首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The Heretaunga Plains, Hawke's Bay, New Zealand, is underlain by Quaternary fluvial, estuarine-lagoonal, and marine deposits infilling a subsiding syncline. Within the depositional sequence, river-channel gravels form one of the most important aquifer systems in New Zealand. An interconnected unconfined–confined aquifer system contains groundwater recharged from the Ngaruroro River bed at the inland margin of the plain, 20 km from the coast. At the coast, gravel aquifers extend to a depth of 250 m. In 1994–95, 66 Mm3 of high quality groundwater was abstracted for city and rural water supply, agriculture, industry, and horticulture. Use of groundwater, particularly for irrigation, has increased in the last 5 years. Concern as to the sustainability of the groundwater resource led to a research programme (1991–96). This paper presents the results and recommends specific monitoring and research work to refine the groundwater balance, and define and maintain the sustainable yield of the aquifer system. Three critical management factors are identified. These are (1) to ensure maintenance of consistent, unimpeded groundwater recharge from the Ngaruroro River; (2) to specifically monitor groundwater levels and quality at the margins of the aquifer system, where transmissivity is <5000 m2/d and summer groundwater levels indicate that abstraction exceeds recharge; (3) to review groundwater-quality programs to ensure that areas where contamination vulnerability is identified as being highest are covered by regular monitoring. Received, January 1998 / Revised, August 1998, March 1999 / Accepted, April 1999  相似文献   

2.
Humboldt, Arago, and the temperature of groundwater   总被引:1,自引:0,他引:1  
  相似文献   

3.
地下水可持续开采量与地下水功能评价的关系   总被引:2,自引:0,他引:2  
针对中国北方地下水评价中偏重资源而对地下水的生态功能和地质环境功能重视不足的问题,立足于流域尺度的地下水循环系统和地下水的自然属性,突出协调综合发挥地下水的资源功能、生态功能和地质环境功能的目标,从地下水可持续开采量与地下水功能的理念基础、评价原则和评价机理3个方面探讨二者的内在关联性,认为它们同源于人与自然和谐的理念,都以流域尺度的地下水循环系统为研究主体,以保护生态与地质环境为目标,彼此相互促进和相互支撑。地下水功能评价是合理确定地下水可持续开采量的充分条件,地下水可持续开采量的合理确定是实现地下水功能评价目标的必要条件;如果二者缺一,则地下水的生态功能或地质环境功能难以得到有针对性的保护。  相似文献   

4.
地下水可持续开采量评价的前沿问题   总被引:6,自引:0,他引:6  
地下水可持续开采量是允许开采量发展的必然,与允许开采量不同,地下水可持续开采量突出了环境因素,同时强调了地下水资源的可更新和可持续利用性.地下水可持续开采量评价是实现地下水可持续利用的前提.本文在综合调研基础上,探讨了地下水可持续开采量的内涵与特点,分别从地下水更新能力、环境需水、动态性等方面,综述了目前国内外实现地下水可持续开采量评价的前沿问题及发展动态.  相似文献   

5.
6.
There is currently a need for a review of the definition and methodology of determining sustainable yield. The reasons are: (1) current definitions and concepts are ambiguous and non-physically based so cannot be used for quantitative application, (2) there is a need to eliminate varying interpretations and misinterpretations and provide a sound basis for application, (3) the notion that all groundwater systems either are or can be made to be sustainable is invalid, (4) often there are an excessive number of factors bound up in the definition that are not easily quantifiable, (5) there is often confusion between production facility optimal yield and basin sustainable yield, (6) in many semi-arid and arid environments groundwater systems cannot be sensibly developed using a sustained yield policy particularly where ecological constraints are applied. Derivation of sustainable yield using conservation of mass principles leads to expressions for basin sustainable, partial (non-sustainable) mining and total (non-sustainable) mining yields that can be readily determined using numerical modelling methods and selected on the basis of applied constraints. For some cases there has to be recognition that the groundwater resource is not renewable and its use cannot therefore be sustainable. In these cases, its destiny should be the best equitable use.
Donald R. WoolleyEmail:
  相似文献   

7.
Sustainable development and groundwater resources exploitation   总被引:1,自引:0,他引:1  
 In evaluating groundwater development both the positive and negative effects must be considered; otherwise biased conclusions may be reached. Only with equal concern for the needs of present and future generations, fair exchange of technology between countries and user involvement can sustainable groundwater development be achieved. Examination of the use of the term aquifer overexploitation shows that there is no agreement on a single definition. In most cases it relates to the overuse of aquifers, but in other cases it is a planned overuse. In Spain, overexploitation is dealt with in the water act and implemented by the regulations that enforce that act. Experience has shown that without the cooperation of the water users themselves, good results are not obtained. Relevant education is urgently needed for the public and those decision makers responsible for determining the correct use of groundwater resources for the present and future generations. Received: July 1997 · Accepted: 15 September 1997  相似文献   

