首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Quaternary Science Reviews》2007,26(17-18):2090-2112
The geomorphology and morphostratigraphy of numerous worldwide sites reveal the relative movements of sea level during the peak of the Last Interglaciation (Marine Isotope Stage (MIS) 5e, assumed average duration between 130±2 and 119±2 ka). Because sea level was higher than present, deposits are emergent, exposed, and widespread on many stable coastlines. Correlation with MIS 5e is facilitated by similar morphostratigraphic relationships, a low degree of diagenesis, uranium–thorium (U/Th) ages, and a global set of amino-acid racemization (AAR) data. This study integrates information from a large number of sites from tectonically stable areas including Bermuda, Bahamas, and Western Australia, and some that have experienced minor uplift (∼2.5 m/100 ka), including selected sites from the Mediterranean and Hawaii. Significant fluctuations during the highstand are evident at many MIS 5e sites, revealed from morphological, stratigraphic, and sedimentological evidence. Rounded and flat-topped curves derived only from reef tracts are incomplete and not representative of the entire interglacial story. Despite predictions of much different sea-level histories in Bermuda, the Bahamas, and Western Australia due to glacio- and hydro-isostatic effects, the rocks from these sites reveal a nearly identical record during the Last Interglaciation.The Last Interglacial highstand is characterized by several defined sea-level intervals (SLIs) that include: (SLI#1) post-glacial (MIS 6/5e Termination II) rise to above present before 130 ka; (SLI#2) stability at +2 to +3 m for the initial several thousand years (∼130 to ∼125 ka) during which fringing reefs were established and terrace morphology was imprinted along the coastlines; (SLI#3) a brief fall to near or below present around 125 ka; (SLI#4) a secondary rise to and through ∼+3–4 m (∼124 to ∼122 ka); followed by (SLI#5) a brief period of instability (∼120 ka) characterized by a rapid rise to between +6 to +9 m during which multiple notches and benches were developed; and (SLI#6) an apparently rapid descent of sea level into MIS 5d after 119 ka. U/Th ages are used to confirm the Last Interglacial age of the deposits, but unfortunately, in only two cases was it possible to corroborate the highstand subdivisions using radiometric ages.Sea levels above or at present were relatively stable during much of early MIS 5e and the last 6–7 ka of MIS 1, encouraging a comparison between them. The geological evidence suggests that significant oceanographic and climatic changes occurred thereafter, midway through, and continuing through the end of MIS 5e. Fluctuating sea levels and a catastrophic termination of MIS 5e are linked to the instability of grounded and marine-based ice sheets, with the Greenland (GIS) and West Antarctic (WAIS) ice sheets being the most likely contributors. Late MIS 5e ice volume changes were accompanied by oceanographic reorganization and global ecological shifts, and provide one ominous scenario for a greenhouse world.  相似文献   

2.
Electron spin resonance (ESR) dating of coral has become an efficient geochronological tool in supporting morphostratigraphic studies carried out on Barbados during the last 10 years. The newly developed approach for DE determination (DEDmax plot procedure) improves the precision of ESR dating of Pleistocene coral, and therefore permits differentiation between the main marine isotope stages (MIS) 5, 7, 9 and 11 and also between sub-stages 5e, c and a. This study compares results of ESR and TIMS Uranium series dating (U/Th) of emergent Last Interglacial coral reef terraces from Barbados, and presents some implications for the timing and extent of sea-level changes during marine isotope stages (MIS) 5e, c and a. Both dating methods indicate a distinct formation of up to three coral reef terraces during MIS 5e, at approximately 132 ka (ESR) to 128 ka (U/Th), at c. 128 ka (ESR) and at c. 120 ka (U/Th) to 118 ka (ESR). It is also highly probable that three reef terraces were developed during MIS 5c between c. 103 ka (U/Th) and 105 ka (ESR). The formation of two separate coral reefs during MIS 5a is recognized for the first time on Barbados, with an age estimate for the older MIS 5a-2 reef of 85 ka (ESR) or 84 ka (U/Th), and an age estimate for the younger MIS 5a-1 reef terraces of 74 ka (ESR) or 77 ka (U/Th). Assuming a constant uplift rate of 0.276 m/ka at the south coast of Barbados, sea-level reached its maximum during MIS 5e-3 and MIS 5e-2 between 132 and 128 ka ago. After this, sea-level declined reaching a level of c. −11 m below present sea level approx. 118–120 ka ago (MIS 5e-1). During the substage 5c sea-level was generally lower than in substage 5e. It reached relative maxima at c. −13, −20 and −25 m during MIS 5c (approx. 105 ka) and formed three distinct coral reef terraces probably in relative short time intervals. For the first time, a double sea-level oscillation is recognized on Barbados during MIS 5a: an early MIS 5a-2 (c. 85 ka) with a sea-level places at approx. −21 m, and a late MIS 5a-1 sub-stage (c. 74 or 77 ka) with a sea-level at approx. –19 m below present sea level.  相似文献   

