首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most of the useful information about inflationary gravitational waves and reionization is on large angular scales where Galactic foreground contamination is the worst, so a key challenge is to model, quantify and remove polarized foregrounds. We use the Leiden radio surveys to quantify the polarized synchrotron radiation at large angular scales, which is likely to be the most challenging polarized contaminant for the WMAP satellite. We find that the synchrotron E- and B-contributions are equal to within 10% from 408–820 MHz with a hint of E-domination at higher frequencies. We quantify Faraday rotation and depolarization effects and show that they cause the synchrotron polarization percentage to drop both towards lower frequencies and towards lower multipoles.  相似文献   

2.
We present the first calculation of the kinetic Sunyaev–Zel’dovich (kSZ) effect due to the inhomogeneus reionization of the universe based on detailed large-scale radiative transfer simulations of reionization. The resulting sky power spectra peak at ℓ = 2000–8000 with maximum values of [ℓ(ℓ + 1)C/(2π)]max  4–7 × 10 −13. The scale roughly corresponds to the typical ionized bubble sizes observed in our simulations, of 5–20 Mpc. The kSZ anisotropy signal from reionization dominates the primary CMB signal above ℓ = 3000. At large-scales the patchy kSZ signal depends only on the source efficiencies. It is higher when sources are more efficient at producing ionizing photons, since such sources produce larger ionized regions, on average, than less efficient sources. The introduction of sub-grid gas clumping in the radiative transfer simulations produce significantly more power at small-scales, but has little effect at large-scales. The patchy reionization kSZ signal is dominated by the post-reionization signal from fully-ionized gas, but the two contributions are of similar order at scales ℓ  3000 − 104, indicating that the kSZ anisotropies from reionization are an important component of the total kSZ signal at these scales.  相似文献   

3.
We review the current status and future plans for polarization measurements of the cosmic microwave background radiation, as well as the cosmology these measurements will address. After a long period of increasingly sensitive upper limits, the DASI experiment has detected the E-mode polarization and both the DASI and WMAP experiments have detected the TE correlation. These detections provide confirmation of the standard model of adiabatic primordial density fluctuations consistent with inflationary models. The WMAP TE correlation on large angular scales provides direct evidence of significant reionization at higher redshifts than had previously been supposed. These detections mark the beginning of a new era in CMB measurements and the rich cosmology that can be gleaned from them.  相似文献   

4.
The Wilkinson Microwave Anisotropy Probe (WMAP) science team has released results from the first year of operation at the Earth–Sun L2 Lagrange point. The maps are consistent with previous observations but have much better sensitivity and angular resolution than the COBE DMR maps, and much better calibration accuracy and sky coverage than ground-based and balloon-borne experiments. The angular power spectra from these ground-based and balloon-borne experiments are consistent within their systematic and statistical uncertainties with the WMAP results. WMAP detected the large angular-scale correlation between the temperature and polarization anisotropies of the CMB caused by electron scattering since the Universe became reionized after the “Dark Ages”, giving a value for the electron scattering optical depth of 0.17 ± 0.04. The simplest ΛCDM model with n=1 and Ωtot=1 fixed provides an adequate fit to the WMAP data and gives parameters which are consistent with determinations of the Hubble constant and observations of the accelerating Universe using supernovae. The time-ordered data, maps, and power spectra from WMAP can be found at http://lambda.gsfc.nasa.gov along with 13 papers by the WMAP science team describing the results in detail.  相似文献   

5.
Of the many probes of reionization, the 21-cm line and the cosmic microwave background (CMB) are among the most effective. We examine how the cross-correlation of the 21-cm brightness and the CMB Doppler fluctuations on large angular scales can be used to study this epoch. We employ a new model of the growth of large-scale fluctuations of the ionized fraction as reionization proceeds. We take into account the peculiar velocity field of baryons and show that its effect on the cross-correlation can be interpreted as a mixing of Fourier modes. We find that the cross-correlation signal is strongly peaked towards the end of reionization and that the sign of the correlation should be positive because of the inhomogeneity inherent to reionization. The signal peaks at degree scales (ℓ∼ 100) and comes almost entirely from large physical scales ( k ∼ 10−2 Mpc). Since many of the foregrounds and noise that plague low-frequency radio observations will not correlate with CMB measurements, the cross-correlation might appear to provide a robust diagnostic of the cosmological origin of the 21-cm radiation around the epoch of reionization. Unfortunately, we show that these signals are actually only weakly correlated and that cosmic variance dominates the error budget of any attempted detection. We conclude that the detection of a cross-correlation peak at degree-size angular scales is unlikely even with ideal experiments.  相似文献   

