首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 619 毫秒
1.
2.
3.
4.
A review is presented of dynamical and physical properties of asteroids. Discovery methods are discussed and some distributions of the orbital elements and the absolute magnitudes are presented as are properties of planet-crossing asteroids, Hildas and Trojans. Various observational methods such as polarimetry, radar and occultations are briefly introduced and lightcurve data are more extensively described. Asteroid taxonomy in the Barucci classifiction is thoroughly discussed as are asteroid spins and shapes and the origin and the evolution of these bodies. Space missions to asteroids and space observations of asteroids are also introduced.  相似文献   

5.
Hydro-economic models: Concepts, design, applications, and future prospects   总被引:6,自引:0,他引:6  
Future water management will shift from building new water supply systems to better operating existing ones. The variation of water values in time and space will increasingly motivate efforts to address water scarcity and reduce water conflicts. Hydro-economic models represent spatially distributed water resource systems, infrastructure, management options and economic values in an integrated manner. In these tools water allocations and management are either driven by the economic value of water or economically evaluated to provide policy insights and reveal opportunities for better management. A central concept is that water demands are not fixed requirements but rather functions where quantities of water use at different times have varying total and marginal economic values. This paper reviews techniques to characterize the economic value of water use and include such values in mathematical models. We identify the key steps in model design and diverse problems, formulations, levels of integration, spatial and temporal scales, and solution techniques addressed and used by over 80 hydro-economic modeling efforts dating back 45-years from 23 countries. We list current limitations of the approach, suggest directions for future work, and recommend ways to improve policy relevance.  相似文献   

6.
Space-weather impacts society in diverse ways. Societies’ responses have been correspondingly diverse. Taken together these responses constitute a space weather “enterprise”, which has developed over time and continues to develop. Technological systems that space-weather affects have grown from isolated telegraph systems in the 1840s to ocean and continent-spanning cable communications systems, from a generator electrifying a few city blocks in the 1880s to continent-spanning networks of high-tension lines, from wireless telegraphy in the 1890s to globe-spanning communication by radio and satellites. To have a name for the global totality of technological systems that are vulnerable to space weather, I suggest calling it the cyberelectrosphere. When the cyberelectrosphere was young, scientists who study space weather, engineers who design systems that space weather affects, and operators of such systems — the personnel behind the space-weather enterprise — were relatively isolated. The space-weather enterprise was correspondingly incoherent. Now that the cyberelectrosphere has become pervasive and indispensable to most segments of society, the space weather enterprise has become systematic and coherent. At present it has achieved considerable momentum, but it has barely begun to realize the level of effectiveness to which it can aspire, as evidenced by achievements of a corresponding but more mature enterprise in meteorology, a field which provides useful lessons. The space-weather enterprise will enter a new phase after it matures roughly to where the tropospheric weather enterprise is now. Then it will become indispensable for humankind's further global networking through technology and for humankind's further utilization of and expansion into space.  相似文献   

7.
《Continental Shelf Research》2006,26(17-18):2319-2334
Instrumented bottom tripods have provided important data on sediment transport processes on continental shelves and in estuaries for four decades. Since the initial deployment in a tidal channel in Puget Sound, WA, in 1965 numerous tripods have been constructed to investigate bottom boundary layer and sediment dynamics worldwide. Tripod data have led to new understanding of near-bottom wave and current flows in the coastal ocean, and have been crucial to the development of shelf circulation and sediment transport models. Calculations of bottom stress, bottom roughness, and sediment flux that resulted directly from tripod data have been compared to bottom boundary layer model results. Where these have differed, new or revised model components have been developed to improve the skill of the models. The many discoveries that have been made from tripod experiments include dense, near-bottom fluid mud layers that transport large quantities of suspended sediment offshore into deeper regions of the continental shelf. This process has been linked to the seaward progradation of subaqueous deltas and to the boundaries of mid-shelf mud deposits off rivers with high fine-sediment discharge.  相似文献   

8.
Precursory seismic quiescence: Past,present, and future   总被引:4,自引:0,他引:4  
Precursory seismic quiescence has played a major role in most of the succesful earthquake predictions made to date. In addition to these successes, the number of detailed post-mainshock documentations of precursory quiescence is steadily growing. These facts suggest that precursory quiescence will play an important role in earthquake prediction programs of the future. For this reason it is important to critically evaluate the present state of knowledge concerning this phenomenon. The history of observations of precursory seismic quiescence includes work on seismic gaps and seismic preconditions as well as actual studies of temporal quiescence. These papers demonstrated the importance of quantitative evaluation of seismicity rates and the benefits of systematic analysis. During the early 1980's the impact of man-made effects on seismicity rates was demonstrated for the first time. Despite progress in catalog understanding, the identification and correction of man-made seismicity changes remains as the major barrier to earthquake prediction using these data. Effects of man-made changes are apparent in many past studies of seismicity patterns, making the results difficult to evaluate. Recent experience with real-time anomalies has demonstrated the necessity of determining the false alarm rates associated with quiescence precursors. Determination of false alarm rates depends on quantitative definitions of anomalies and statistical evaluations of their significance. A number of successful predictions, which have been made on the basis of seismic quiescence, provide important lessons for present and future work. There are many presently unanswered questions regarding seismic quiescence which must be answered before we can determine the reliability of this phenomena as a precursor.  相似文献   

