首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
气候变化对我国小麦地理分布的潜在影响   总被引:3,自引:0,他引:3       下载免费PDF全文
根据GCM模拟结果,分析了CO2增加对我国小麦生产地理分布的潜在影响。结果表明:在加倍CO2气候下,我国小麦生产区将进一步向北和向西扩展,小麦栽培特点和品种类型也有较大变化。气候增暖可能对东北地区产生有利影响,但在中部和南部则可能产生高温应力。小麦生长期间平均温度的升高,特别是收获前的高温可能会增加对更早熟、更耐热品种的需求。  相似文献   

2.
气候变化适应行动实施框架——宁夏农业案例实践   总被引:2,自引:1,他引:1       下载免费PDF全文
宁夏是我国生态脆弱区和贫困区之一,以宁夏为例开展农业适应行动实践具有一定的代表性和示范作用.根据气候变化适应行动实施框架,研究结果表明:宁夏未来气候干旱风险将增加,水资源短缺矛盾加剧,极端气候事件频率和强度加大.未来宁夏北部灌区农业应以发展节水灌溉和高效种植为主,中部以设施农业和牧业为主,南部以发展特色农业为主.气象部...  相似文献   

3.
The trends and features of China’s climatic change in the past and future are analysed by applying station obser-vations and GCM simulation results. Nationally, the country has warmed by 0.3oC in annual mean air temperature and decreased by 5% in annual precipitation over 1951-1990. Regionally, temperature change has varied from a cooling of 0.3oC in Southwest China to a warming of 1.0oC in Northeast China. With the exception of South China, all regions of China have shown a declination in precipitation. Climatic change has the features of increasing remark-ably in winter temperature and decreasing obviously in summer precipitation. Under doubled CO2 concentration, climatic change in China will tend to be warmer and moister, with increases of 4.5oC in annual mean air temperature and 11% in annual precipitation on the national scale. Future climatic change will reduce the temporal and spatial differences of climatic factors.  相似文献   

4.
This integrated study examines the implications of changes in crop water demand and water availability for the reliability of irrigation, taking into account changes in competing municipal and industrial demands, and explores the effectiveness of adaptation options in maintaining reliability. It reports on methods of linking climate change scenarios with hydrologic, agricultural, and planning models to study water availability for agriculture under changing climate conditions, to estimate changes in ecosystem services, and to evaluate adaptation strategies for the water resources and agriculture sectors. The models are applied to major agricultural regions in Argentina, Brazil, China, Hungary, Romania, and the US, using projections of climate change, agricultural production, population, technology, and GDP growth.For most of the relatively water-rich areas studied, there appears to be sufficient water for agriculture given the climate change scenarios tested. Northeastern China suffers from the greatest lack of water availability for agriculture and ecosystem services both in the present and in the climate change projections. Projected runoff in the Danube Basin does not change substantially, although climate change causes shifts in environmental stresses within the region. Northern Argentina's occasional problems in water supply for agriculture under the current climate may be exacerbated and may require investments to relieve future tributary stress. In Southeastern Brazil, future water supply for agriculture appears to be plentiful. Water supply in most of the US Cornbelt is projected to increase in most climate change scenarios, but there is concern for tractability in the spring and water-logging in the summer.Adaptation tests imply that only the Brazil case study area can readily accommodate an expansion of irrigated land under climate change, while the other three areas would suffer decreases in system reliability if irrigation areas were to be expanded. Cultivars are available for agricultural adaptation to the projected changes, but their demand for water may be higher than currently adapted varieties. Thus, even in these relatively water-rich areas, changes in water demand due to climate change effects on agriculture and increased demand from urban growth will require timely improvements in crop cultivars, irrigation and drainage technology, and water management.  相似文献   

5.
小麦和水稻是世界最重要的粮食作物。利用河南省小麦和水稻的历史观测资料,结合DSSAT-CERES 小麦和ORYZA2000水稻模拟模型,分析和模拟河南省稻麦类作物在历史气候变化条件下发育期和产量的变化。结果表明:冬小麦全育期长度呈缩短趋势,但播种-越冬天数平均每10年增加1.7天,开花到乳熟天数平均每10年增加2-4天,返青后各发育期均表现出不同程度的提前;水稻各发育期均有不同程度的提前,尤其是拔节期以前,分蘖前的发育期间隔天数以缩短为主,拔节后以延长为主。雨养小麦模拟产量和水氮增产潜力均呈减少趋势;随着播种期的提前,水稻减产趋势逐渐减弱。  相似文献   

