首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
李冠东  张春菊  王铭恺  张雪英  高飞 《测绘科学》2019,44(4):116-123,174
针对基于人工提取特征的传统分类方法无法有效表达高空间分辨率遥感影像高层语义信息,且需要大量高质量训练数据,而带标签样本数据匮乏的问题。迁移学习运用已有知识对不同但相关领域问题进行求解,可有效解决目标领域中仅有少量标签样本数据的学习问题。该文提出利用迁移学习,基于卷积神经网络的深度学习模型进行高分影像场景分类。首先,基于ImageNet预训练的卷积神经网络Inception-v3模型提取高分影像数据的特征向量;然后,将特征向量作为输入数据训练一个新的单层全连接神经网络,经少量带标签影像场景数据训练后得到最终分类结果。该方法在UC Merced、AID和Wuhan 7类场景影像数据集上分别取得99%、93.3%和96.6%的准确率,相比已有方法,有效提高高分影像场景分类精度,同时说明知识迁移在高分影像场景分类领域的可行性。  相似文献   

2.
侧扫声呐图像应用领域综述   总被引:3,自引:0,他引:3  
侧扫声呐图像目前广泛应用于海洋工程、海洋科学、水下目标探测与识别等领域。仪器性价比的不断提高,给侧扫声呐图像的更深层应用带来了新的契机。本文综述了侧扫声呐图像的应用领域,为我国更深层次应用这一传统设备提供了实践指导;同时,概略给出了侧扫声呐图像后续精细处理的研究方向。  相似文献   

3.
在侧扫声呐系统检测海底管道的过程中,声波掠射角是影响检测效果的重要因素。本文针对影响侧扫声呐声波掠射角的主要因素进行了系统研究,推导出声波掠射角与其影响因素的关系表达式,并给出了考虑管径条件下海底管道悬空高度的计算式;进行了不同声波掠射角下侧扫声呐系统检测海底管道的试验,试验结果表明,当侧扫声呐声波掠射角介于14°~20°时,检测效果最好,声波掠射角过小或过大,均会使检测结果出现较大误差。  相似文献   

4.
针对现有方法在侧扫声呐水柱区图像受发射脉冲、海面回波、尾流及大面积悬浮物等干扰情况下海底线无法自动准确检测和提取,造成斜距改正后目标图像严重畸变和错位等问题,基于侧扫声呐成像机理以及图像特点,提出了海底线最后峰值检测法和基于海底变化渐进性和海底线对称性的海底线修复方法。结合Kalman滤波以及上述方法的特点和适用对象,提出了一种海底线自适应综合检测和提取的方法,并给出了完整的数据处理流程。该方法应用于烟台水域,消除了海况差、悬浮物遮挡等问题的影响,实现了复杂海洋噪声影响下海底线的自动跟踪。与外部测深数据比较,取得了均方根为±0.17 m的跟踪精度。  相似文献   

5.
针对水下航行器基于地形匹配实现自主导航时需要在线提取环境地形特征的需求,本文重点研究侧扫声呐实时数据采集与地貌图像构建方法。根据侧扫声呐的工作原理及其JSF文件格式,提取侧扫声呐扫描波束所对应的80数据帧,并完成数据解析;建立声呐扫描声强与灰度级转化模型,并构建环境地貌声学图像;通过海试试验结果与侧扫声呐专用软件所生成的地貌图像对比,验证本文方法的有效性和可行性。  相似文献   

6.
多波束与侧扫声呐图像区块信息融合方法研究   总被引:1,自引:0,他引:1  
针对多波束声呐图像和侧扫声呐图像在位置和分辨率上的互补性及实践中对高质量海床地貌图像的需求,提出了基于两套声呐图像信息融合获取高质量海床地貌图像的思想和方法,研究了SURF匹配算法,提出了ISURF改进算法;基于独立和联合评价参数,对4种图像融合算法进行了深入研究,给出了适合声呐图像融合的最优算法及完整的两套图像融合过程,并用试验进行了验证。  相似文献   

7.
针对侧扫声呐图像存在局部畸变,导致共视目标不一致的问题,本文提出了一种基于轮廓的侧扫声呐图像配准方法。首先提取图像中目标轮廓并计算每个轮廓点的环境上下文描述,以环境上下文的χ2检验统计量作为代价函数;然后通过使得所有匹配点对的代价和最小,获得轮廓点的对应关系;最后使用正则化的薄板样条函数对图像变换关系求解,建立轮廓内部像素的对应关系。试验结果表明,本文方法能够较好地保证共视目标的一致性,具有一定的借鉴价值。  相似文献   

