首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
At present, there is no direct evidence of rocks predating the late Paleocene opening of the Norwegian-Greenland Sea on the Jan Mayen Ridge. A review of the available geophysical data, DSDP drilling results and plate tectonic reconstructions convincingly indicates a continental nature of the northern part of the ridge. On the other hand, there is still considerable uncertainty about the southern part of the ridge and its possible continuation towards Iceland. Two reflectors, A and O , have been mapped regionally. A appears to reflect an unconformity of middle Oligocene age. Most investigators have indicated that O forms a late Paleocene rift unconformity associated with the opening of the Norwegian-Greenland Sea. By analogy with the North Sea and the continental margin off Norway we propose that it should be investigated whether this reflector might be older, relating to an earlier Mesozoic regime of tension.  相似文献   

2.
Analysis of the wood anatomy of 481 driftwood specimens from Jan Mayen shows that Larix spp. constitute approximately 70% of the trees, while sawn logs are dominated by Pinus spp. by approximately 69%. A total of 356 driftwood samples from Jan Mayen and a small number of samples from Bjørnøya in the Barents Sea and the Troynoy Island in the Kara Sea were analysed by dendrochronological methods. A driftwood Pinus chronology was dated absolutely using chronologies from living trees of Pinus sylvestris in the lower proximity of the Angara River, a tributary of the Yenisey in Siberia. About 27% of the pine logs measured on Jan Mayen were found to originate in the same region, with end years concentrated in the 1940s and 1950s. A similar source was also found for Pinus driftwood logs on Bjørnøya and Troynoy. The results confirm and further delimit the source areas of the Yenisey driftwood established earlier from driftwood logs on Svalbard and Iceland. A subordinate source of both Pinus and Picea logs on Jan Mayen is northwest Russia, from the Kola Peninsula to the Pechora River. The Transpolar Drift Stream is believed to be the main distributor of driftwood from Siberian and northwest Russian sources to Jan Mayen, via the East Greenland Current. Dendrochronological dating reveals a strong, continuous input of ice-rafted driftwood from the Kara Sea. Radiocarbon datings from Jan Mayen show surface deposits of driftwood to be less than 500 years old, due mainly to extensive degradation of older wood and little or no land uplift.  相似文献   

3.
Expanding spread profile at the northern Jan Mayen Ridge   总被引:1,自引:0,他引:1  
An expanding spread seismic profile at the central northern Jan Mayen Ridge, ESP-5, has yielded a crustal seismic velocity distribution which is similar to observations from the thinned continental crust at the Norwegian continental margin. The profile reveals a post-early Eocene sedimentary sequence, about 1. 5 km thick, overlying 1 km of volcanic extrusives and interbedded sediments. Below, there are about 3 km of pre-opening sediments above the seismic basement. The results indicate that the main ridge block is underlain by a thinned crust, possibly only 13.5 km thick. The results are compatible with a continental nature for the main ridge complex.  相似文献   

4.
A thorough literature review has been undertaken to establish the first complete account of polychaetes recorded from the area around the volcanic island of Jan Mayen. The annotated checklist lists 121 species-level taxa, representing an increase from the 75 species previously recorded. The checklist is based on existing records, supplemented with material sampled in 1999, from which 42 species new to the area were reported. Some previously reported species from the area have been excluded because of inadequate documentation. The polychaete fauna of Jan Mayen is comparable with that of the mainland Norwegian coast and the Svalbard area. No taxa unique to the island were found. However, knowledge of the marine invertebrate fauna in general at Jan Mayen is sparse because few surveys have been undertaken there. It is expected that future expeditions will reveal further new taxon records for the area.  相似文献   

5.
The oldest rocks outcropping in northwest Iceland are ∼16 Myr old and in east Iceland ∼13 Myr. The full plate spreading rate in this region during the Cenozoic has been ∼2 cm a−1, and thus these rocks are expected to be separated by ∼290 km. They are, however, ∼500 km apart. The conclusion is inescapable that an expanse of older crust ∼210 km wide underlies Iceland, submerged beneath younger lavas. This conclusion is independent of any considerations regarding spreading ridge migrations, jumps, the simultaneous existence of multiple active ridges, three-dimensionality, or subsidence of the lava pile. Such complexities bear on the distribution and age of the older crust, but not on its existence or its width. If it is entirely oceanic its maximum age is most likely 26–37 Ma. It is at least 150 km in north–south extent, but may taper and extend beneath south Iceland. Part of it might be continental—a southerly extension of the Jan Mayen microcontinent. This older crust contributes significantly to crustal thickness beneath Iceland and the ∼40 km local thickness measured seismically is thus probably an overestimate of present-day steady-state crustal production at Iceland.  相似文献   