6.
分析气候变化对动物分布的影响,对气候变化影响下保护生物多样性具有重要的意义。利用CART(classification and regression tree,分类和回归树)生态位模型,采用A1、A2、B1和B2气候变化情景,模拟分析了气候变化对我国滇金丝猴分布范围及空间格局的影响趋势。结果显示:气候变化后,滇金丝猴目前适宜分布范围将减小,新适宜及总适宜范围将扩大,在1991-2020年时段较大,从1991-2020年时段到2081-2100年时段随气候变化时间段延长而逐渐缩小,其中A1情景下变化最大,B1情景下变化最小。气候变化后,滇金丝猴目前适宜分布区东北部及南部适宜范围将缩小,西部和西北及东南部适宜范围将扩大。气候变化后,滇金丝猴目前适宜、新适宜和总适宜分布区范围与我国年均气温和年降水量变化呈负相关。多元回归分析表明,滇金丝猴目前适宜、新适宜和总适宜分布范围均随我国年均气温升高和年降水量增加而减少,其中气温变化影响比降水量变化影响大。因此,气候变化后,近期将使滇金丝猴目前分布适宜分布范围减少,新适宜分布范围将扩大,随气候变化程度增强,新适宜及总适宜分布范围都将减小。  相似文献   

7.
气候变化适应行动实施框架   总被引:5,自引:1,他引:4       下载免费PDF全文
气候变化适应对脆弱地区和贫困群体更为重要。尽管我国急需采取适应行动,但由于缺乏可操作性的模式和评估方法,目前实际的适应行动还略显滞后。本文建立了一个适应行动实施框架,主要包含六个核心步骤,从气候风险、适应目标、适应措施、技术优化、实施示范到监测评估,基本涵盖了适应行动的关键内容。框架的构建具有一定的通用性和借鉴性,可以帮助适应实施者开发综合和战略性的适应措施。适应行动框架是一个开放和可更新的体系,可根据实践过程中新的认识,对适应行动做一定的再设计和调整,实施过程中还可提炼适应的基本信息和确定适应的优化技术。  相似文献   

8.
气候变化对我国小麦发育及产量可能影响的模拟研究   总被引:63,自引:10,他引:53       下载免费PDF全文
利用随机天气模型, 将气候模式对大气中CO2倍增时预测的气候情景与CERES-小麦模式相连接, 研究了气候变化对我国冬小麦和春小麦生产的可能影响.结果表明, 气候变化后小麦发育将加快, 生育期缩短, 冬小麦平均缩短7.3天, 春小麦平均缩短10.5天, 春小麦生育期缩短的绝对数和相对数均大于冬小麦.籽粒产量呈下降趋势, 冬小麦平均减产7%~8%, 雨养条件下比水分适宜时减产幅度略大.春小麦的减产幅度大于冬小麦, 水分适宜时平均减产17.7%, 雨养时平均减产31.4%.  相似文献   

9.
气候变化可能不会引起我国北方冬小麦营养品质下降   总被引:1,自引:0,他引:1  
为了探索未来气候变化对冬小麦营养品质的影响,采用开顶式气室与红外辐射器相结合的方法开展了冬小麦生长季增温和CO2浓度升高的复合影响试验,在6个小麦生长季模拟了21世纪中后期两种可能的增温和CO2浓度升高情景。结果表明,在生长季增温与CO2浓度升高情景下,冬小麦冬后发育期前移,生育期平均气温较对照的增加幅度远小于生长季增温幅度,灌浆期遭遇的高温日数减少,主要生育阶段的平均太阳辐射强度减弱。在增温与CO2浓度升高复合影响下,冬小麦籽粒蛋白质含量略有增加,籽粒淀粉与脂肪含量未显示规律性的变化趋势,增温对小麦蛋白质含量的综合影响弥补了CO2浓度升高对籽粒蛋白质含量的负效应。如果不考虑小麦品种变化影响,预计未来气候变化可能不会导致我国北方冬小麦籽粒营养品质下降。  相似文献   