8.
联合卷积神经网络与集成学习的遥感影像场景分类   总被引:1,自引:0,他引:1  
针对人工设计的中、低层特征难以实现复杂场景影像的高精度分类以及卷积神经网络依赖大量训练数据等问题,结合迁移学习与集成学习,提出了一种联合卷积神经网络与集成学习的遥感影像场景分类算法。首先基于迁移学习的思想,利用在自然影像数据集上训练好的多个深层卷积神经网络模型作为特征提取器,提取图像多个高度抽象的语义特征;然后构建由Logistic回归和支持向量机组成的Stacking集成模型,对同一图像的多个特征分别训练Logistic模型,将预测概率结果融合构建概率特征;最后利用支持向量机对概率特征训练和预测,得到场景影像的分类结果。利用UCMerced_LandUse和NWPU-RESISC 45两种不同规模的遥感影像数据集进行试验,即使在只有10%的数据作为训练样本情况下,本文方法能够分别达到90.74%和87.21%的分类精度。  相似文献   

9.
近年来基于深度卷积神经网络的高分辨率遥感影像场景分类成为广泛关注的焦点.由于现有深度卷积神经网络对遥感场景影像的几何形变不具有稳健性,本文提出了一种基于深度迁移可变形卷积神经网络(DTDCNN)的场景分类方法.该方法先利用大型自然场景数据集ImageNet上训练的深度模型提取遥感影像的深度特征,然后引入可变形卷积层,进...  相似文献   

10.
侧扫声呐在测量过程中易受其他作业船只及作业船速、尾流、增益参数设置等因素的综合影响,导致其图像存在多种噪声干扰及辐射畸变问题,传统方法难以有效滤除,严重影响海底地物和目标的判读。本文根据侧扫声呐图像的特点,提出了一种新颖的去噪及均衡化综合处理方法。与传统方法相比,综合法处理后图像熵值减小,峰值信噪比增大,且目标形状得到了有效保持,实现了侧扫声呐图像的高质量获取。  相似文献   

11.
以南海某海域实测侧扫声纳数据为例,研究侧扫声纳图像的数字镶嵌技术方法,对关键步骤进行详细的阐述。通过对原始侧扫声纳数据进行导航数据校正、海底线跟踪、斜距改正、TVG校正、船速校正、地理编码与重采样、拼接与镶嵌等处理,生成大区域、大范围、高分辨率、无缝拼接的侧扫声纳图像。实验结果证明声纳图像数字镶嵌技术的有效性,并取得理想的效果。  相似文献   

12.
崔腾腾  刘纪平  罗安 《测绘科学》2019,44(1):118-123
针对网络中的地图图片目前难以快速搜寻并对其进行有效标引这一问题,该文提出了使用深网搜索引擎持续获取网络图片,在标记样本较少的情况下,采用基于主动学习的样本扩容算法、基于卷积神经网络的网络地图图片自动语义标引方法,能快速、有效地识别网络中的地图图片,对地图图片的识别精度达到了93.64%,克服了采用人工方式获取样本和图片识别过于耗时费力的困难,有效解决了稀少样本下网络地图图片的智能提取难题,可为地理信息挖掘、问题地图监管等提供有效保障。  相似文献   

13.
章宁  金绍华  边刚  肖付民 《测绘学报》2022,51(9):1951-1958
针对目前多波束与侧扫声呐图像配准方法未顾及图像形变细节信息及二者尺度差异,存在局部纹理失真的问题,本文提出了结合小波变换、仿射变换和Demons配准算法的迭代自适应配准方法。利用小波变换提取侧扫声呐图像低频信息并重构图像,先后采用仿射变换和Demons算法将重构图像与多波束图像进行迭代自适应配准,获取配准变换模型,利用该模型对侧扫声呐原图像进行整体配准变换,获得多波束图像地理坐标约束的侧扫声呐图像。实例验证结果表明:该方法能有效实现多波束与侧扫声呐图像配准,获得位置准确且纹理丰富的融合声呐图像。  相似文献   

14.
本文将Fmask云检测结果作为标记样本对深度卷积神经网络进行训练以实现云检测.在仅利用可见光波段和近红外波段的前提下,本文方法的云检测总体精度达到87.65%,高于Fmask的86.92%,而且单景Landsat 8影像的识别用时18 s,远低于Fmask的72 s,具有更高的精度和效率.另外,该方法适用于不同的地表土...  相似文献   