3.
We present the longest-duration directly dated terrestrial palaeoclimate record from the western Mediterranean region: a flowstone speleothem from Gitana Cave, southeast Spain. The main phase of growth was 274 to 58 ka, dated by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) U-series methods. Effective precipitation, which we consider primarily responsible for flowstone calcite δ13C variations, measured at 300 μm resolution, was higher during interglacials associated with marine oxygen isotope stages (MIS) 7 and 5, and lower during glacial MIS 6. There is a close correspondence between speleothem δ13C and sea surface temperature (SST) estimates from adjacent Atlantic Ocean cores during MIS 6, which implies that oceanic conditions are critical in controlling the western Mediterranean terrestrial moisture balance during glacial periods. Other features of our record, such as the sequence of termination II warming/moistening between approximately 133 and 127 ka, including a “pause” around 130–128 ka, and the lagged termination of MIS 5 warm intervals (5e, 5c and 5a) are similar to other terrestrial records within the Mediterranean basin, indicating climate synchroneity along the northern Mediterranean coast. The Gitana cave region also may have been a refugium for temperate species during short-lived cold/arid periods during MIS 5.  相似文献   

4.
The aim of this paper is to show the stratigraphic record of the Late Pleistocene corresponding to the distal region of the Paraná River basin. It displays sedimentological, paleontological and geochronological evidences that characterise the last interglacial–glacial cycle. In particular, strong environmental records are shown for the Last Interglacial Stage (LIS). Salto Ander Egg Formation (SAEF) is defined as a new lithostratigraphic unit representative of the Late Pleistocene in southwestern Mesopotamia. This unit is formed of complex fluvial deposits, which contains a heterogeneous collection of sub-environments, of ages ranging from 120 to 60 ky BP. The clast-supported gravel facies containing sparse boulders indicate high flow during a humid climate. The large and middle-scale architectures of fluvial sedimentary bodies evidence the relationship between the sediment accommodation and the sea level oscillations. Three sub-sequences identified in the succession suggest a transgressive trend during the MIS5e, a highstand stage in MIS5c, and a minor transgressive cycle during MIS3. A Brazilian faunal association collected at the bottom of the sequence and sedimentological interpretations display wet and warm climatic conditions, typical of tropical or subtropical environments. Such environmental conditions are characteristic of the maximum of the last interglacial stage (MIS5e) and show a signal stronger than the signal of the current interglacial stage. All these data show a direct correlation between the increases of paleodischarges and the elevation of the sea level. The whole sequence is completed with transitional swampy deposits, accumulated probably during the MIS3/MIS2 transition, and the typical loess of the Tezanos Pinto Formation, mantled during the Last Maximum Glacial.  相似文献   