9.
10.
11.
12.
13.
14.
Long-term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land-use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long-term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid-western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N-saturation, and acid deposition. Hydro-climatologic and water quality datasets from long-term measurements and data from short-duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long-term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.  相似文献   

15.
16.
The manner in which small channels are generated, from plane beds beneath sheet flows, has been experimentally elucidated. On plane, erodible, sand beds, the transition from thin, supercritical sheet flows to the channelled condition was studied over ranges of discharge, slope, and temperature. Secondary flow of the second kind, its action facilitated by steep vertical velocity gradients in the primary flows, caused sheet-flow instability. Along junctions between neighbouring secondary cells, both either raised or lowered elements of the primary flow. In the latter case, fast surface water was lowered to the bed, causing relatively intense, local, longitudinal scour. Dislodged grains were moved divergently to either side, leaving straight, central trenches. Development of positive feedback between cells and trenches led to rapid enlargement of the latter and concomitant growth of paired levees. The resulting structures, ‘protochannels’, were themselves ephemeral, developing two types of instability associated with secondary flow of the first kind. Firstly, small deviations from bilateral symmetry were enhanced, causing evolution into meandering channels. Secondly, headcutting led to multiple tributary development and, at resulting confluences, the action of strong pairs of secondary cells led to the development of braiding channels. Because they are shortlived, protochannels are but rarely seen in nature. Their seeding is markedly temperature-sensitive, reflecting their frictional origin. The erosive power of shallow overland flow largely depends on flow-energy concentration by secondary flow, firstly into channels, then within the channels themselves. Suppression of secondary flow, as by intense raindrop bombardment, can stabilize sheet flows. In deeper water, the effects of secondary flow appear relatively less dramatic. However, even if such motion is weak, bedload divergence from attachment lines can favour entrainment locally and thus affect bed geometry. Analogy between our results and river behaviour appears close and. on continental shelves where water must often flow as sheets, structures resembling giant protochannels evidently persist.  相似文献   

17.
ABSTRACT

This paper presents a discussion of some of the issues associated with the multiple sources of uncertainty and non-stationarity in the analysis and modelling of hydrological systems. Different forms of aleatory, epistemic, semantic, and ontological uncertainty are defined. The potential for epistemic uncertainties to induce disinformation in calibration data and arbitrary non-stationarities in model error characteristics, and surprises in predicting the future, are discussed in the context of other forms of non-stationarity. It is suggested that a condition tree is used to be explicit about the assumptions that underlie any assessment of uncertainty. This also provides an audit trail for providing evidence to decision makers.
Editor D. Koutsoyiannis; Associate editor S. Weijs  相似文献   

18.
Refractive flow and treatment (RFT) systems are designed for passive or low-maintenance in situ ground water remediation for rock or soil of low to moderate permeability. An RFT system captures and refracts contaminated ground water and conveys it to an in situ permeable treatment zone without the need for pumping. Flow to the treatment zone is through one or more high-permeability collection cells, and flow from the treatment zone back into the adjacent native media is through one or more high-permeability dispersal cells.
Conceptual, analytical, and numerical modeling demonstrates the potential for RFT systems to be successful. Analytical modeling shows that the most important factor for this success is that RFT system components be engineered to have comparatively high hydraulic conductivities. A numerical model, capable of representing site-specific conditions, is required for actual RFT system design.  相似文献   

19.
L.J. Bren   《Journal of Hydrology》1993,150(2-4):277-299
In the last two decades, the effects of forest management on streams, riparian zones, and floodplains have become of much interest. In general, there is agreement that such areas should be maintained in a state approximating naturalness, although it is recognised that definition of this state is usually difficult or impossible. A diversity of management effects has been recognised and, in some cases quantified. For upland catchments, issues particularly relate to direct disturbance of the zone, changes in the flow of woody debris into the stream, or disturbance to the environment by effects generated upstream or downstream. For many areas, a particularly important commercial aspect is the definition of a ‘stream’, as this can impose many expensive and severe restrictions on management of the land. For large rivers, a common issue is the effect of river management on flooding forests. In each case, the issues are complex, information is difficult to collect, and there are fundamental difficulties in going from anecdotal observation to data. Currently, most information appears to be at a relatively local level, and there is a very inadequate knowledge base to give a more holistic overview, although the concept of ‘cumulative effects’, with the effects accumulated over both space and time, has much potential value. There are many opportunities for work in this field.  相似文献   

20.
After briefly reviewing the observational data on the stratospheric sulfate aerosol layer, the chemical and physical processes that are likely to fix the properties of the layer are discussed. We present appropriate continuity equations for aerosol particles, and show how to solve the equations on a digital computer. Simulations of the unperturbed aerosol layer by various published models are discussed and the sensitivity of layer characteristics to variations in several aerosol model parameters is studied. We discuss model applications to anthropogenic pollution problems and demonstrate that moderate levels of aerospace activity (supersonic transport and space shuttle operations) will probably have only a negligible effect on global climate. Finally, we evaluate the possible climatic effect of a ten-fold increase in the atmospheric abundance of carbonyl sulfide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号