首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The orbital evolutions of the asteroid 3040 Kozai and model asteroids with similar orbits have been investigated. Their osculating orbits for an epoch 1991 December 10 were numerically integrated forward within the interval of 20,000 years, using a dynamical model of the solar system consisting of all inner planets, Jupiter, and Saturn.The orbit of the asteroid Kozai is stable. Its motion is affected only by long-period perturbations of planets. With change of the argument of perihelion of the asteroid Kozai, the evolution of the model asteroid orbits changes essentially, too. The model orbits with the argument of perihelion changed by the order of 10% show that asteroids with such orbital parameters may approach the Earth orbit, while asteroids with larger changes may even cross it, at least after 10,000 years. Long-term orbital evolution of asteroids with these orbital parameters is very sensitive on their angular elements.  相似文献   

2.
《Planetary and Space Science》1999,47(6-7):873-881
The ROSETTA spacecraft will fly-by a few asteroids during its course to the final cometary target. The candidate asteroids presently are 3840 Ministrobel (S-type), 2703 Siwa and 140 (C-type).With the limited data presently available on these bodies we calculated some approximate quantities which may be useful to select the fly-by trajectories of the ROSETTA probe. In particular we derived the zones in which particles could stably orbit by analyzing Hills problem of three hierarchical masses—the sun, the asteroid and the orbiting particle. Then, following the approach of Hamilton and Burns, the effects of solar radiation pressure and of the ellipticity of the orbits were also taken into account. In this way for each asteroid we could calculate not only a classical quantity like the radius of the Hill sphere, but also the critical starting orbital distance (as a function of orbital inclination) within which most orbits remain bound to the asteroid, and outside which most escape as a consequence of perturbations. Moreover we determined the orbital stability zone, defined as the union of all the numerically integrated orbits showing long-term stability, for each of the target asteroids. The particular shape of these zones would suggest to have the spacecrafts close approach out of the orbital plane of the asteroids.To further investigate this problem and, in particular, to take into account the irregular shape of the asteroids, we developed a model using a polyhedral representation of the central rotating body, following a theory developed by Werner and Scheeres. This model is described here and the first orbital integration results are presented. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

3.
4.
Abstract— We are making an open‐source asteroid orbit computation software package called OpenOrb publicly available. OpenOrb is built on a well‐established Bayesian inversion theory, which means that it is to a large part complementary to orbit‐computation packages currently available. In particular, OpenOrb is the first package that contains tools for rigorously estimating the uncertainties resulting from the inverse problem of computing orbital elements using scarce astrometry. In addition to the well‐known least‐squares method, OpenOrb also contains both Monte‐Carlo (MC) and Markov‐Chain MC (MCMC; Oszkiewicz et al. [2009]) versions of the statistical ranging method. Ranging allows the user to obtain sampled, non‐Gaussian orbital‐element probability‐density functions and is therefore optimized for cases where the amount of astrometry is scarce or spans a relatively short time interval. Ranging‐based methods have successfully been applied to a variety of different problems such as rigorous ephemeris prediction, orbital element distribution studies for transneptunian objects, the computation of invariant collision probabilities between near‐Earth objects and the Earth, detection of linkages between astrometric asteroid observations within an apparition as well as between apparitions, and in the rigorous analysis of the impact of orbital arc length and/or astrometric uncertainty on the uncertainty of the resulting orbits. Tools for making ephemeris predictions and for classifying objects based on their orbits are also available in OpenOrb. As an example, we use OpenOrb in the search for candidate retrograde and/or high‐inclination objects similar to 2008 KV42 in the known population of transneptunian objects that have an observational time span shorter than 30 days.  相似文献   

5.
We show how to calculate the impact orbits of dangerous asteroids using the freely available the OrbFit software, and compare our results with impact orbits calculated using Sitarski??s independent software (Sitarski, 1999; 2000; 2006). The new method is tested on asteroid 2009 FJ. Using the OrbFit package to integrate alternate orbits along the line of variation (Milani et al., 2002; 2005a; 2005b), we identify impact orbits and can plot paths of risk for the Earth or any other body in the Solar System. We present the orbital elements of asteroid 2009 FJ and its ephemerides, along with uncertainties, for the next 100 years. This paper continues a long-term research program on impact solutions for asteroids (Wlodarczyk, 2007; 2008; 2009).  相似文献   