5.
Two hypotheses have been proposed to explain the origin of marine isotope stage (MIS) 11 deposits in small Bermudian caves at +21 m above modern sea level: (1) a +21 m MIS 11 eustatic sea-level highstand, and (2) a MIS 11 mega-tsunami event. Importantly, the foraminifera reported in these caves have yet to be critically evaluated within a framework of coastal cave environments. After statistically comparing foraminifera in modern Bermudian littoral caves and the MIS 11 Calonectris Pocket A (+21 m cave) to the largest available database of Bermudian coastal foraminifera, the assemblages found in modern littoral caves – and Calonectris Pocket A – cannot be statistically differentiated from lagoons. This observation is expected considering littoral caves are simply sheltered extensions of a lagoon environment in the littoral zone, where typical coastal processes (waves, storms) homogenize and rework lagoonal, reefal, and occasional planktic taxa. Fossil protoconchs of the Bermudian cave stygobite Caecum caverna were also associated with the foraminifera. These results indicate that the MIS 11 Bermudian caves are fossil littoral caves (breached flank margin caves), where the total MIS 11 microfossil assemblage is preserving a signature of coeval sea level at +21 m. Brackish foraminifera (Polysaccammina, Pseudothurammina) and anchialine gastropods (95%, >300 individuals) indicate a brackish anchialine habitat developed in the elevated caves after the prolonged littoral environmental phase. The onset of sea-level regression following the +21 m highstand would first lower the ancient brackish Ghyben-Herzberg lens (<0.5 m) and flood the cave with brackish water, followed by drainage of the cave to create a permanent vadose environment. These interpretations of the MIS 11 microfossils (considering both taphonomy and paleoecology) are congruent with the micropaleontological, hydrogeological and physical mechanisms influencing modern Bermudian coastal cave environments. In conclusion, we reject the mega-tsunami hypothesis, concur with the +21 m MIS 11 eustatic sea-level hypothesis, and reiterate the need to resolve the disparity between global marine isotopic records and the physical geologic evidence for sea level during MIS 11.  相似文献   

6.
As a future warm-climate analog, much attention has been directed to studies of the Last Interglacial period or marine isotope substage (MIS) 5.5, which occurred ~120,000 years ago. Nevertheless, there are still uncertainties with respect to its duration, warmth and magnitude of sea-level rise. Here we present new data from tectonically stable peninsular Florida and the Florida Keys that provide estimates of the timing and magnitude of sea-level rise during the Last Interglacial period. The Last Interglacial high sea stand in south Florida is recorded by the Key Largo Limestone, a fossil reef complex, and the Miami Limestone, an oolitic marine sediment. Thirty-five new, high-precision, uranium-series ages of fossil corals from the Key Largo Limestone indicate that sea level was significantly above present for at least 9000 years during the Last Interglacial period, and possibly longer. Ooids from the Miami Limestone show open-system histories with respect to U-series dating, but show a clear linear trend toward an age of ~120 ka, correlating this unit with the Last Interglacial corals of the Key Largo Limestone. Older fossil reefs at three localities in the Florida Keys have ages of ~200 ka and probably correlate to MIS 7. These reefs imply sea level near or slightly above present during the penultimate interglacial period. Elevation measurements of both the Key Largo Limestone and the Miami Limestone indicate that local (relative) sea level was at least 6.6 m, and possibly as much as 8.3 m higher than present during the Last Interglacial period.  相似文献   

