首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
针对目前火力发电厂检测研究较少、识别难度大、工作状态监测少等问题,提出一种以冷却塔为关键地物目标的火电厂冷却塔检测方法,并根据冷却塔是否排气判定电厂工作状态.基于Faster R-CNN深度学习网络,通过设计对比实验,对冷却塔及其工作状态特征进行精确提取,并对检测及判定结果进行验证.实验结果表明,该模型在目标工作状态检...  相似文献   

2.
图像目标检测是计算机视觉与数字图像处理的一个热门方向,其主要任务是找出图像中感兴趣的物体并确定物体的位置与类别.目前基于深度学习模型是主流的目标检测算法,利用其解决诸多学科问题成为一种趋势.本文采用区域卷积神经网络(Faster R-CNN)深度学习算法和相关图像处理算法,以ResNet50、ResNet101为骨干网...  相似文献   

3.
码头自动识别能够为港口的建设与开发、海岸带地理信息的获取及海上军事实力的评估提供重要依据。然而由于码头普遍尺寸小、数量多、分布散乱,且受周围船舶、建筑等环境干扰严重,传统算法难以满足对高速发展的码头进行准确监测的需求,如何对码头目标进行准确识别成为亟需解决的问题。本文基于公开遥感数据集及Google Earth高分遥感影像构建了3种码头类型的数据集,并针对码头的尺寸特征和空间分布特征对Faster R-CNN算法进行了如下改进:(1)采用K-Means算法对候选框进行预设,使其大小更适应码头尺寸;(2)采用Soft-NMS算法代替NMS算法,以降低分布密集地区码头的误删率和漏检率。实验结果表明,本文改进的Faster R-CNN算法FKSN (Faster R-CNN+K-Means+Soft-NMS)识别精度达到92.6%,相较Faster R-CNN算法精度提高了8.3%。将码头目标识别结果和传统分类方法 ISODATA、SSD及Faster R-CNN、Faster R-CNN+K-Means等目标提取模型的识别结果相对比,本文方法在虚警率和漏检率的评价指标表现最好,分别为3.2...  相似文献   

4.
随着遥感技术的不断发展,遥感大数据在人们生活中扮演着越来越重要的角色,但由于遥感数据量大,数据处理较为困难。机器学习技术凭借如今硬件科技的发展,使得其自身计算处理能力得到了巨大的提升,因而被广泛地应用于各个领域。由于数据处理和计算机能力的提升,深度学习被广泛应用于遥感领域中。同时,深度学习在其他领域中也被证明是一个极其强大的工具。结合遥感数据量大的特点,本文通用Faster R-CNN的方法实现了对船舶遥感影像的快速检测,并且取得了较高的检测率。  相似文献   

5.
沙苗苗  李宇  李安 《遥感学报》2022,26(8):1624-1635
为了提高遥感图像中多尺度飞机目标的检测精度,本文提出一种基于改进Faster R-CNN的遥感图像飞机目标检测方法。该方法借助多层级融合结构,将深层次的语义特征与浅层次的细节特征相结合,生成多种尺度的既具有精确的位置信息又具有深层次的语义特征的特征图;再借助Faster R-CNN的多尺度RPN (Region Proposal Network)机制,通过对RPN中候选区域尺度的修正,从而提高遥感图像中多尺度飞机目标的定位精度;最后利用Faster R-CNN的分类回归网络,得到飞机目标检测结果。在高分辨率遥感图像中进行了实验,对3种特征提取网络ZF、VGG-16以及ResNet-50进行改进,改进后的精度分别提高了11.34%、9.87%以及1.66%,并且生成的检测框更加贴合飞机目标。实验结果表明,本文方法适用于遥感图像多尺度飞机目标检测,在提高目标定位精度的同时降低了目标漏检现象。  相似文献   

6.
海洋内波广泛存在于世界各大洋和边缘海中,在海洋能量串级中扮演着重要角色,在海洋资源开发、海洋工程建设和海洋军事活动等方面均具有重要学术价值与实际意义。海洋内波在合成孔径雷达SAR (Synthetic Aperture Radar)图像上呈现出亮暗相间的条纹状特征。本文利用2001年—2020年南海海域包含不同微波波段(C、L、X)、不同极化方式、不同空间分辨率的631幅星载SAR图像,构建了5480个SAR图像南海海洋内波样本,结合Faster R-CNN框架,利用迁移学习的方法,实现SAR图像上的海洋内波自动检测。模型识别准确率达到95.7%,召回率为92.3%,在准确率较高的同时还能保持较低的虚警率。该算法的建立使得基于海量卫星SAR数据检出海洋内波成为可能,从而为针对性地开展内波动力参数反演和过程研究提供了技术和数据基础。  相似文献   

7.
高分辨率遥感影像场景复杂,其中建筑物目标种类结构各异且存在大量遮挡,现有检测算法使用特征表达性不强。结合Faster R-CNN模型设计一种针对遥感影像的建筑物检测方法。首先通过共享卷积网络获取原始影像的深层特征图;然后结合区域建议网络生成初步检测结果;最后根据Fast R-CNN检测网络对结果进行进一步判定和边界回归。针对困难样本造成的训练中断,对训练策略进行改进,通过近似联合训练的方法对模型参数同步调优。实验结果表明,该方法准确率和召回率明显优于DPM方法,对非训练测试集遥感影像具有较好鲁棒性,有效实现了针对遥感影像的建筑物检测。  相似文献   