6.
Spatial dependence in the statistics of redshifted 21-cm fluctuations promises to provide the most powerful probe of the reionization epoch. In this paper we consider the second and third moments of the redshifted 21-cm intensity distribution using a simple model that accounts for galaxy bias during the reionization process. We demonstrate that skewness in redshifted 21-cm maps should be substantial throughout the reionization epoch and on all angular scales, owing to the effects of galaxy bias which leads to early reionization in overdense regions of the intergalactic medium (IGM). The variance (or power spectrum) of 21-cm fluctuations will exhibit a minimum in redshift part way through the reionization process, when the global ionization fraction is around 50 per cent. This minimum is generic, and is due to the transition from 21-cm intensity being dominated by overdense to underdense regions as reionization progresses. We show that the details of the reionization history, including the presence of radiative feedback are encoded in the evolution of the autocorrelation and skewness functions with redshift and mean IGM neutral fraction. The amplitudes of fluctuations are particularly sensitive to the masses of ionizing sources, and vary by an order of magnitude for astrophysically plausible models. We discuss the detection of skewness by first-generation instruments, and conclude that the Mileura Wide-field Array–Low-Frequency Demonstrator will have sufficient sensitivity to detect skewness on a range of angular scales at redshifts near the end of reionization, while a subsequent instrument of 10 times the collecting area could map out the evolution of skewness in detail. The observation of a minimum in variance during the reionization history, and the detection of skewness would both provide important confirmation of the cosmological origin of redshifted 21-cm intensity fluctuations.  相似文献   

7.
We study cosmic microwave background (CMB) secondary anisotropies produced by inhomogeneous reionization by means of cosmological simulations coupled with the radiative transfer code crash . The reionization history is consistent with the Wilkinson Microwave Anisotropy Probe Thomson optical depth determination. We find that the signal arising from this process dominates over the primary CMB component for   l ≳ 4000  and reaches a maximum amplitude of   l ( l + 1) Cl /2π≃ 1.6 × 10−13  on arcmin scales (i.e. l as large as several thousands). We then cross-correlate secondary CMB anisotropy maps with neutral hydrogen 21-cm line emission fluctuations obtained from the same simulations. The two signals are highly anticorrelated on angular scales corresponding to the typical size of H  ii regions (including overlapping) at the 21-cm map redshift. We show how the CMB/21-cm cross-correlation can be used: (i) to study the nature of the reionization sources; (ii) to reconstruct the cosmic reionization history; (iii) to infer the mean cosmic ionization level at any redshift. We discuss the feasibility of the proposed experiment with forthcoming facilities.  相似文献   

8.
We discuss observations of the first galaxies, within cosmic reionization, at centimeter and millimeter wavelengths. We present a summary of current observations of the host galaxies of the most distant QSOs (z∼6). These observations reveal the gas, dust, and star formation in the host galaxies on kpc-scales. These data imply an enriched ISM in the QSO host galaxies within 1 Gyr of the big bang, and are consistent with models of coeval supermassive black hole and spheroidal galaxy formation in major mergers at high redshift. Current instruments are limited to studying truly pathologic objects at these redshifts, meaning hyper-luminous infrared galaxies (L FIR ∼1013 L ). ALMA will provide the one to two orders of magnitude improvement in millimeter astronomy required to study normal star forming galaxies (i.e. Ly-α emitters) at z∼6. ALMA will reveal, at sub-kpc spatial resolution, the thermal gas and dust—the fundamental fuel for star formation—in galaxies into cosmic reionization.  相似文献   

9.
In this paper, we show how the rescattering of cosmic microwave background photons after cosmic reionization can give a significant linear contribution to the temperature–matter cross-correlation measurements. These anisotropies, which arise via a late-time Doppler effect, are on scales much larger than the typical scale of non-linear effects at reionization; they can contribute to degree scale cross-correlations and could affect the interpretation of similar correlations resulting from the integrated Sachs–Wolfe effect. While expected to be small at low redshifts, these correlations can be large given a probe of the density at high redshift, and so could be a useful probe of the cosmic reionization history.  相似文献   

10.
We study the effect of a prolonged epoch of reionization on the angular power spectrum of the cosmic microwave background. Typically reionization studies assume a sudden phase transition, with the intergalactic gas moving from a fully neutral to a fully ionized state at a fixed redshift. Such models are at odds, however, with detailed investigations of reionization, which favour a more extended transition. We have modified the code cmbfast to allow the treatment of more realistic reionization histories and applied it to data obtained from numerical simulations of reionization. We show that the prompt reionization assumed by cmbfast in its original form heavily contaminates any constraint derived on the reionization redshift. We find, however, that prompt reionization models give a reasonable estimate of the epoch at which the mean cosmic ionization fraction was ≈50 per cent, and provide a very good measure of the overall Thomson optical depth. The overall differences in the temperature (polarization) angular power spectra between prompt and extended models with equal optical depths are less than 1 per cent (10 per cent).  相似文献   