8.
 The Dawu well field, one of the largest in China, supplies most of the water for the Zibo City urban area in Shandong Province. The field yields 522,400–535,400 m3/d from an aquifer in fractured karstic Middle Ordovician carbonate rocks. Much of the recharge to the aquifer is leakage of surface water from Zihe Stream, the major drainage in the area. Installation of the Taihe Reservoir in 1972 severely reduced the downstream flow in Zihe Stream, resulting in a marked reduction in the water table in the Dawu field. Since 1994, following the installation of a recharge station on Zihe Stream upstream from the well field that injects water from the Taihe Reservoir into the stream, the groundwater resources of the field have recovered. An average of 61.2×103 m3/d of groundwater, mostly from the Ordovician aquifer, is pumped from the Heiwang iron mine, an open pit in the bed of Zihe Stream below the Taihe Reservoir. A stepwise regression equation, used to evaluate the role of discharge from the reservoir into the stream, confirms that reservoir water is one of the major sources of groundwater in the mine. Received, May 1998 / Revised, May 1999 / Accepted, June 1999  相似文献   

9.
Hydrogeology and sustainable agriculture   总被引:3,自引:0,他引:3  
 The world's population continues to grow and to require more and more food. Attempts by modern high output agriculture to meet this need have led to serious environmental problems. A more sustainable balance is now required and is being sought in a variety of ways. Hydrogeologists should continue to highlight the threat posed by agriculture to groundwater, particularly since groundwater is a hidden resource and its degradation and rehabilitation often take place slowly. But the time has come for groundwater specialists to go further and become actively involved in helping to provide practical and sustainable solutions. The agriculture of the future requires a holistic approach which balances the essential economics of food production with equally valid environmental needs, including those of groundwater. Such an approach demands cross-sectoral collaboration involving multidisciplinary research and action within an integrated policy framework. This paper reviews the current groundwater/agriculture interface and some of the attempts being made to achieve a more truly sustainable agriculture with particular emphasis on European experience. It aims to stimulate greater interest and involvement by hydrogeologists in helping to bring about realistic solutions that will enable future generations to enjoy adequate good quality food and water. Received: 9 August 1996 / Accepted: 11 November 1996  相似文献   

10.
 Spain is a relatively large European country (ca. 500,000 km2) with extensive semiarid areas in which there exists a large number of good aquifers. In some areas, these aquifers are intensively developed and are the most important sources of fresh water. Nevertheless, groundwater development and protection has rarely been duly considered by the Spanish Water Administration, despite the pressure to remedy this situation by various groups of experts, some of them members of the Water Administration. The Spanish Committee of the International Association of Hydrogeologists (IAH) has been very active during the last decade in promoting activities to spread groundwater science, technology, and management in Spain and outside, mostly in Latin America, and in trying to orient water policy toward issues of groundwater. These activities include mainly the organization of technical and scientific meetings on current topics such as groundwater in the new Water Act, overexploitation, groundwater in water-resources planning, groundwater pollution, natural-recharge estimation and others. The impact of these activities on the recent water policy of Spain seems significant, and the experience gained may be applicable to other countries. Received, February 1997 · Revised, July 1997 · Accepted, July 1997  相似文献   

11.
 The total amount of groundwater resources in the middle and upper Odra River basin is 5200×103 m3/d, or about 7.7% of the disposable groundwater resources of Poland. The average modulus of groundwater resources is about 1.4 L/s/km2. Of the 180 'Major Groundwater Basins' (MGWB) in Poland, 43 are partly or totally located within the study area. The MGWB in southwestern Poland have an average modulus of groundwater resources about 2.28 L/s/km2 and thus have abundant water resources in comparison to MGWB from other parts of the country. Several types of mineral waters occur in the middle and upper Odra River basin. These waters are concentrated especially in the Sudety Mountains. Carbon-dioxide waters, with yields of 414 m3/h, are the most widespread of Sudetic mineral waters. The fresh waters of the crystalline basement have a low mineralization, commonly less than 100 mg/L; they are a HCO3–Ca–Mg or SO4–Ca–Mg type of water. Various hydrochemical compositions characterize the groundwater in sedimentary rocks. The shallow aquifers are under risk of atmospheric pollution and anthropogenic effects. To prevent the degradation of groundwater resources in the middle and upper Odra River basin, Critical Protection Areas have been designated within the MGWB. Received, January 1995 Revised, May 1996, August 1997 Accepted, August 1997  相似文献   