6.
Proterozoic metasupracrustal rocks form a NNW-SSE trending basement zone along the western coast of Spitsbergen. The rocks show complex structures as a result of both Caledonian and Tertiary deformation, and most of the subordinate metaigneous rocks are not suitable for isotopic age determination. Some zircon-bearing rocks were found in the southwestern part of Spitsbergen and an attempt of U-Pb dating was performed.
U-Pb dating was carried out on zircon fractions from quartz porphyry and rhyolite clasts in a metaconglomerate unit of the Pyttholmen Formation northwest of Hornsund, southwestern Spitsbergen. The Pyttholmen Formation is considered to be a lateral equivalent of the upper part of the Gulliksenfjellet quartzite and in the same time as the upper part of the Skålfjellet metavolcanites. Therefore, the obtained ages are applicable to the age of the Skålfjellet igneous activities. Some of the dated samples are strongly schistose and their magmatic origin is difficult to confirm; the interpretation of the isotopic results is not well constrained; however, some explanations are possible which refer to the known geological conditions; an igneous age of siliceous volcanic rocks of ca. 1200 Ma, inherited zircon ages of ca. 2500 Ma and a regional metamorphic age of ca. 930 Ma. The last age belongs to the Grenvillian period and is conformable with the Rb/Sr whole rock age obtained from the garnet-biotite schists of the Isbjernhamna Group underlying the Skålfjellet metavolcanites.  相似文献   

7.
The spatial distribution of heat and freshwater content and potential energy of a several hundred metre thick surface layer are computed for the Nordic seas and adjacent parts of the northern North Atlantic and the Arctic Ocean using a total of almost 100 000 hydrographic stations. The fields clearly show the major features of the area's circulation, with warm salty water in the eastern part and fresher, colder water in the western part. Comparisons with published estimates show that the potential energy field, representing the baroclinic part of the flow, accounts for about 30 % of the total flow but roughly 100 % of the flow of Polar Water in the northern part of the East Greenland Current, about 50 % of the total flow in the Norwegian Atlantic Current, and just a small fraction of the flow in the eastern part of Fram Strait. This suggests that the barotropic circulation is quite important in many parts of the Nordic seas. The barotropic circulation is also clearly seen by its effects on the integrated fields with isolines following deep bathymetric contours. We speculate that the barotropic circulation in combination with topographic obstacles, like the Greenland–Scotland Ridge and the ridge system in the Jan Mayen area, may have large impact on the spreading of freshwater and heat in the Nordic seas.  相似文献   

8.
基于1973—2015年间的全球综合无线电探空资料(IGRA),采用总体理查逊数(Bulk Richardson Number)方法,分析了北极扬马延岛43年间的大气边界层高度变化特征,并对其多年月均大气边界层高度变化以及年均大气边界层高度变化进行深入分析探讨。结果显示,扬马延岛白天对流边界层高度高于夜晚稳定边界层高度,夏季多年月均大气边界层高度远低于冬春季节的高度,夏季平均高度仅为262 m,而冬春季节高度在600 m附近。大气边界层高度的变化与地面相对湿度的变化呈现较好的反相关关系。由于受到墨西哥湾暖流的影响,岛屿全年温差较小,夏季的相对湿度较大,导致潜热通量较多,抑制了边界层内的对流过程,造成夏季大气边界层高度较低。此外,其年均高度在1973—1988年间出现波动下降,而后在1988—1995年快速上升,最后于1995—2015年间变化平稳。  相似文献   