6.
In addition to the detection of an asteroid moon or a binary asteroid, the knowledge of the satellite’s true orbit is of high importance to derive fundamental physical parameters of the binary system such as its mass and to shed light on its possible formation history and dynamical evolution (prograde/retrograde orbit, large/small eccentricity or inclination, etc.). A new methodology for preliminary orbit determination of binary asteroids – and visual binaries in general – is proposed. It is based on Thiele–Innes method combined with a ‘trial and error’ Monte-Carlo technique. This method provides the full set of solutions (bundle of orbits, with the 7 orbital elements) even for a reduced number of observations. The mass is a direct by-product of this orbit determination, from which one can next infer the bulk-density and porosity. In addition to the bundle of orbits, the method provides the marginal probability densities of the foreseen parameters. Such error analysis – since it avoids linear approximation – can be of importance for the prediction of the satellite’s position in the plane-of-sky during future stellar occultations or subsequent observations, but also for the analysis of the orbit’s secular evolution. After briefly describing the method, we present the algorithm and its application to some practical cases, with particular emphasis on asteroids binaries and applications on orbital evolution.  相似文献   

7.
The orbital evolution of the two meteorites Příbram and Neuschwanstein on almost identical orbits and also several thousand clones were studied in the framework of the N-body problem for 5,000 years into the past. The meteorites moved on very similar orbits during the whole investigated interval. We have also searched for photographic meteors and asteroids moving on similar orbits. There were five meteors found in the IAU MDC database and six NEAs with currently similar orbits to Příbram and Neuschwanstein. However, only one meteor 161E1 and one asteroid 2002 QG46 had a similar orbital evolution over the last 2,000 years.  相似文献   

8.
Determination of orbital parameters from observations is formally a nonlinear inverse problem for solving which evidently nonlinear methods are required. Meanwhile, an accompanying stage in solving the inverse problem is the evaluation of parametric accuracy to which, however, linear methods are conventionally applied. This is quite justified if parametric errors caused by observation errors are rather small, otherwise this is not at all since the nonlinearity of the inverse problem can be considerable to influence on the evaluations of parametric accuracy especially when the observations are very few. With the advent of quick-operating and multiprocessor computers, recently one tends to employ statistic simulation of virtual parameter values for investigating uncertainties in orbits determined from observations. In the paper are just discussed the methods designed specially for nonlinear statistic simulation of virtual parameter values. Their efficiency is investigated in application to estimating uncertainties in the orbit of Jovian satellite S/2003 J04 whose orbital parameters are ill-determined owing to scanty available observations. Indices of nonlinearity are introduced for making decision in the choice between linear and nonlinear methods.  相似文献   

9.
We present a novel method for the search of linkages among astrometric observations of asteroids, that is, tentative identifications among asteroids observed. Having two different master sets of asteroid observations each containing a number of separate subsets, we define a linkage as a pair of subsets residing in separate master sets that can be tied together with an orbit for given observational errors. To find linkages among a wealth of observations we use an efficient stepwise filtering approach. First, we start with what we call phase-space address comparison. The first step substantially reduces the initially huge amount of pairs by requiring that pairs to be subjected to further analysis have similar geocentric spherical coordinates at common epochs (for example, at three epochs). Second, we search for orbits for each of the selected pairs of subsets. Succeeding in the effort proves that a linkage exists. If there are contradictions among linkages found—for example, a single subset being linked to several mutually exclusive subsets—additional new or archive observations are usually needed to discard erroneous linkages. The new method is built on six-dimensional statistical orbital inversion (Ranging), and is therefore particularly suitable for analyzing objects with the shortest observational arcs, that is, newly discovered asteroids (and comets). Results from extensive and successful tests on simulated survey observations are presented and discussed. Theoretical and empirical scaling results show that the method is applicable to future large-scale surveys that will increase the rate of asteroid discovery by at least two orders of magnitude. The successful linking of faint single-night observation sets obtained with the Very Large Telescope are briefly reviewed.  相似文献   

