共查询到9条相似文献,搜索用时 5 毫秒
1.
G. Bouckovalas A. Anagnostopoulos A. Kapenis T. Karantoni 《Geotechnical and Geological Engineering》1996,14(2):111-128
Summary On 26 March, 1993, a moderate magnitude earthquake (M
s=5.5) occurred at 3 km epicentral distance from the town of Pyrgos, in Southern Greece, causing extensive damage to masonry houses. To explain the variability of seismic intensity over the town and to propose measures against future seismic activity, a microzonation study was undertaken which combined geological, geophysical and geotechnical investigations, site specific analyses of seismic ground response and detailed recording of structural damage. The analytical predictions of ground response are correlated to soil conditions and then used to identify (micro-)zones of sites with similar seismic response. Furthermore, they are compared to quantitative estimates of damage distribution over the town. It is concluded that the peak ground acceleration, normalized against the input peak seismic acceleration, is a function of the local soil conditions as well as the seismic excitation characteristics. Hence, it cannot be defined uniquely at a site, without reference to the seismic excitation. However, the normalized peak ground velocity and the acceleration response spectra are mainly functions of the soil conditions and can be used as criteria for the practical definition of (micro-)zones. The distribution of damage in various parts of the town is at least partially attributable to local soil effects. The small epicentral distance of the earthquake, connected with the direction of the fault rupture, as well as the quality and techniques of construction, are additional factors that may have influenced the extent and distribution of damage. 相似文献
2.
The Bovec basin, which is filled with glacial and fluvial sediments, has recently been struck by two strong earthquakes (1998 and 2004) which caused extensive damage (VII–VIII EMS-98). Strong site effects resulted in large variations in damage to buildings in the area, which could not be explained by the surface variations in Quaternary sediments. The microtremor horizontal-to-vertical-spectral ratio (HVRS) method was therefore applied to a 200 m dense grid of free-field measurements to assess the fundamental frequency of the sediments. Large variations in the sediment frequency (3–22 Hz) were obtained, with most of the observed values in the range 6–12 Hz. The observed frequencies cannot be related to the total thickness of Quaternary sediments (sand, gravel), but can be explained by the presence of conglomerate or lithified moraine at shallow depths. The results were compared also with the velocity structure derived from seismic refraction data. Microtremor measurements performed in several two and some three- and four-storey houses (masonry with RC floors), which prevail in the Bovec basin, have shown that the main building frequencies in the area are in the range 7–11 Hz. This indicates that damage to houses in both earthquakes in some parts of the basin was enhanced by site amplification and soil-structure resonance. Areas of possible soil-structure resonance were identified in the settlements Bovec–Brdo, Bovec–Mala vas, Čezsoča and Kal-Koritnica. Considerable changes in fundamental frequencies within short distances were established in the town of Bovec. Their values are as high as 22 Hz in the central part of the town, but diminish to 6–11 Hz in the adjacent Brdo and Mala vas districts. This is in agreement with the distribution of damage in both earthquakes, which was considerably higher in Brdo and Mala vas, although the houses in the central part of the town are older.
Microtremor investigations have proved an effective tool for assessment of site effects in cases of complex geological structure commonly encountered in young Alpine basins filled with glaciofluvial sediments which are partly cemented. Lithified layers can considerably change the fundamental frequency and, consequently, the site effects. By taking additional measurements in buildings possible soil-structure resonance can be identified. 相似文献
3.
We present a preliminary study of strong ground motion during the largest aftershock (Mw 5.8) of the 1999 Izmit earthquake (Mw 7.4), Turkey, at 11:55 on 13 September 1999. The peak ground acceleration observed near the epicentre of this aftershock was in agreement with that predicted by standard empirical prediction equations. Its spectral source parameters of the largest aftershock are also typical for a Mw 5.8 earthquake. At greater epicentral distances, there is an order-of-magnitude in scatter in peak ground acceleration values for this aftershock, which is attributed to site effects. The presence of thick layers of low-velocity sediments caused significant amplification of S-waves in the Avcılar district of Istanbul, at frequencies of 1 Hz, explaining the observed concentration of damage there as a result of the Izmit mainshock. 相似文献
4.