10.
中国是世界上滑坡灾害造成人口伤亡较严重的国家.受气候变化影响,极端降水频率与强度的增加会提高滑坡灾害的人口风险.文中将不同RCPs情景多个模式的未来降水数据和SSPs情景下的未来人口数据相结合,构建滑坡灾害人口风险评估模型,评估气候变化背景下的中国滑坡灾害人口风险.研究发现,气候变化下中国滑坡灾害的危险性呈上升趋势,预...  相似文献   

11.
利用基于 RegCM2的区域气候模式并单向嵌套澳大利亚 CSIRO R21L9全球海-气耦合模式,进行了温室气体二氧化碳浓度倍增对中国气候变化影响的数值试验研究。控制试验结果表明:区域模式由于具有较高的分辨率,因而对中国区域地面气温和降水的模拟效果较全球模式有了较大提高;模式对 2×CO2敏感性试验结果表明了在 CO2浓度倍增情况下,由于温室效应,中国区域的地面气温将有明显升高,降水也将呈增加趋势。  相似文献   

12.
利用MM5V3区域气候模式单向嵌套ECHAM5全球环流模式的结果,对中国地区实际温室气体浓度下当代气候(1981—2000年)及IPCC A1B情景下21世纪中期气候(2041—2060年)分别进行了水平分辨率为50 km的模拟试验。首先检验全球和区域模式对当代气候的模拟情况,结果表明:区域模式对中国地区地面温度和降水空间分布的模拟能力优于全球模式;与实际观测相比,区域模式模拟的地面温度在中国大部分地区偏低,模拟的降水量偏多,降水位置偏北。IPCCA1B情景下中国地区21世纪中期气候变化的模式结果显示:各季节地面温度在全国范围内都将比当代升高1.2~3.9℃,且升温幅度具有北方大于南方、冬季大于夏季的时空分布特征;降水变化具有一定的区域性和季节性,秋季和冬季降水在全国大部分地区都将增加10%~30%,春季和夏季降水则呈现"北方减少、南方增多"的趋势,变化幅度在-10%~10%之间。21世纪中期地面温度和降水变化还具有一定的年际特征:地面温度在中国地区各子区域均表现为上升趋势,升温速率在0.7~0.9℃/10a之间,温度变率也比当代有所增大;降水在西北地区略呈下降趋势,在其它子区域均为上升,降水变率的变化具有区域性特征。  相似文献   

13.
There is considerable research interest in future agro-drought risk assessment, since the increasing severity of climate change-related hazards poses a great threat to global food security. Wheat is the most important staple crop in the world, and China’s wheat production has long been impacted by drought. The frequency, intensity, and duration of droughts may increase due to climate change and stressing the need for robust assessment methods for drought risk, as well as adaptation and mitigation strategies. This paper investigates a method for assessing future wheat drought risk using climate scenarios and a crop model. We illustrate the utility of such an approach by assessing the risk of wheat drought under climate change scenarios in China using the Environmental Policy Integrated Climate model. Results show that the risk level of wheat drought is highest under scenario RCP8.5, followed by RCP4.5, RCP6.0, and RCP2.6, in descending order. If current climate change trends continue, wheat drought risk in China will be at risk levels between RCP6.0 and RCP8.5 by the end of the twenty-first century. The wheat drought risk assessment shows a “low-risk, high-risk, low-risk” spatial pattern starting in the spring wheat-planting regions in northern China and progressing to the winter wheat-planting regions in southern China. Significant differences were observed across regions, but in all RCP scenarios, the relative high-risk zones are the Huang-Huai Winter Wheat Region and the North Winter Wheat Region. In addition, wheat drought risk mitigation and adaptation strategies in China are proposed.  相似文献   