10.
When the precessional rate of the orbital plane of an asteroid is nearly equal to that of Jupiter, the orbital inclination of the asteroid changes quite largely due to this near equality of their precessional rates, which is called a secular resonance. In the vicinity of the exact resonance the difference of their longitudes of nodes librates with quite a long period of order of 1×106 yr. In this paper we treat this secular resonance by a method of semianalytical secular perturbations with use of numerical averaging for both non-resonant and resonant asteroids and show that the results by the semi-analytical treatment agrees qualitatively with those obtained by direct numerical integrations of asteroid's orbits.  相似文献   

11.
Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is . Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D−1 dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.  相似文献   

12.
We propose a numerical method for quick evaluation of the probability that an asteroid will collide with a planet. The method is based on linear mappings of an expected moment of a close approach of the asteroid to the planet and the detection of collisions of the virtual objects with the massive body. The standard way for solving the problem of estimating the collision probability consists in simulating the evolution of the uncertainty cloud numerically based on the stepwise integration of virtual orbits. This is naturally associated with huge processor time costs. The proposed method is tested using the examples of the 2011 AG5 and 2007 VK184 asteroids that are presently in the top of the list of the most dangerous celestial objects. The test results show that linear mappings allow one to obtain the estimates of probabilities quicker by several orders than numerical integration of all virtual orbits.  相似文献   

13.
共轨运动天体与摄动天体的半长径相同,处于1:1平运动共振中.太阳系内多个行星的特洛伊天体即为处于蝌蚪形轨道的共轨运动天体,其中一些高轨道倾角特洛伊天体的轨道运动与来源仍未被完全理解.利用一个新发展的适用于处理1:1平运动共振的摄动函数展开方式,对三维空间中的共轨运动进行考察,计算不同初始轨道根数情况下共轨轨道的共振中心、共振宽度,分析轨道类型与初始轨道根数的关系.并将分析方法所得结果与数值方法的结果相互比较验证,得到了广阔初始轨道根数空间内共轨运动的全局图景.  相似文献   

14.
Up to now, 17 Neptune Trojan asteroids have been detected with their orbits being well determined by continuous observations. This paper analyzes systematically their orbital dynamics. Our results show that except for two temporary members with relatively short lifespans on Trojan orbits, the vast majority of Neptune Trojans located within their orbital uncertainties may survive in the solar system age. The escaping probability of Neptune Trojans, through slow diffusion in the orbital element space in 4.5 billion years, is estimated to be ~50%. The asteroid 2012 UW177 classified as a Centaur asteroid by the IAU Minor Planet Center currently is in fact a Neptune Trojan. Numerical simulations indicate that it is librating on the tadpole-shaped orbit around the Neptune's L4 point. It was captured into the current orbit approximately 0.23 million years ago, and will stay there for at least another 1.3 million years in the future. Its high inclination of i ≈ 54° not only makes it the most inclined Neptune Trojan, but also makes it exhibit the complicated and interesting co-orbital transitions between the leading and trailing Trojans via the quasi-satellite orbit phase.  相似文献   

15.
Abstract— The newly discovered asteroid 2002 AA29 moves in a very Earth‐like orbit that relative to Earth has a unique horseshoe shape and allows transitions to a quasi‐satellite state. This is the first body known to be in a simple heliocentric horseshoe orbit, moving along its parent planet's orbit. It is similarly also the first true co‐orbital object of Earth, since other asteroids in 1:1 resonance with Earth have orbits very dissimilar from that of our planet. When a quasi‐satellite, it remains within 0.2 AU of the Earth for several decades. 2002 AA29 is the first asteroid known to exhibit this behavior. 2002 AA29 introduces an important new class of objects offering potential targets for space missions and clues to asteroid orbit transfer evolution.  相似文献   