9.
Summary. In this paper we present palaeomagnetic data from 87 hand samples collected in a sequence of tuffs and shales (Surf Formation) of Llanvirnian age, exposed in north-western Argentina (27° 47' S, 68° 06' W). After cleaning, the majority of samples showed reversed polarity and yielded a palaeomagnetic pole at 5.9° E, 8.5° S (α95= 5.9°). They also showed reversals of declination and inclination at the top of the sequence, which we have associated with geomagnetic excursions. Whole rock K—Ar age de-terminations suggest an age older than 416 ± 25 Myr for the Suri rocks. The predominant reversed stable remanence of these rocks is consistent with the reversed polarity reported for Early Llanvirnian rocks from USSR. The palaeomagnetic pole for the Suri Formation is consistent with the interpretation that Gondwana was a single unit in Early Palaeozoic times.
Palaeomagnetic data from 27 hand samples collected from 10 igneous units of Late Silurian—Early Devonian age (Ñuñorco Formation), exposed in the same area, are also given. The majority of the igneous units showed reversed polarity after cleaning. The positions of VGP's for the Ñuñorco igneous units are scattered and they are not used for geodynamic interpretations. Whole rock K—Ar age determinations suggest ages of 416 ± 25 and 360 ± 10 Myr for two igneous units of the Ñuñorco Formation.  相似文献   

10.
Jan Mayen is a small (373 km2) remote island in the Norwegian Sea. One third of it is covered by glaciers, all located on the Beerenberg volcano. There have been at least two Holocene periods of glacier expansion at Jan Mayen. The first may have taken place around 2500 B.P. Some glaciers had their maximum extent during the second period, around 1850 A.D. They have subsequently shown an oscillating retreat, with marked expansion around 1910, and with a minimum extent around 1950. Many glaciers advanced again around 1960. The advance of Sørbreen probably culminated around 1965. The climate appears to have been more arctic-continental than today during these two periods of glacier advances, caused by expanded pack ice cover in the East Greenland current and strong influence from the Greenland-Arctic high pressure area. The interplay between the high pressure area and the low pressure tracks in the North Atlantic Ocean determines the climate over the north-western part of the Atlantic, and this results in parallel climate and glacier variations within this region. We conclude, contrary to previous reports, that the advances of the glaciers around 1960 were caused by reduced summer temperatures and ablation, and not by increased precipitation.  相似文献   

11.
Sparse stations and serious measuring problems hamper analyses of climatic conditions in the Arctic. This paper presents a discussion of measuring problems in the Arctic and gives an overview of observed past and projected future climate variations in Svalbard and Jan Mayen. Novel analyses of temperature conditions during precipitation and trends in fractions of solid/liquid precipitation at the Arctic weather stations are also outlined. Analyses based on combined and homogenized series from the regular weather stations in the region indicate that the measured annual precipitation has increased by more than 2.5% per decade since the measurements started in the beginning of the 20th century. The annual temperature has increased in Svalbard and Jan Mayen during the latest decades, but the present level is still lower than in the 1930s. Downscaled scenarios for Svalbard Airport indicate a further increase in temperature and precipitation. Analyses based on observations of precipitation types at the regular weather stations demonstrate that the annual fraction of solid precipitation has decreased at all stations during the latest decades. The reduced fraction of solid precipitation implies that the undercatch of the precipitation gauges is reduced. Consequently, part of the observed increase in the annual precipitation is fictitious and is due to a larger part of the "true" precipitation being caught by the gauges. With continued warming in the region, this virtual increase will be measured in addition to an eventual real increase.  相似文献   

12.
Ekspedisjonen til Østgrønland 1930 blev utsendt for å fortsette det arbeide, som blev påbegynt i 1929 og blev ledet av dosent Adolf Hoel. De øvrige deltagere var: Kommandørkaptein Rolf von Krogh, hydrograf; konservator Paul Løyning, zoolog (havdyr); cand. real. Nils Knaben, zoolog (insekter); preparant E. Siggesson (pattedyr og fugler); cand. mag. Jakob Vaage, botaniker; stud. med. Per Fredrik Scholander, botaniker og læge; konservator Johannes Lid, botaniker, han arbeidet på Jan Mayen; cand. mag. Levi Mikael Rygg, botanisk assistent, Jan Mayen; telegrafist Rudi Einersen, radiotelegrafist; maleren Dagfin Werenskiold; professor i politisk historie ved universitetet i Pavia Vittorio Beonio Brocchieri; geolog ved Norges Svalbard- og Ishavsundersøkelser Anders K. Orvin; Johan Rikardsen, Tromsø, assistent og motorbåtmaskinist; sekretær Johan Kristian Tornøe, assistent; Kristian Nakken og Kristian Ellingsæter, tømmermenn. Dessuten medfulgte som passasjerer: Gustav Lindqvist, fangstmann til A/S Arktisk Næringsdrift, samt Møre Grønlandsekspedisjon, hvis deltagere var: Herman Andresen, Langevåg pr. Ålesund; Jonas Karlsbak, Borgund pr.  相似文献   

