共查询到20条相似文献,搜索用时 31 毫秒
1.
Peter A.Thomas OrrarujeeMuanwong Scott T.Kay rew R.Liddle 《Monthly notices of the Royal Astronomical Society》2002,330(2):L48-L52
It has become increasingly apparent that traditional hydrodynamical simulations of galaxy clusters are unable to reproduce the observed properties of galaxy clusters, in particular overpredicting the mass corresponding to a given cluster temperature. Such overestimation may lead to systematic errors in results using galaxy clusters as cosmological probes, such as constraints on the density perturbation normalization σ 8 . In this paper we demonstrate that inclusion of additional gas physics, namely radiative cooling and a possible pre-heating of gas prior to cluster formation, is able to bring the temperature–mass relation in the innermost parts of clusters into good agreement with recent determinations by Allen, Schmidt & Fabian using Chandra data. 相似文献
2.
3.
Christopher S. Reynolds † Sebastian Heinz Mitchell C. Begelman 《Monthly notices of the Royal Astronomical Society》2002,332(2):271-282
We present a numerical investigation of dead, or relic, radio galaxies and the environmental impact that radio galaxy activity has on the host galaxy or galaxy cluster. We perform axisymmetric hydrodynamical calculations of light, supersonic, back-to-back jets propagating in a β -model galaxy/cluster atmosphere. We then shut down the jet activity and let the resulting structure evolve passively. The dead source undergoes an initial phase of pressure driven expansion until it achieves pressure equilibrium with its surroundings. Thereafter, buoyancy forces drive the evolution and lead to the formation of two oppositely directed plumes that float high into the galaxy/cluster atmosphere. These plumes entrain a significant amount of low entropy material from the galaxy/cluster core and lift it high into the atmosphere. An important result is that a large fraction (at least half) of the energy injected by the jet activity is thermalized in the interstellar medium (ISM)/intracluster medium (ICM) core. The whole ISM/ICM atmosphere inflates in order to regain hydrostatic equilibrium. This inflation is mediated by an approximately spherical disturbance which propagates into the atmosphere at the sound speed. The fact that such a large fraction of the injected energy is thermalized suggests that radio galaxies may have an important role in the overall energy budget of rich ISM/ICM atmospheres. In particular, they may act as a strong and highly time-dependent source of negative feedback for galaxy/cluster cooling flows. 相似文献
4.
5.
M.Brüggen C. R.Kaiser E.Churazov T. A.Enßlin 《Monthly notices of the Royal Astronomical Society》2002,331(3):545-555
We present three-dimensional hydrodynamical simulations of buoyant gas in a typical cluster environment. In these simulations, hot matter was injected continuously into a small region offset from the cluster centre. In agreement with previous analytic estimates, we found that the bubbles evolve very differently depending on the rate of energy injection. Using tracer particles we computed the efficiency of the bubbles to stir the intracluster medium (ICM) and find that recurrent low-power sources are more effective in mixing the inner cluster region than rarer large outbursts. Moreover, we computed radio maps of the bubbles based on different assumptions about the magnetic field. In the radio band the bubbles closely resemble FR I sources. For the bubbles to be detectable for long enough to account for FR I sources, we found that reacceleration has to take place. The bubbles are generally difficult to detect, both in the radio and in the X-ray band. Thus it is possible to hide a significant amount of energy in the form of bubbles in clusters. 相似文献
6.
Recent observations show that the cooling flows in the central regions of galaxy clusters are highly suppressed. Observed active galactic nuclei (AGN)-induced cavities/bubbles are a leading candidate for suppressing cooling, usually via some form of mechanical heating. At the same time, observed X-ray cavities and synchrotron emission point towards a significant non-thermal particle population. Previous studies have focused on the dynamical effects of cosmic ray pressure support, but none has built successful models in which cosmic ray heating is significant. Here, we investigate a new model of AGN heating, in which the intracluster medium is efficiently heated by cosmic rays, which are injected into the intra-cluster medium (ICM) through diffusion or the shredding of the bubbles by Rayleigh–Taylor or Kelvin–Helmholtz instabilities. We include thermal conduction as well. Using numerical simulations, we show that the cooling catastrophe is efficiently suppressed. The cluster quickly relaxes to a quasi-equilibrium state with a highly reduced accretion rate and temperature and density profiles which match observations. Unlike the conduction-only case, no fine-tuning of the Spitzer conduction suppression factor f is needed. The cosmic ray pressure, P c / P g ≲ 0.1 and ∇ P c ≲ 0.1ρ g , is well within observational bounds. Cosmic ray heating is a very attractive alternative to mechanical heating, and may become particularly compelling if Gamma-ray Large Array Space Telescope ( GLAST ) detects the γ-ray signature of cosmic rays in clusters. 相似文献
7.
S. W. Allen 《Monthly notices of the Royal Astronomical Society》2000,315(2):269-295
We discuss the X-ray properties of the cooling flows in a sample of 30 highly X-ray luminous clusters of galaxies, observed using the ASCA and ROSAT satellites. We demonstrate the need for multiphase models to consistently explain the spectral and imaging X-ray data for the clusters. The mass deposition rates of the cooling flows, independently determined from the ASCA spectra and ROSAT images, exhibit good agreement and exceed 1000 M⊙ yr−1 in the largest systems. We confirm the presence of intrinsic X-ray absorption in the clusters using a variety of spectral models. The measured equivalent hydrogen column densities of absorbing material are sensitive to the spectral models used in the analysis, varying from average values of a few 1020 atom cm−2 for a simple isothermal emission model, to a few 1021 atom cm−2 using our preferred cooling flow models, assuming in each case that the absorber lies in a uniform foreground screen. The true intrinsic column densities are likely to be even higher if the absorbing medium is distributed throughout the clusters. We summarize the constraints on the nature of the X-ray absorber from observations in other wavebands. Much of the X-ray absorption may be caused by dust. 相似文献
8.