14.
Abstract

This article analyses the national circumstances and major factors underpinning China's energy demand and supply, energy-related emissions, and consequently China's sustainable development. These factors include the huge, still growing, and aging population, rapid economic growth, ongoing industrialization and urbanization, environmental and health concerns at local, regional and global level. Against such background analysis, the article explores the potential and constraints of non-fossil fuel, fuel-switching to natural gas, economy restructuring and clean coal technology in mitigating emissions of greenhouse gases (GHG) and ensuring energy supply in China. The authors reiterate the importance of improving energy efficiency in China and discuss how to integrate renewable energy into rural development. The article concludes with an in-depth discussion about redefining development goals, the equity issue in climate change process, and the linkage with sustainable development.  相似文献   

15.
两种不同减排情景下21世纪气候变化的数值模拟   总被引:3,自引:1,他引:3  
利用国家气候中心最新发展的气候系统模式BCC-CSM1.0模拟了相对于B1排放情景,两种不同减排情景(De90和De07,表示按照B1情景排放到2012年,之后线性递减,至2050年时CO_2排放水平分别达到1990和2007年排放水平一半的情景)对全球和中国区域气候变化的影响.结果表明:两种减排情景下模式模拟的全球平均地表气温在21世纪40年代以后明显低于Bl情景,比减排情景浓度低于B1的时间延迟了20年左右;尽管De90减排情景在2050年所达到的稳定排放水平低于De07情景,但De90情景下的全球增温在2070年以后才一致低于De07情景,这种滞后町能与耦合系统(主要足海洋)的惯性有关;至21世纪末,De90和De07情景下的全球增温幅度分别比B1情景降低了0.4和0.2℃;从全球分布来看,B1情景下21世纪后30年的增温幅度在北半球高纬度和极地地区最大,减排情景能够显著减少这些地区的增温幅度,减排程度越大,则减少越多;在中国区域,B1情景下21世纪末平均增温比全球平均高约1.2℃,减排情景De90和De07分别比B1情景降低了0.4和0.3℃,中国北方地区增温幅度高于南方及沿海地区,减排情景能够显著减小中国西部地区的增温幅度;B1情景下21世纪后30年伞球增温在冬季最高,De90和De07情景分别能够降低各个季节全球升温幅度的17%和10%左右.  相似文献   

16.
利用中国东北地区三个典型城市(哈尔滨、长春和沈阳)1961—2019年的气温、相对湿度等气象资料和TRNSYS软件模拟的能耗资料,分析了气候变化对东北地区办公建筑设计气象参数的影响,研究了气候变化对办公建筑能耗的影响及其影响因子.结果表明:与1961—1990年相比,近30 a(1991—2019年)东北地区三个城市的...  相似文献   

17.
Assessment of climate change impact on Eastern Washington agriculture   总被引:2,自引:0,他引:2  
An assessment of the potential impact of climate change and the concurrent increase of atmospheric CO2 concentration on eastern Washington State agriculture was conducted. Climate projections from four selected general circulation models (GCM) were chosen, and the assessment included the crops with larger economic value for the state (apples, potatoes, and wheat). To evaluate crop performance, a cropping system simulation model (CropSyst) was utilized using historical and future climate sequences. Crops were assumed to receive adequate water (irrigated crops), nutrients, and control of weeds, pests and diseases. Results project that the impact of climate change on eastern Washington agriculture will be generally mild in the short term (i.e., next two decades), but increasingly detrimental with time (potential yield losses reaching 25% for some crops by the end of the century). However, CO2 elevation is expected to provide significant mitigation, and in fact result in yield gains for some crops. The combination of increased CO2 and adaptive management may result in yield benefits for all crops. One limitation of the study is that water supply was assumed sufficient for irrigated crops, but other studies suggest that it may decrease in many locations due to climate change.  相似文献   