12.
Geomorphic aspects of groundwater flow   总被引:3,自引:0,他引:3  
 The many roles that groundwater plays in landscape evolution are becoming more widely appreciated. In this overview, three major categories of groundwater processes and resulting landforms are considered: (1) Dissolution creates various karst geometries, mainly in carbonate rocks, in response to conditions of recharge, geologic setting, lithology, and groundwater circulation. Denudation and cave formation rates can be estimated from kinetic and hydraulic parameters. (2) Groundwater weathering generates regoliths of residual alteration products at weathering fronts, and subsequent exhumation exposes corestones, flared slopes, balanced rocks, domed inselbergs, and etchplains of regional importance. Groundwater relocation of dissolved salts creates duricrusts of various compositions, which become landforms. (3) Soil and rock erosion by groundwater processes include piping, seepage erosion, and sapping, important agents in slope retreat and headward gully migration. Thresholds and limits are important in many chemical and mechanical groundwater actions. A quantitative, morphometric approach to groundwater landforms and processes is exemplified by selected studies in carbonate and clastic terrains of ancient and recent origins. Received, May 1998 · Revised, September 1998 · Accepted, October 1998  相似文献   

13.
Relation of streams, lakes, and wetlands to groundwater flow systems   总被引:24,自引:10,他引:14  
 Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Received, April 1998 · Revised, July 1998, August 1998 · Accepted, September 1998  相似文献   

14.
On the basis of the isotopic composition of water in the northern part of Epirus, Greece, from springs at different altitudes with well-defined recharge areas, the altitude effect on the δ18O value of groundwater is –0.142±0.003ö (100?m)–1 and is uniform over the entire study area. Using the δ18O composition of surface water and groundwaters, the contribution of Ioannina Lake and the channel draining the lake water to the Kalamas River to the recharge of springs and boreholes was confirmed and quantitatively defined. In contrast, the Voidomatis and Vikos Rivers are not sources for recharge of the big springs along their banks. However, water from the Aoos River does replenish the aquifer in the unconsolidated deposits underlying the plain of Konitsa. In addition, limestones of Senonian–Late Eocene ages, dolomites, and limestones of the "Vigles" facies are hydraulically interconnected, and the limestones of the "Pantokrator" facies are hydraulically isolated from the other carbonate formations.  相似文献   

15.
 Drilling of 15 boreholes at a disused liquid waste disposal site near Perth, Western Australia, has indicated that a contamination plume extends about 1000 m in a southerly direction from the site in the direction of groundwater flow. The plume is up to 600 m wide and 5–40 m thick. Chemical and microbiological analyses have indicated that contaminated groundwater contains high concentrations of ammonia, iron, and bacteria at levels that commonly exceed national drinking water guidelines. It is likely that a proposed water supply production well in the path of the contamination plume will have to be abandoned, and additional wells may have to be abandoned if the plume continues to extend in the direction of groundwater flow. There is currently insufficient information to indicate whether the plume is continuing to expand, but studies on similar plumes in the Perth metropolitan area have indicated that contaminated groundwater can move at rates up to 100 m yr–1. Several other liquid waste disposal sites are now located in residential areas of Perth where wells are used for garden irrigation. Further work is required to ensure that there is no potential impact of groundwater contamination on public health in these areas. Received: 31 July 1995 · Accepted: 18 September 1995  相似文献   

16.
 A method for general assessment of groundwater vulnerability was developed using the concept of hydrogeological settings by which a small-scale landscape can be represented by larger units on the map. For accidental spills, the time available for remedial actions is crucial. Travel times to the saturated zone or to a depth of 5 m are classified in four intervals, ranging from <1 day to > 1 yr. Total particle surface available for retention of pollutants in the unsaturated zone is used as a semi-quantitative indicator of vulnerability in a long-term perspective. This indicator is classified into four intervals, ranging from <1×106 m2/m2 to >25×106 m2/m2. The quality of the surfaces is not assessed. However, the absence of an intact soil profile is estimated to result in an increase in vulnerability by one class. Application of the methodology was demonstrated in an area south of Stockholm, Sweden. The digital geological map was processed using GIS to delineate four defined hydrogeological settings and vulnerability classes. Compared with an existing vulnerability map based on stratigraphic zoning, the hydrogeological settings allow a site to be interpreted in its hydrogeological context, and the use of quantitative vulnerability indicators increase the usefulness in practical planning and management. Received, June 1997 · Revised, February 1998 · Accepted, April 1998  相似文献   