2008年5月12日14时28分,青藏高原东缘龙门山地区(四川汶川)发生了Ms8.0级地震。震后野外考察表明,5.12汶川地震发生在NE走向的龙门山断裂带上,该断裂带晚新生代以来的逆冲速率小于1mm/a,GPS观察结果表明其缩短速率小于3mm/a。这次5.12汶川地震造成了多条同震逆冲地表破裂带,总体长约275km,宽约15km,发震断裂机制主要为逆冲作用(由NW向SE逆冲)伴随右旋走滑。地表主破裂带沿龙门山断裂带的映秀—北川断裂发育,长约275km,笔者称为映秀—北川破裂带,破裂带具有逆冲兼右旋走滑性质。地表次级破裂带沿龙门山断裂带的前缘断裂安县—灌县断裂南段发育,长80km,笔者称为汉旺破裂带,破裂带基本为纯逆冲性质。在这两条破裂带之间发育两条更次一级的同震地表破裂带:一条长约20km呈NE走向的地表破裂带,笔者称为深溪沟破裂带,由于这条破裂带靠近主破裂带南段,并且与主破裂带变形特征一致,因此,笔者将深溪沟破裂带划归映秀—北川破裂带;另一条长约6km呈NW走向、由SW向NE逆冲并兼有左旋滑动的地表破裂带,笔者称为小鱼洞破裂带,它连接映秀—北川破裂带和汉旺破裂带,成为侧向断坡。另外,在灌县—安县断裂东侧的四川盆地内,由都江堰的聚源到江油发育一条NE向的沙土液化带,它可能是四川盆地西部深部盲断裂活动的结果。同震地表破裂带的分布特征表明,龙门山断裂带活动断裂具有强烈的逆冲作用并伴随较大的右旋走滑,断裂向四川盆地扩展。在龙门山断裂带上类似2008年5月12日Ms8.0汶川大地震的强震复发周期为3000~6000a。 相似文献
5.
利用2011年1—6月云南地区的连续波形资料,采用背景噪声和波形互相关方法分别反演该地区的速度结构以及2011年3月24日缅甸7.2级地震前后60d的速度变化图像。同时,根据云南地区中小地震计算缅甸地震前后应变能释放响应比空间分布,并利用缅甸地震的震源参数,计算了缅甸地震对云南地区主要断裂产生的库仑破裂应力影响。结果显示:(1)禄劝至华坪一带、永定至泸水区域和通海至建水地区震后波速增加,同时该地区地震活动增强,相应断裂上库仑破裂应力增加,说明缅甸地震对这些区域具有加速构造活动的正影响;(2)小江断裂带以东马龙至宣威地区和南汀河断裂带以南临沧至景洪地区震后波速降低,地震活动减弱,断裂上库仑破裂应力降低,说明缅甸地震对该区域具有减缓构造活动的负影响。 相似文献
6.
The 1999 Kocaeli earthquake of Turkey (Mw = 7.4) caused great destruction to buildings, bridges and other facilities, and a death tall of about 20,000. During this earthquake, severe damages due to soil liquefaction and associated ground deformations also occurred widespread in the eastern Marmara Region of Turkey. Soil liquefaction was commonly observed along the shorelines. One of these typical sites is Sapanca town founded on the shore of Lake Sapanca. This study was undertaken as quantitative measurement of ground deformations induced by liquefaction along the southern shore of Lake Sapanca. The permanent lateral ground deformation was measured through the aerial photogrammetry technique at several locations both along the shoreline and in the town. In situ soil profiles and material properties at Sapanca area were obtained based on the data from 55 borings and standard penetration tests (SPT), and laboratory tests, respectively. The data and the empirical methods recommended by an NCEER workshop were employed to evaluate the liquefaction resistance of the soils. In addition, simple shaking tests on a limited number of samples were also performed. The permanent ground displacements were estimated from the existing empirical models, sliding block method and residual visco-elastic finite element methods. Then these estimations were compared with the observed ground displacements. The assessments suggested that liquefaction at Sapanca have occurred within Quaternary alluvial fan deposits at depths 1 and 14 m, and the major regions of liquefaction and associated ground deformations were located along the shore and creeks. The evaluations also indicated that for sites with no sand boils but with ground displacement greater than 1 m, thickness of the non-liquefiable layer was large. It is also noted that no liquefaction-induced ground surface disruption is expected at the site when the thickness of the liquefiable and non-liquefiable layers vary between 0.5 and 1.5 m, and 3.5 and 5.5 m, respectively. Except one model, all the empirical models employed in the study over-predicted the observed lateral ground displacements, while sliding block method and residual visco-elastic finite element methods yielded reasonably good results if the known properties of liquefied soils are used. 相似文献
7.