18.
Distinct climate changes since the end of the 1980s have led to clear responses in crop phenology in many parts of the world. This study investigated the trends in the dates of spring wheat phenology in relation to mean temperature for different growth stages. It also analyzed the impacts of climate change, cultivar shift, and sowing date adjustments on phenological events/phases of spring wheat in northern China (NC). The results showed that significant changes have occurred in spring wheat phenology in NC due to climate warming in the past 30 years. Specifically, the dates of anthesis and maturity of spring wheat advanced on average by 1.8 and 1.7 day (10 yr)?1. Moreover, while the vegetative growth period (VGP) shortened at most stations, the reproductive growth period (RGP) prolonged slightly at half of the investigated stations. As a result, the whole growth period (WGP) of spring wheat shortened at most stations. The findings from the Agricultural Production Systems Simulator (APSIM)-Wheat model simulated results for six representative stations further suggested that temperature rise generally shortened the spring wheat growth period in NC. Although the warming trend shortened the lengths of VGP, RGP, and WGP, the shift of new cultivars with high accumulated temperature requirements, to some extent, mitigated and adapted to the ongoing climate change. Furthermore, shifts in sowing date exerted significant impacts on the phenology of spring wheat. Generally, an advanced sowing date was able to lower the rise in mean temperature during the different growth stages (i.e., VGP, RGP, and WGP) of spring wheat. As a result, the lengths of the growth stages should be prolonged. Both measures (cultivar shift and sowing date adjustments) could be vital adaptation strategies of spring wheat to a warming climate, with potentially beneficial effects in terms of productivity.  相似文献   

19.
The impacts of climate change on agricultural production systems in China   总被引:7,自引:0,他引:7  
Climate change can bring positive and negative effects on Chinese agriculture, but negative impacts tend to dominate. The annual mean surface temperature has risen about 0.5–0.8 °C. The precipitation trends have not been identified during the past 100 years in China, although the frequency and intensity of extreme weather/climate events have increased, especially of drought. Water scarcity, more frequent and serious outbreaks of insects and diseases, and soil degradation caused by climate change have impacted agro-environmental conditions. However, temperature rise prolonged the crop growth seasons and cold damages have reduced in Northeast China. The projection of climate change indicates that the surface temperature will continue to increase with about 3.9 to 6.0 °C and precipitation is expected to increase by 9 to 11 % at the end of 21st century in China. Climate warming will provide more heat and as a consequence, the boundary of the triple-cropping system (TCS) will extend northwards by as much as 200 to 300 km, from the Yangtze River Valley to the Yellow River Basin, and the current double-cropping system (DCS) will move to the central part of China, into the current single cropping system (SCS) area which will decrease in SCS surface area of 23.1 % by 2050. Climate warming will also affect the optimum location for the cultivation of China’s main crop varieties. If no measures are taken to adapt to climate changes, compared with the potential yield in 1961–1990, yields of irrigated wheat, corn and rice are projected to decrease by 2.2–6.7 %, 0.4 %–11.9 % and 4.3–12.4 % respectively in the 2050s. Climate warming will enhance potential evaporation and reduce the availability of soil moisture, thus causing a greater need for agricultural irrigation, intensifying the conflict between water supply and demand, especially in arid and semi-arid areas of China. With adequate irrigation, the extent of the reduction in yield of China’s corn and wheat can be improved by 5 % to 15 %, and rice by 5 % or so than the potential yield in 1961–1990. Adaptive measures can reduce the agricultural loss under climate change. If effective measures are taken in a timely way, then climate change in the next 30–50 years will not have a significant influence on China’s food security.  相似文献   

20.
The environmental requirements for growth of winter, spring, and fallsown spring wheats in North America are specified and compared to temperature results from the control run of the Goddard Institute for Space Studies general circulation model (GISS GCM) and observed precipitation in order to generate a simulated map of current wheat production regions. The simulation agrees substantially with the actual map of wheat-growing regions in North America. Results from a doubled CO2 run of the climate model are then used to generate wheat regions under the new climatic conditions. In the simulation, areas of production increase in North America, particularly in Canada, due to increased growing degree units (GDU). Although wheat classifications may change, major wheat regions in the United States remain the same under simulated doubled CO2 conditions. The wheat-growing region of Mexico is identified as vulnerable due to high temperature stress. Higher mean temperatures during wheat growth, particularly during the reproductive stages, may increase the need for earlier-maturing, more heat-tolerant cultivars throughout North, America. The soil moisture diagnostic of the climate model is used to analyze potential water availability in the major wheat region of the Southern Great Plains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号