13.
Recent interest has focused on whether South Korea may have undergone variable tectonic rotations since the Cretaceous. In an effort to contribute to the answer to this question, we have completed a palaeomagnetic reconnaissance study of Early Cretaceous sedimentary and igneous rocks from the Kyongsang basin in southeast Korea. Stepwise thermal demagnetization isolated well-defined characteristic magnetization in all samples. The palaeomagnetic directions reveal patterns of increasing amounts of clockwise (CW) rotation with increasing age for Aptian rock units. Palaeomagnetic declinations indicate clockwise vertical-axis rotations of R = 34.3° ± 6.9° for the early Aptian rock unit, R = 24.9° ± 10.6° for the middle Aptian, and R = −0.9° ± 11.8° for the late Aptian relative to eastern Asia. The new Cretaceous palaeomagnetic data from this study are consistent with the hypothesis that Korea and other major parts of eastern Asia occupied the same relative positions in terms of palaeolatitudes in the Cretaceous. An analysis of and comparison with previously reported palaeomagnetic data corroborates this hypothesis and suggests that much of Korea may have been connected to the North China Block since the early Palaeozoic. A plausible cause of the rotation is the westward subduction of the Kula plate underneath the Asian continent, which is inferred to have occurred during the Cretaceous according to several geological and tectonic analyses.  相似文献   

14.
Natural Resources Research - Potassium (K)-rich igneous rocks include a variety of silica-undersaturated and alkaline rocks, which distinguished by their elevated K2O contents. These rocks have...  相似文献   

15.
A N-S trending, narrow zone of crystalline basement occurs from Biscayarhalvøya to Holtedahlfonna in northwestern Spitsbergen and is composed of various metasedimentary and igneous rocks, including granites. Previous isotopic age determinations on these rocks are by the K-Ar. Rb-Sr, 40Ar/39Ar and conventional zircon U-Pb method and yielded the Caledonian and Grenvillian ages. The single-grain zircon Pb evaporation method has recently been applied to solve complex problems and this is the first report by the method.
A granitic rock, syntectonically intruded into the phyllitic metasediments of the Biscayarhuken formation, which is the uppermost lithotectonic unit in the metamorphic rocks of the zone, was dated on four zircon grains, yielding a narrow age range from 955 ± 4 to 968 ± 9 Ma in average. This age of ca. 960 Ma is considered to be the age of intrusion, based on the occurrence and zircon morphology, which is roughly simultaneous with the formation of the phyllitic cleavages of the surrounding metasediments. The data obtained imply that the Caledonian events did not reset the Pb isotope system of zircon and major metamorphism occurred during the Grenvillian time in the Biscayarhuken formation, accordingly, the protolith age of the metasediments is Mesoproterozoic.  相似文献   

16.
High-resolution magnetostratigraphic analysis of three sediment cores from the base of the volcanic seamount Vesteris Banken in the Greenland Basin and one core from the Jan Mayen Fracture Zone revealed records of three pronounced geomagnetic events within the last 200 ka. Dating by stable carbon and oxygen isotope analysis, AMS14C measurements and biostratigraphic data (foraminifera abundances) yielded ages of 28–27 ka for the Mono Lake excursion, 37–33 ka for the Laschamp event, and 189–179 ka for the Biwa I event. In at least one of the cores the Laschamp event exhibits a full reversal of the local geomagnetic field vector. The same is true of the Biwa I event, documented in one of the cores.  相似文献   