9.
F. E. Bauer A. C. Fabian J. S. Sanders S. W. Allen R. M. Johnstone 《Monthly notices of the Royal Astronomical Society》2005,359(4):1481-1490
We present a Chandra study of 38 X-ray-luminous clusters of galaxies in the ROSAT Brightest Cluster Sample (BCS) that lie at moderate redshifts ( z ≈ 0.15–0.4) . Based primarily on power ratios and temperature maps, we find that the majority of clusters at moderate redshift generally have smooth, relaxed morphologies with some evidence for mild substructure perhaps indicative of recent minor merger activity. Using spatially resolved spectral analyses, we find that cool cores appear still to be common at moderate redshift. At a radius of 50 kpc, we find that at least 55 per cent of the clusters in our sample exhibit signs of mild cooling ( t cool < 10 Gyr) , while in the central bin at least 34 per cent demonstrate signs of strong cooling ( t cool < 2 Gyr) . These percentages are nearly identical to those found for luminous, low-redshift clusters of galaxies, indicating that there appears to be little evolution in cluster cores since z ≈ 0.4 and suggesting that heating and cooling mechanisms may already have stabilized by this epoch. Comparing the central cooling times to catalogues of central Hα emission in BCS clusters, we find a strong correspondence between the detection of Hα and central cooling time. We also confirm a strong correlation between the central cooling time and cluster power ratios, indicating that crude morphological measures can be used as a proxy for more rigorous analysis in the face of limited signal-to-noise ratio data. Finally, we find that the central temperatures for our sample typically drop by no more than a factor of ∼3–4 from the peak cluster temperatures, similar to those of many nearby clusters. 相似文献
10.
C. B. Peres A. C. Fabian A. C. Edge S. W. Allen R. M. Johnstone & D. A. White 《Monthly notices of the Royal Astronomical Society》1998,298(2):416-432
This is the first part of a study of the detailed X-ray properties of the cores of nearby clusters. We have used the flux-limited sample of 55 clusters listed by Edge et al., and archival and proprietary data from the ROSAT observatory. In this paper an X-ray spatial analysis based on the surface-brightness-deprojection technique is applied to the clusters in the sample with the aim of studying their cooling flow properties. We determine the fraction of cooling flows in this sample to be 70–90 per cent, and estimate the contribution of the flow region to the cluster X-ray luminosity. We show that the luminosity within a strong cooling flow can account for up to 70 per cent of a cluster X-ray bolometric luminosity. Our analysis indicates that about 40 per cent of the clusters in the sample have flows depositing more than 100 M⊙ yr−1 throughout the cooling region, and that these possibly have been undisturbed for many Gyr, confirming that cooling flows are the natural state of cluster cores. New cooling flows in the sample are presented, and previously ambiguous ones are clarified. We have constructed a catalogue of some intracluster medium properties for the clusters in this sample. The profiles of the mass deposited from cooling flows are analysed, and evidence is presented for the existence of breaks in some of the profiles. Comparison is made to recent optical and radio data. We cross-correlate our sample with the Green Bank, NVSS and FIRST surveys, and with the volume-limited sample of brightest cluster galaxies presented by Lauer &38; Postman. Although weak trends exist, no strong correlation between optical magnitude or radio power of the brightest cluster galaxy and the strength of the flow is found. 相似文献
11.
12.
13.
Radio bubbles in clusters of galaxies 总被引:1,自引:0,他引:1
R. J. H. Dunn A. C. Fabian G. B. Taylor 《Monthly notices of the Royal Astronomical Society》2005,364(4):1343-1353
14.
15.
E. Rizza J. O. Burns M. J. Ledlow F. N. Owen W. Voges & M. Bliton 《Monthly notices of the Royal Astronomical Society》1998,301(2):328-342
We present results from a ROSAT HRI study of 11 distant ( z ∼ 0.2–0.3) Abell clusters. We have performed a morphological analysis to search for and quantify substructure in the clusters. About 70 per cent of the sample shows significant evidence of substructure in the form of centroid shift or obvious X-ray clumps. We examine the clusters for the presence of cooling flows, and determine the physical properties of the ICM by deprojecting the HRI data. Nine of the clusters have central cooling times less than the age of the system, in agreement with fractions determined from nearby, X-ray-bright samples. Additional PSPC results are presented for four clusters in the sample, and ASCA results for six clusters. The temperatures and metallicities for these distant clusters appear to be consistent with nearby clusters of similar richness. 相似文献
16.
17.
We show that repeated sound waves in the intracluster medium (ICM) can be excited by a single inflation episode of an opposite bubble pair. To reproduce this behaviour in numerical simulations, the bubbles should be inflated by jets, rather than being injected artificially as already full-blown bubbles. The multiple sound waves are excited by the motion of the bubble–ICM boundary that is caused by vortices inside the inflated bubbles and the backflow ('cocoon') of the ICM around the bubble. These sound waves form a structure that can account for the ripples observed in the Perseus cooling flow cluster. We inflate the bubbles using slow massive jets either with a very wide opening angle or that are narrow and precessing. The wide jets (or collimated fast winds) are slow in the sense that they are highly subrelativistic, v j ∼ 0.01 c – 0.1 c , and they are massive in the sense that the pair of bubbles carries back to the ICM a large fraction of the cooling mass, i.e. ∼1–50 M⊙ yr−1 . We use a two-dimensional axisymmetric (referred to as 2.5D) hydrodynamical numerical code ( vh-1 ). 相似文献
18.
19.