11.
Recently the numerical simulations of the process of reionization of the universe at z>6 have made a qualitative leap forward, reaching sufficient sizes and dynamic range to determine the characteristic scales of this process. This allowed making the first realistic predictions for a variety of observational signatures. We discuss recent results from large-scale radiative transfer and structure formation simulations on the observability of high-redshift Ly-α sources. We also briefly discuss the dependence of the characteristic scales and topology of the ionized and neutral patches on the reionization parameters.  相似文献   

12.
We discuss the 21-cm power spectrum (PS) following the completion of reionization. In contrast to the reionization era, this PS is proportional to the PS of mass density fluctuations, with only a small modulation due to fluctuations in the ionization field on scales larger than the mean-free-path of ionizing photons. We derive the form of this modulation, and demonstrate that its effect on the 21-cm PS will be smaller than 1 per cent for physically plausible models of damped Lyα systems. In contrast to the 21-cm PS observed prior to reionization, in which H  ii regions dominate the ionization structure, the simplicity of the 21-cm PS after reionization will enhance its utility as a cosmological probe by removing the need to separate the PS into physical and astrophysical components. As a demonstration, we consider the Alcock–Paczynski test and show that the next generation of low-frequency arrays could measure the angular distortion of the PS at the per cent level for   z ∼ 3–5  .  相似文献   

13.
In the era of high precision CMB measurements, systematic effects are beginning to limit the ability to extract subtler cosmological information. The non-circularity of the experimental beam has become progressively important as CMB experiments strive to attain higher angular resolution and sensitivity. The effect of non-circular beam on the power spectrum is important at multipoles larger than the beam-width. For recent experiments with high angular resolution, optimal methods of power spectrum estimation are computationally prohibitive and sub-optimal approaches, such as the Pseudo-Cl method are used. We provide an analytic framework for correcting the power spectrum for the effect of beam non-circularity and non-uniform sky coverage (including incomplete/masked sky maps). The approach is perturbative in the distortion of the beam from non-circularity allowing for rapid computations when the beam is mildly non-circular. We advocate that when the non-circular beams are important, it is computationally advantageous to employ ‘soft’ azimuthally apodized masks whose spherical harmonic transforms die down fast with m.  相似文献   

14.
The Boomerang experiment completed its final long duration balloon (LDB) flight over Antarctica in January 2003. The focal plane was upgraded to accommodate four sets of 145 GHz polarization sensitive bolometers (PSBs), identical to those to be flown on the Planck HFI instrument. Approximately, 195 hours of science observations were obtained during this flight, including 75 hours distributed over 1.84% of the sky and an additional 120 hours concentrated on a region covering 0.22% of the sky. We derive the angular power spectra of the cosmic microwave background (cmb) temperature and polarization anisotropies from these data. The temperature anisotropies are detected with high signal to noise on angular scales ranging from several degrees to 10 arcminutes. The curl-free (EE) component is detected at 4.8σ, and a two-sigma upper limit on the curl (BB) component of 8.6 μK2 is obtained on scales corresponding to 0.5°. Both the temperature and polarization anisotropies are found to be consistent with a concordance ΛCDM cosmology that is seeded by adiabatic density perturbations. In addition to the cmb observations, Boomerang03 surveyed a 300 square degree region centered on the Galactic plane. These observations represent the first light for polarization sensitive bolometers, which are currently operational in two South-Pole based polarimeters, as well as Planck HFI, at frequencies ranging from 100 to 350 GHz (3 mm to 850 μm).  相似文献   

15.
The influence of internal rotation on the evolution of a 0.85M star is investigated by the construction of model sequences. Rotation is treated by a simple one-dimensional approximation. The calculations assume solid-body rotation on the zero-age Main Sequence, followed by conservation of angular momentum in shells. The 4 cases considered have the initial angular velocities 0,2×10–4, 6×10–4, and 8×10–4/sec. All cases but the last are followed to helium ignition. Compared with the non-rotating case, the rotating models are older at Main-Sequence turnoff, develop fast-spinning central regions on the red-giant branch, and ignite helium at higher surface luminosities and at larger helium-core masses. The increases in the last two quantities are roughly proportional to the square of the initial angular velocity.The 6×10–4 case is followed through the helium core flash to the zero-age horizontal branch. Under the assumption of spherical symmetry, the non-central ignition of helium leads to a sequence of flashes of decreasing amplitude occurring progressively closer to the center. The flashes are weaker than those encountered in previous studies and do not produce mixing.  相似文献   