17.
 Flow of groundwater with variable density and viscosity was simulated at the Atikokan Research Area (ARA) in northwestern Ontario, Canada. An empirical viscosity–concentration equation was modified to include total-dissolved-solids (TDS) data from the ARA. The resulting equation was used successfully to estimate reasonably accurate viscosity values over the expected range of temperature and concentration, in comparison with experimental values derived for sodium chloride solutions. A three-dimensional finite-element code, MOTIF, developed by Atomic Energy of Canada Limited, was used in the simulations. The inclusion of the effects of depth-increasing temperature and TDS-dependent fluid-density distribution, while maintaining only a temperature-dependent viscosity relationship in a simulation, resulted in a more penetrative flow against expected buoyancy effects (i.e., the physics of the system was not honored). Accounting for concentration in the viscosity equation caused water to be less penetrative and more in accordance with the expected physics of the system. A conclusion is that fluid concentration should be considered simultaneously in calculating the density and viscosity of a fluid during modeling of variable-density flow in areas underlain by fluids with high TDS. Results of simulations suggest that both flow directions and magnitudes should be employed simultaneously during the calibration of a model. Large-scale groundwater movement in the ARA may be analyzed with carefully selected vertical no-flow boundaries. By incorporating the geothermal temperature gradient, groundwater recharge increases by 12%; thus, this gradient plays a significant role in groundwater flow at the ARA. Variability in the fluid concentration at the ARA neither decreases nor increases recharge into the groundwater system. The hypothesis that an isolated continuous regional flow system may exist at depth in the ARA is not supported by these simulations. Received, September 1996 Revised, September 1997, February 1998 Accepted, February 1998  相似文献   

18.
 A complex method for assessing the ecological state of groundwater by using indicators and indexes of underground hydrosphere sustainable development, and of characterizing its quality, is given for an oil field. The concept of forming indicators and indexes of sustainable development has been elaborated for this purpose. When forming a structure of environment indicators, the developments of the European Organization for Economic Co-operation and Development (OECD) in this sphere were considered. New indicators are given and a structure of indexes quantitatively characterizing them is worked out. Indexes can be simple, complex, muldidisciplinary and inter-multidisciplinary by their structure. By their essence indexes are subdivided into five classes: indexes of quality, damage, interaction, hydrogeochemical and dynamic ones. The ecological state of groundwater is assessed by the following categories of sustainability: sustainable, slightly unsustainable, medium unsustainable, unsustainable, highly unsustainable, catastrophically unsustainable. Received: 23 November 1998 · Accepted: 14 September 1999  相似文献   

19.
 Due to rapid economic growth in the Pingtung Plain of Taiwan, the use of groundwater resources has changed dramatically. Over-pumping of the groundwater reservoir, which lowers hydraulic heads in the aquifers, is not only affecting the coastal area negatively but has serious consequences for agriculture throughout the plain. In order to determine the safe yield of the aquifer underlying the plain, a reliable estimate of groundwater recharge is desirable. In the present study, for the first time, the chloride mass-balance method is adopted to estimate groundwater recharge in the plain. Four sites in the central part were chosen to facilitate the estimations using the ion-chromatograph and Thiessen polygon-weighting methods. Based on the measured and calculated results, in all sites, including the mountain and river boundaries, recharge to the groundwater is probably 15% of the annual rainfall, excluding recharge from additional irrigation water. This information can improve the accuracy of future groundwater-simulation and management models in the plain. Received, April 1996 Revised, March 1997, November 1997 Accepted, March 1998  相似文献   

20.
 This paper demonstrates that both cation exchange, a commonly invoked mechanism, and silicate hydrolysis, which is less commonly considered, can produce Na-HCO3-type water in sedimentary rocks. Evolution of Na-HCO3 groundwater beneath the Oak Ridge Reservation, Tennessee, USA, was studied by comparing observed end-member groundwater composition from multiport samplers to compositions generated by reaction-path geochemical models. Observed groundwater compositions could be reproduced by either the silicate-hydrolysis model or the cation-exchange model. Secondary minerals precipitated in the silicate-hydrolysis model are similar to those present along fractures in the shale and carbonate host rocks, and observed molar Sr2+/Ca2+ ratios more closely resemble evolution from shale weathering. Both mechanisms should be considered to understand the evolution of Na-HCO3 groundwater. Received, April 1998 · Revised, January 1999 · Accepted, March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号