7.
沧州地区位于海陆交互的渤海湾西岸,易受到海平面变化和极端气候事件的影响,对于全球气候变化的响应十分敏感。应用非参数化端元分析模型将沧州地区CZ01钻孔中更新世晚期以来的沉积物粒度划分出6个端元并分析其物源,结合已有地质记录,揭示不同时间尺度下各端元对气候—海平面变化的响应。结果表明: (1)EM1(5.01 μm)主要为远源的风尘输入,EM2(13.18 μm)和EM3(39.81 μm)为古黄河所携带的沉积物,EM4(69.18 μm)和EM5(138.04 μm)为海相沉积物,EM6(275.42 μm)可能指示古洪水等极端气候事件。(2)深海氧同位素(MIS)Ⅰ 阶段,气候温暖湿润,EM4+5含量指示渤海海平面整体呈波动上升的趋势并逐渐接近现代海平面。该阶段内由于11.5 ka BP左右的新仙女木事件以及5.1 ka BP左右冷干事件的发生,渤海海平面在稳定上升状态后出现停滞或小幅下降的现象; 而在9.5 ka BP、7.5 ka BP、5.8 ka BP和1.7 ka BP左右,东亚夏季风增强导致降水增加,渤海海平面升高。(3)MIS Ⅵ 阶段北半球气候冷干,150~132 ka BP左右因喜马拉雅运动减弱造成的区域沉降中心转移致使渤海海面升高。MIS Ⅴ 阶段气候波动剧烈: 在间冰期暖期(5a、5c和5e)气候暖湿,渤海海平面上升; 而MIS5b和5d时期渤海海面高度较低。MIS Ⅳ 阶段较MIS5a末期海平面突然下降后趋于稳定,期间出现若干次小规模海侵事件,可能与东亚夏季风频繁变化有关。MIS Ⅲ 阶段至末次冰盛期海平面大幅度下降且存在周期性升降变化,并在46 ka BP左右出现大规模海侵事件。MIS Ⅱ 阶段较MIS Ⅲ 阶段海平面出现小幅度下降,为低海平面时期; 伴随15 ka BP左右冰盛期的结束,东亚夏季风增强,海平面开始上升。渤海海平面180 ka BP以来的变化记录与北半球乃至全球范围内的地质记录存在一致性,与太阳辐射波动引起的冰川消融及东亚夏季风变化密切相关。  相似文献   

8.
Man's interference with the landscape process places him in the role of a “paraglacial” agent: He tends to duplicate ice-age stresses such as deforestation, accelerated erosion, and climate alteration. Against a background climatic control dictated by the Milankovich mechanisms, the 10,000-year history of the Holocene has seen very large secondary modulations that must be better understood so that they may be distinguished from anthropogenic effects. If they are exogenetically controlled, as it seems, then they are probably predictable from astronomic data. Four geomorphic type areas are selected for demonstrating Holocene changes in tropical regions, because they have been somewhat neglected within the framework of Quaternary science and because they include some of the most fragile and easily disrupted environments: lakes, semiarid desert margins, coastlines, and coral reefs. In a nutshell, the tropical Holocene has seen three major changes: (a) the evolution from the hyperaridity of the last pleniglacial stage to the “postglacial pluvial”; (b) the “climatic optimum,” which was highly diachronous and strongly retarded as it shifted from low latitudes to high; (c) the postoptimum “deterioration” that has involved desiccation of lakes, readvances of the deserts, fall of sea level, and truncation of coral reefs. While this deterioration is predictable in terms of an interglacial-glacial climatic transition, strong natural climatic oscillations, not yet well understood, together with man's activities, make the future a cause for concern.  相似文献   

9.
黄土高原晚更新世的植被与气候环境   总被引:9,自引:0,他引:9  
在被认为孢粉贫乏的黄土中分析出了大量孢粉,首次作出了黄土地层的孢粉浓度图式。根据10余个剖面上孢粉组合的变化,阐明了晚更新世的植被与气候在时间上演变与空间上分布的规律,证明了各地植被在时间上的演变韵律十分相似,说明它们同受全球气候变化的控制,但在同一时期各地植被不尽相同,此乃局部自然环境差异所致。根据植被变化重建了古气温曲线。   相似文献   