15.
现有的基于卷积神经网络的高光谱影像分类方法通常对影像的规则正方形区域进行卷积,无法普遍适应具有不同地物分布和几何外观的影像局部区域,因此在小样本情况下的分类性能较差,而图卷积网络能对图拓扑信息所代表的不规则影像区域进行卷积.为此,本文提出基于图卷积网络的高光谱影像分类方法.该方法在构建拓扑图的过程中考虑了影像的空间光谱信息,并利用图卷积网络聚合邻居节点的特征信息.在Pavia大学、Indian Pines和Salinas 3个数据集上的试验结果表明,该方法能在训练样本较少的情况下取得较高的分类精度.  相似文献   

16.
陈伟 《北京测绘》2022,36(2):178-183
针对常规遥感影像目标检测模型在低算力环境难以运行问题,提出一种新的轻量级目标检测方法.采用深度可分离卷积核及通道分组混排构建轻量级特征提取网络,采用K-means聚类获取锚点框,使用跨层连接双层特征金字塔预测多尺度目标.利用遥感影像目标检测数据集(RSOD)数据集对模型训练,采用精度均值,平均精度均值,每秒传输帧数对模...  相似文献   

17.
赵伍迪  李山山  李安  张兵  陈俊 《遥感学报》2021,25(7):1489-1502
高光谱数据具有丰富的光谱特征,但是其空间分辨率相对较低.一些遥感数据具有与高光谱数据互补的优势,例如提供更精细的空间信息的高空间分辨率数据和具有高度信息的激光雷达LiDAR(Light Detection and Ranging)数据.通过将高光谱数据与多源遥感数据进行融合,可以弥补高光谱数据空间分辨率相对较低,空间特...  相似文献   

18.
Classification of very high resolution imagery (VHRI) is challenging due to the difficulty in mining complex spatial and spectral patterns from rich image details. Various object-based Convolutional Neural Networks (OCNN) for VHRI classification have been proposed to overcome the drawbacks of the redundant pixel-wise CNNs, owing to their low computational cost and fine contour-preserving. However, classification performance of OCNN is still limited by geometric distortions, insufficient feature representation, and lack of contextual guidance. In this paper, an innovative multi-level context-guided classification method with the OCNN (MLCG-OCNN) is proposed. A feature-fusing OCNN, including the object contour-preserving mask strategy with the supplement of object deformation coefficient, is developed for accurate object discrimination by learning simultaneously high-level features from independent spectral patterns, geometric characteristics, and object-level contextual information. Then pixel-level contextual guidance is used to further improve the per-object classification results. The MLCG-OCNN method is intentionally tested on two validated small image datasets with limited training samples, to assess the performance in applications of land cover classification where a trade-off between time-consumption of sample training and overall accuracy needs to be found, as it is very common in the practice. Compared with traditional benchmark methods including the patch-based per-pixel CNN (PBPP), the patch-based per-object CNN (PBPO), the pixel-wise CNN with object segmentation refinement (PO), semantic segmentation U-Net (U-NET), and DeepLabV3+(DLV3+), MLCG-OCNN method achieves remarkable classification performance (> 80 %). Compared with the state-of-the-art architecture DeepLabV3+, the MLCG-OCNN method demonstrates high computational efficiency for VHRI classification (4–5 times faster).  相似文献   

19.
无人机航拍影像具有分辨率高、回访周期短等特点,利用无人机遥感技术手段对城市范围的建设进行动态监测,可及时、有效地发现涉嫌违法的建设活动.本文结合实际项目需求,研究通过卷积神经网络方法进行违章建筑的自动检测,替代过去靠大量人力检查的模式,目前测试区域无人机影像试验取得了较好的效果,在样本数据不足5000份的情况下,准确率...  相似文献   

20.
国土调查多角度实景举证照片具有视角多、分辨率高、层次丰富和剖面清晰的特点,透视且细致地刻画了土地利用图斑赋存状况和场景,弥补了遥感影像单一天顶视角的不足。本文基于语义分割提出了一种深度卷积神经网络(DCNN)实景照片土地利用场景分类方法,多语义标记照片场景,语义组合智能判定照片土地利用类别。该方法成功地应用在第三次国土调查照片自动核查工作中,减轻了人工判读工作量,提高了土地利用场景自动识别的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号