提取道路中心线,同时由于设计的特征具有不变性,能够适用于城市和林间小路等各种环境。  相似文献   

17.
我国目前高精度典型要素数据建设主要集中在境内区域,境外几乎是空白,境外典型要素数据主要依靠卫星遥感技术获取。本项目拟从国产卫星影像几何定位、信息提取、参考框架构建、技术集成与应用示范等方面开展研究,突破境外典型要素提取关键技术难题,为全球典型要素提取工程化生产提供技术支撑,将显著提升我国地理空间信息全球生产和服务能力。  相似文献   

18.
土地利用信息的多元分析提取   总被引:1,自引:0,他引:1  
由遥感(RS)、地理信息系统(GIS)和全球定位系统(GPS)获取、处理、分析空间信息,已成为研究资源环境的重要技术手段。在土地利用信息提取中,我们先后应用了传统目视解译方法、人机交互解译方法、计算机自动分类方法、多源信息复合分析等方法。本文在分析现有各种方法优缺点的基础上,提出了“综合自动分类方法”,并以北京市密云县为例,对土地利用信息进行了提取。分析表明:综合自动分类方法在分类结果的客观性、科学性、实用性等方面,具有一定的优势。  相似文献   

19.
地名词典查询是地名校正、地名匹配等地名服务应用的重要基础,但是地名数量的快速增长使得词典查询性能面临严峻挑战。针对大规模数据环境中传统词典查询方法准确率不高且效率较低等问题,提出了一种顾及字符特征的中文地名词典查询方法(CGQM)。首先,查询具有相同字符特征的地名形成候选地名集合,同时构建单字索引提升查询效率;其次,依据字符数量特征比较查询地名与候选地名的差异,进一步过滤候选地名集合;最后,基于字符位置特征优化查询结果排序策略,使得结果排序更为合理。实验以全国地名词典为例,构建5组测试集进行CGQM方法与Lucene检索方法的对比分析。研究结果表明,CGQM方法对于增强地名词典查询功能、提升查询效率具有实际意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号