16.
The Sun-to-Mercury mass ratio adopted by the International Astronomical Union (6023600 ± 250) was obtained in 1987 by analyzing Mariner 10 observations (Anderson et al. 1987) and since then has not been improved. The large number of asteroids in Mercury-approaching orbits and the ever-increasing accuracy of their observations allow the mass of Mercury to be estimated by a different method. We have improved the orbital parameters of 43 asteroids and obtained 6023440 ± 530 for the Sun-to-Mercury mass ratio through a simultaneous solution based on their optical and radar observations. A further improvement in this estimate is possible in the immediate future owing to the rapid increase in the number of known asteroids whose observations can be used to solve this problem.  相似文献   

17.
Abstract– The asteroid belt is found today in a dramatically different state than that immediately following its formation. It is estimated that it has been depleted in total mass by a factor of at least 1000 since its formation, and that the asteroids’ orbits evolved from having near‐zero eccentricity and inclination to the complex distributions we find today. The asteroid belt also hosts a wide range of compositions, with the inner regions dominated by S‐type and other water‐poor asteroids and the outer regions dominated by C‐type and other primitive asteroids. We discuss a model of early inner solar system evolution whereby the gas‐driven migration of Jupiter and Saturn brings them inwards to 1.5 AU, truncating the disk of planetesimals in the terrestrial planet region, before migrating outwards toward their current locations. This model, informally titled “The Grand Tack,” examines the planetary dynamics of the solar system bodies during the final million years of the gaseous solar nebula lifetime—a few million years (Myr) after the formation of the first solids, but 20–80 Myr before the final accretion of Earth, and approximately 400–600 Myr before the Late Heavy Bombardment of the inner solar system. The Grand Tack attempts to solve some outstanding problems for terrestrial planet formation, by reproducing the size of Mars, but also has important implications for the asteroid population. The migration of Jupiter causes a very early depletion of the asteroid belt region, and this region is then repopulated from two distinct source regions, one inside the formation region of Jupiter and one between and beyond the giant planets. The scattered material reforms the asteroid belt, producing a population the appropriate mass, orbits, and with overlapping distributions of material from each parent source region.  相似文献   

18.
Our investigation is motivated by the recent discovery of asteroids orbiting the Sun and simultaneously staying near one of the Solar System planets for a long time. This regime of motion is usually called the quasi-satellite regime, since even at the times of the closest approaches the distance between the asteroid and the planet is significantly larger than the region of space (the Hill’s sphere) in which the planet can hold its satellites. We explore the properties of the quasi-satellite regimes in the context of the spatial restricted circular three-body problem “Sun–planet–asteroid”. Via double numerical averaging, we construct evolutionary equations which describe the long-term behaviour of the orbital elements of an asteroid. Special attention is paid to possible transitions between the motion in a quasi-satellite orbit and the one in another type of orbits available in the 1:1 resonance. A rough classification of the corresponding evolutionary paths is given for an asteroid’s motion with a sufficiently small eccentricity and inclination.  相似文献   

19.
The Yarkovsky effect, which causes a slow drifting of the orbital elements (mainly the semimajor axis) of km-sized asteroids and meteors, is the weak non-gravitational force experienced by these bodies due to the emission of thermal photons. This effect is believed to play a role in the delivery of near-Earth asteroids (NEAs) from the main belt, in the spreading of the orbital elements of asteroid families, and in the orbital evolution of potentially hazardous asteroids.Here we present preliminary results of simulationing indicating that the perturbations induced by the Yarkovsky effect on the positions of some tens of NEAs can be observed by means of the high-precision astrometric observations that will be provided by the ESA mission Gaia.  相似文献   

20.
全轨道均匀分布的小行星观测对天球参考架零点的测定,以及其它一些相关课题的研究非常有利。本文就低纬子午环的观测能力,计算分析了小行星在全轨道观测的星等范围和弧段分布,给出了可观测弧段长度的计算公式,并进行了模拟计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号