Phase equilibrium constraints on a deep crustal metamorphic field gradient: metapelitic rocks from the Ivrea Zone (NW Italy) 总被引:1,自引:0,他引:1
The metamorphic rocks of the Ivrea Zone in NW Italy preserve a deep crustal metamorphic field gradient. Application of quantitative phase equilibria methods to metapelitic rocks provides new constraints on the P–T conditions recorded in Val Strona di Omegna, Val Sesia and Val Strona di Postua. In Val Strona di Omegna, the metapelitic rocks show a structural and mineralogical change from mica‐schists with the common assemblage bi–mu–sill–pl–q–ilm ± liq at the lowest grades, through metatexitic migmatites (g–sill–bi–ksp–pl–q–ilm–liq) at intermediate grades, to complex diatexitic migmatites (g–sill–ru–bi–ksp–pl–q–ilm–liq) at the highest grades. Partial melting in the metapelitic rocks is consistent with melting via the breakdown of first muscovite then biotite. The metamorphic field gradient in Val Strona di Omegna is constrained to range from conditions of ~3.5–6.5 kbar at ≈650 °C to ~10–12 kbar at >900 °C. The peak P–T estimates, particularly for granulite facies conditions, are significantly higher than those of most earlier studies. In Val Sesia and Val Strona di Postua, cordierite‐bearing rocks record the effects of contact metamorphism associated with the intrusion of a large mafic body (the Mafic Complex). The contact metamorphism occurred at lower pressures than the regional metamorphic peak and overprints the regional metamorphic assemblages. These relationships are consistent with the intrusion of the Mafic Complex having post dated the regional metamorphism and are inconsistent with a model of magmatic underplating as the cause of granulite facies metamorphism in the region. 相似文献
8.
The Great Lisbon earthquake has the largest documented felt area of any shallow earthquake and an estimated magnitude of 8.5–9.0. The associated tsunami ravaged the coast of SW Portugal and the Gulf of Cadiz, with run-up heights reported to have reached 5–15 m. While several source regions offshore SW Portugal have been proposed (e.g.— Gorringe Bank, Marquis de Pombal fault), no single source appears to be able to account for the great seismic moment as well as all the historical tsunami amplitude and travel time observations. A shallow east dipping fault plane beneath the Gulf of Cadiz associated with active subduction beneath Gibraltar, represents a candidate source for the Lisbon earthquake of 1755.Here we consider the fault parameters implied by this hypothesis, with respect to total slip, seismic moment, and recurrence interval to test the viability of this source. The geometry of the seismogenic zone is obtained from deep crustal studies and can be represented by an east dipping fault plane with mean dimensions of 180 km (N–S) × 210 km (E–W). For 10 m of co-seismic slip an Mw 8.64 event results and for 20 m of slip an Mw 8.8 earthquake is generated. Thus, for convergence rates of about 1 cm/yr, an event of this magnitude could occur every 1000–2000 years. Available kinematic and sedimentological data are in general agreement with such a recurrence interval. Tsunami wave form modeling indicates a subduction source in the Gulf of Cadiz can partly satisfy the historical observations with respect to wave amplitudes and arrival times, though discrepancies remain for some stations. A macroseismic analysis is performed using site effect functions calculated from isoseismals observed during instrumentally recorded strong earthquakes in the region (M7.9 1969 and M6.8 1964). The resulting synthetic isoseismals for the 1755 event suggest a subduction source, possibly in combination with an additional source at the NW corner of the Gulf of Cadiz can satisfactorily explain the historically observed seismic intensities. Further studies are needed to sample the turbidites in the adjacent abyssal plains to better document the source region and more precisely calibrate the chronology of great earthquakes in this region. 相似文献
9.
The Great Lisbon earthquake of 1755 with an estimated magnitude of 8.5–9.0 is the most destructive earthquake in European history, yet the source region remains enigmatic. Recent geophysical data provide compelling evidence for an active east dipping subduction zone beneath the nearby Gibraltar Arc. Marine seismic data in the Gulf of Cadiz image active thrust faults in an accretionary wedge, above an east dipping decollement and an eastward dipping basement. Tomographic and other data support subduction and rollback of a narrow slab of oceanic lithosphere beneath the westward advancing Gibraltar block.Although, no instrumentally recorded seismicity has been documented for the subduction interface, we propose the hypothesis that this shallow east dipping fault plane is locked and capable of generating great earthquakes (like the Nankai or Cascadia seismogenic zones). We further propose this east dipping fault plane to be a candidate source for the Great Lisbon earthquake of 1755. In this paper we use all available geophysical data on the deep structure of the Gulf of Cadiz–Gibraltar region for the purpose of constraining the 3-D geometry of this potentially seismogenic fault plane. To this end, we use new depth processed seismic data, have interpreted all available published and unpublished time sections, examine the distribution of hypocenters and perform 2-D gravity modeling. Finally, a finite-element model of the forearc thermal structure is constructed to determine the temperature distribution along the fault interface and thus the thermally predicted updip and downdip limits of the seismogenic zone. 相似文献