8.
深度学习方法在目标检测和语义分割领域得到了广泛应用,但在遥感影像中,由于建筑物呈聚集型分布且目标之间间隔紧密,建筑物目标检测暂未取得较好的效果。针对上述问题,提出一种基于Mask R-CNN的高分辨率遥感影像建筑物目标检测方法,将边界框识别与像素级语义分割结合起来,较好地解决了聚集分布且间隔紧密的建筑物目标检测问题。实验结果表明,该方法具有较高的检测精度。  相似文献   

9.
针对新疆南疆大规模枣园的检测识别,本文提出了一种基于泛化迁移深度学习的枣园目标检测识别方法。以GF-6卫星影像数据为基础制作了Jujube数据集,并将其泛化扩充增强;以Faster R-CNN体系为基础,利用多态协同模式实现数据集的有效关联和优化重构,进行检测识别模型的迁移深度学习以提高对目标对象检测识别的泛化能力。结果表明,模型算法的验证识别精确率、召回率和调和平均值分别达0.979、0.952和0.965,在应用测试中,3个指标平均值均大于0.929,优于传统检测方法,且本文模型方法总体分类精度为0.97,Kappa系数为0.93,均高于面向对象最邻近法,能够有效地满足研究区规模化枣园目标检测识别的精度和效率的要求,为精细化枣园田间管理提供基础依据。  相似文献   

10.
11.
目标识别是遥感高分辨率影像时代的重要应用方向.采用深度卷积神经网络对遥感影像学习训练,能够从遥感影像中自动提取出多个具有代表性的典型地物特征以及特征组合,并应用于多变而复杂的遥感影像数据中进行目标分类识别.本研究选用NWPU VHR-10数据应用于Faster R-CNN卷积神经网络模型中,并采用MAP进行评价,研究中...  相似文献   

12.
韩丰宇  范荣双  梁勇  张航  夏普 《测绘科学》2019,44(7):116-121
针对基于区域的轨迹提取类算法的时间复杂度高等问题,该文提出了一种基于FasterR-CNN的目标轨迹提取方法,利用FasterR-CNN能够快速定位和特征提取的原理,快速确定目标区域,在此基础上提出距离加阈值限制的方法进行目标关联。该方法不要求FasterR-CNN模型具有较高目标框回归精度,且充分利用卷积神经网络能够高效提取图像特征的特点,在保证轨迹提取精度的同时,降低了目标区域确定的时间和数据量,且通过均匀抽取和目标参考点关联的方法,进一步降低了目标关联的时间。与基于Camshift的区域提取法对比,在时间复杂度基本一致的情况下,大大提高了复杂背景和复杂纹理条件下目标区域确定的准确率,使得轨迹提取率更高。  相似文献   

13.
针对城市行道树调查中,街景影像背景环境复杂多变、行道树个体差异大,依靠目视判读费时费力的问题,该文基于车载移动测量系统采集的全景影像数据,利用深度学习算法,在快速区域卷积神经网络的目标检测方法基础上,建立适用于街景行道树检测的深度神经网络模型。模型采用基于共有显著性区域及冗余策略的行道树多示例目标候选区域选择方法,使用车载图像的几何约束进一步筛选合适的候选区域,从而实现行道树目标候选区域的统一选择,提升行道树目标的检测效果。实验结果表明,该文提出的方法能够实现多种行道树的准确自动识别与提取,进而大大降低行道树绿化调查的成本。  相似文献   

14.
基于实例分割模型的建筑物自动提取   总被引:1,自引:0,他引:1  
瑚敏君  冯德俊  李强 《测绘通报》2020,(4):16-20+62
传统的遥感影像目标提取方法大多采用目视解译或基于像素信息进行处理,难以适用于高分辨率影像中的复杂场景。而现有的卷积神经网络语义分割模型,由于难以达到较高的精度会出现提取目标粘连的情况。针对该问题,本文对实例分割模型Mask R-CNN进行改进,提出了一种高效、准确的高分辨率遥感影像建筑物提取算法。首先,在Mask R-CNN原有的特征提取部分每个层级的特征图后再增加一层卷积操作,以降低上采样造成的混叠效应;然后,在原有掩膜预测结构的基础上增加一个分支,改善掩膜预测的效果;最后,将改进后的网络在建筑物数据集上进行训练。结果表明,本文方法能够准确独立预测每个建筑物顶部,没有目标粘连情况,且mAP值较Mask R-CNN有所提高,能够有效实现遥感影像建筑物精细化提取。  相似文献   

15.
在基于视频的多目标运动跟踪中,目标检测和重识别具有很强的相关性。目前常将目标检测和重识别网络分别进行训练和使用,因此实时跟踪速度不能达到要求。针对多目标跟踪(multiple object tracking,MOT)中行人身份切换和跟踪丢失问题,将行人重识别模块进行遮挡优化并嵌入行人检测网络,由此提出了一种基于中心点检测和重识别的多行人跟踪算法。首先建立了行人运动模型,通过中心点检测得到行人最优状态估计;然后根据深层特征融合的行人重识别模型,利用马氏距离和余弦距离增强行人身份辨别能力;最后利用匈牙利算法进行在线数据关联,同时利用卡尔曼滤波剔除不准确的结果,对未关联的丢失目标做运动预测。利用所提算法和其他跟踪算法分别在MOT15、MOT16、MOT17数据集上进行多行人跟踪对比实验,结果表明,所提算法的多目标跟踪精度(multiple object tracking accuracy,MOTA)分别为63.5、72.4、70.9, 正确识别的检测和计算的检测数的比值(identity F1?measure,IDF1)最优, 且保证了实时跟踪速率, 验证了所提跟踪算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号