17.
Data acquired from petroleum exploration well 164/7‐1 drilled in the UK sector of the Rockall Trough have yielded fresh insights into the igneous and thermal history of this frontier region. The well targeted a large four‐way dip closed structure of presumed Mesozoic age named ‘The Dome Prospect’. The structure is now known to have a magmatic, rather than a purely structural origin, which was the preferred pre‐well interpretation. The well encountered 1.2 km of Palaeocene age basaltic lavas, overlying Late Cretaceous mudstones which were intruded by over 70 dolerite sills ranging from <1.5‐ to 152‐m thick. 40Ar/39Ar dating of the dolerite intrusions indicates an Early Palaeocene age (63–64±0.5 Ma), which are among the oldest 40Ar/39Ar dates recognised in the North Atlantic Igneous Province. Radiometric dating of the overlying basaltic lavas proved unsuccessful, because of excessive alteration. Biostratigraphic dating of underlying and overlying sedimentary strata was utilised to constrain the age of the lavas to Late Paleocene to Early Eocene age (~55 Ma). Despite being related to two distinct events separated by ~8 Ma, the intrusives and extrusives are compositionally similar. The basaltic rocks from well 164/7‐1 possess Sr–Nd isotopic, major and trace‐element geochemical compositions similar to other volcanic and intrusive rocks of the British Tertiary Igneous Province and represent partial melts of both lithospheric and asthenospheric mantle associated with the proto‐Icelandic mantle plume head. Joint consideration of thermal maturity, potential fields and 3D seismic data indicate a deeper igneous body in addition to the sills encountered in well 164/7‐1. Jack‐up and arching mechanisms associated with both scales of intrusive body are believed to have developed the dome structure. The preferred interpretation is of a mafic laccolith, 17 km in diameter, ~7 km thick, intruded at 64.5 Ma, situated ~2.5 km below the bottom of the well. 3D thermal modelling suggests that all of Tranche 52 was thermally affected by the intrusion of the magmatic body. The thermal aureole, between 27 and 51 km in diameter, is not thought to play an important role in the hydrocarbon prospectivity of the surrounding Tranches in the NE Rockall Basin. Results show that hydrocarbon exploration prospects that are circular in map view should be interpreted with caution on volcanic continental margins. In sedimentary basins, where salt domes and shale diapirs are absent and igneous rocks prevalent, periclinal structures such as ‘The Dome Prospect’ should undergo a thorough multi‐disciplinary risk assessment.  相似文献   

18.
Summary. Palaeomagnetic data from 71 hand samples of igneous rocks of Late Ordovician age exposed in western Argentina (31.3°S, 69.4°W, Alcaparrosa Formation) are given. Stable remanent magnetization was isolated in the majority of samples; they yield a palaeomagnetic pole at 56°S 33°E ( N = 8, α95= 16°). Whole rock K-Ar age determinations yield an age of 416 ± 10 Myr for a pillow lava of the Alcaparrosa Formation.
Palaeomagnetic data for South America, Africa, Australia, Antarctica and India suggest that Gondwana was a unit at least as far back as 1000 Myr. The palaeomagnetic data define a rapid polar migration for Gondwana in Ordovician time which is consistent with the widespread occurrences of Late Ordovician glacial deposits across this supercontinent.  相似文献   

19.
Five soil cores varying in length from 30 to 42 cm and seven surface samples were analysed for pollen and spores. The soil layers of four cores were probably formed through redeposition of other eroded soils. Only in the Batvika core is the organic fraction of probable local origin, and here a chronology could be established. A total long-distance pollen influx of 14-22.5 grains/cm2/year was calculated. Nearly 2, 000 long-distance pollen grains were counted; the ratios of the dominant pollen types were calculated. Around Batvika the past environment was relatively stable; only one major shift in sedimentation environment is apparent from the diagram. In another diagram, expansion of Taraxacum species could be correlated with anthropogenic soil disturbance. The former presence of Lycopodium alpinum and Selaginella selaginoides on Jan Mayen is indicated by frequent spore finds; the latter species has not been found on the island before. Two unknown spore types are discussed.  相似文献   

20.
Jan Mayen     
Beliggenhet. Omgitt av 2000—3000 meter dypt hav på alle kanter ligger øen Jan Mayen ute i Norskehavet på 71° nordlig bredde og 8° 30′ lengde vest for Greenwich, d. v. s. omtrent på samme bredde som Nordkapp, og samme lengde som Færøyene. Avstanden fra Tromsø er ca. 555 nautiske mil og omtrent samme avstand er det også fra Isfjordmunningen på Spitsbergen. Avstannen til Langanes på Island er 290 og til Liverpoolkysten på Grønland 250 nautiske mil. Til sammenligning kan anføres at fra norskekysten til Bjørnøya er det 230 naut. mil og til Isfjorden 465 naut. mil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号