16.
We study the mass-radius relationship for aggregates of galaxies, viz. binaries, small groups and clusters. The data are subjected to a simple best-fit analysis similar to the one carried out earlier for individual field galaxies. The analysis shows that: (i) The data on binary galaxies are consistent with the assumption that binaries are just two galaxies, each with an individual isothermal (M ∫R) dark matter halo, moving under the mutual gravitational attraction, (ii) The data on the groups of galaxies are too scattered to obey a single power-law relation of the formM = kR n with any degree of reliability, (iii) The data on groups and clusters fit better with a law of the formM = AR 3 +BR. This form suggests the existence of two components in dark matter—one which is clustered around the galaxies (M ∫R) and another which is distributed smoothly (M ∫R 3 ). The smooth distributions becomes significant only at scales ≥ 1 Mpc and hence does not affect binaries significantly. We briefly discuss the theoretical implications of this analysis  相似文献   

17.
The cosmic microwave background (CMB) polarization and the 21-cm line fluctuations are powerful probes of cosmological reionization. We study how the cross-correlation between the CMB polarization ( E modes) and the 21-cm line fluctuations can be used to gain further understanding of the reionization history, within the framework of inhomogeneous reionization. Since the E -mode polarization reflects the amplitude of the quadrupole component of the CMB temperature fluctuations, the angular power spectrum of the cross-correlation exhibits oscillations at all multipoles. The first peak of the power spectrum appears at the scale corresponding to the quadrupole at the redshift, which is probed by the 21-cm line fluctuations. The peak reaches its maximum value in redshift when the average ionization fraction of the universe is about half. On the other hand, on small scales, there is a damping that depends on the duration of reionization. Thus, the cross-correlation between the CMB polarization and the 21-cm line fluctuations has the potential to accurately constrain the epoch and the duration of reionization.  相似文献   

18.
Foreground subtraction is the biggest challenge for future redshifted 21-cm observations to probe reionization. We use a short Giant Meter Wave Radio Telescope (GMRT) observation at 153 MHz to characterize the statistical properties of the background radiation across ∼1° to subarcmin angular scales, and across a frequency band of 5 MHz with 62.5 kHz resolution. The statistic we use is the visibility correlation function, or equivalently the angular power spectrum   C l   . We present the results obtained from using relatively unsophisticated, conventional data calibration procedures. We find that even fairly simple-minded calibration allows one to estimate the visibility correlation function at a given frequency   V 2( U , 0)  . From our observations, we find that   V 2( U , 0)  is consistent with foreground model predictions at all angular scales except the largest ones probed by our observations where the model predictions are somewhat in excess. On the other hand, the visibility correlation between different frequencies  κ( U , Δν)  seems to be much more sensitive to calibration errors. We find a rapid decline in  κ( U , Δν)  , in contrast with the prediction of less than 1 per cent variation across 2.5 MHz. In this case, however, it seems likely that a substantial part of the discrepancy may be due to limitations of data reduction procedures.  相似文献   

19.
A number of large current experiments aim to detect the signatures of the cosmic reionization at redshifts z > 6. Their success depends crucially on understanding the character of the reionization process and its observable consequences and designing the best strategies to use. We use large-scale simulations of cosmic reionization to evaluate the reionization signatures at redshifted 21-cm and small-scale cosmic microwave background (CMB) anisotropies in the best current model for the background universe, with fundamental cosmological parameters given by Wilkinson Microwave Anisotropy Probe three-year results. We find that the optimal frequency range for observing the 'global step' of the 21-cm emission is 120–150 MHz, while statistical studies should aim at 140–160 MHz, observable by GMRT. Some strongly non-Gaussian brightness features should be detectable at frequencies up to ∼190 MHz. In terms of sensitivity-signal trade-off relatively low resolutions, corresponding to beams of at least a few arcminutes, are preferable. The CMB anisotropy signal from the kinetic Sunyaev–Zel'dovich effect from reionized patches peaks at tens of μK at arcminute scales and has an rms of ∼1 μK, and should be observable by the Atacama Cosmology Telescope and the South Pole Telescope. We discuss the various observational issues and the uncertainties involved, mostly related to the poorly known reionization parameters and, to a lesser extend, to the uncertainties in the background cosmology.  相似文献   

20.
COMPTEL on board CGRO has observed a very strong (S[> 0.3 MeV] = 2.03 × 10–4 erg cm–2), complex, and long lasting (162 s) gamma-ray burst on February 17, 1994 (GRB 940217). Temporal fluctuations occur on timescales as short as 100 ms. Hard-to-soft spectral evolution has been observed during the burst emission and also within individual peaks. The photon spectra obtained within the 6 peaks can be modelled by single power law spectra and by broken power laws with break energies at around 1 MeV. The best-fit power law slopes vary between 1.1 and 3.5 throughout the event. The burst is located at [ 2000, 2000] = [29.5°, 3.8°] with a 3 error radius of 0.9°. COMPTEL does not detect any significant post-burst emission (as reported by EGRET) at low energies (< 30 MeV), and our upper limits are marginally consistent with the EGRET detections. Using high energy spectral and temporal information, distance limits to GRB 940217 have been derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号