10.
Samples of algal tufa, gastropods and calcite-cemented sand were collected from the Walker and Pyramid Lake areas of the Lahontan Basin, Nevada. X-ray diffraction petrographic and radiocarbon analyses show that massive forms of tufa such as the dendritic variety contain secondary carbon-bearing material and therefore yield unreliable radiocarbon dates. Dense coating of tufa (lithoid), however, gave radiocarbon ages in agreement with dates on coexisting aragonite gastropods. Radiocarbon data from the study were combined with previously dated noncarbonate materials [Born, S. M. (1972). “Lake Quaternary History, Deltaic Sedimentation, and Mudlump Formation at Pyramid Lake, Nevada”, Center for Water Resources, Desert Research Inst., Reno, Nevada] to give an internally consistent record of lake level fluctuations for the past 40,000 years. The main features of the Lahontan chronology are (1) extreme high stands (1330 m above sea level) 13,500 to 11,000 and 25,000 to 22,000 B.P., (2) a moderate high stand (1260 m above sea level) 20,000 to 15,000 B.P., (3) a low stand of unknown elevation 40,000 to 25,000 B.P., (4) an extremely low stand 9000 to 5000 B.P., and (5) an overall increase in the size of Walker and Pyramid Lakes during the past 5000 years, until the late 19th century. Pore fluid data indicate that Walker Lake desiccated sometime during the period 9050 to 6400 B.P. Salts deposited as a result of this dessication are still undergoing dissolution causing a flux of chloride, carbon, and other solute species from the sediments to the overlying lake water. Pore fluid data obtained from Pyramid Lake sediments do not indicate the presence of a concentrated brine at depth. This suggests that Pyramid Lake did not dry completely during this period although it may have been severely reduced in size. There has been considerable disagreement regarding the occurrence of extreme arid conditions (altithermal period) since 10,000 B.P. [Mehringer, P. J. (1977). “Models and Great Basin Prehistory”. Desert Research Inst. Pub, Reno, Nevada]. The data of this study suggest that such a climatic regime did occur in the western Great Basin during the period 9000 to 5000 B.P.  相似文献   

11.
At Airedale Reef, western North Island, New Zealand, a ca. 4 m thick volcanogenic debris avalanche deposit has facilitated the preservation of an enveloping sequence of peats with interbedded andesitic tephras spanning marine isotope (MIS) 5. The sequence closely overlies a wave‐cut terrace correlated to MIS 5e and, in turn, is overlain by andic beds with tephra interbeds including the Rotoehu and Kawakawa tephras deposited during early MIS 3 and mid‐MIS 2, respectively. Pollen analysis of the organic sequence shows a coherent pattern of fluctuating climate for the Last Interglacial–Last Glacial transition that corresponds with marine isotope stratigraphy and supports the contention that orbital variations were a primary factor in late Quaternary southern mid‐latitude climate change. A five‐stage subdivision of MIS 5 is clearly recognised, with marine isotope substage (MISS) 5b drier than MISS 5d, and the cooling transition from 5a to MIS 4 also may have been comparatively dry and characterised by natural fire, perhaps associated with volcanism. Several other examples of volcanic impact on vegetation and the landscape are evident. The Airedale Reef sequence exhibits strong similarities with fragmentary MIS 5 pollen records preserved elsewhere in New Zealand and enables the proxy record of southern mid‐latitude climatic variability during the Last Interglacial–Glacial cycle to be extended. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
In situ Pleistocene reefs form a gently sloping nearshore terrace around the island of Oahu. TIMS Th–U ages of in situ corals indicate that most of the terrace is composed of reefal limestones correlating to Marine Oxygen Isotope Stage 7 (MIS 7, ~ 190–245 ka). The position of the in situ MIS 7 reef complex indicates that it formed during periods when local sea level was ~ 9 to 20 m below present sea level. Its extensiveness and geomorphic prominence as well as a paucity of emergent in situ MIS 7 reef-framework deposits on Oahu suggest that much of MIS 7 was characterized by regional sea levels below present. Later accretion along the seaward front of the terrace occurred during the latter part of MIS 5 (i.e., MIS 5a–5d, ~ 76–113 ka). The position of the late MIS 5 reefal limestones is consistent with formation during a period when local sea level was below present. The extensiveness of the submerged Pleistocene reefs around Oahu compared to the relative dearth of Holocene accretion is due to the fact that Pleistocene reefs had both more time and more accommodation space available for accretion than their Holocene counterparts.  相似文献   

13.
We examined 14 subaerially deposited speleothems retrieved from submerged caves in the northeastern Yucatán Peninsula (Mexico). These speleothems grew during the Middle to Late Quaternary and were dated by 230Th-U techniques to provide upper depth limits for past sea levels. We report the first relative sea-level limits for Marine Isotope Stages (MIS) 11 and 6, and present new evidence for sea-level oscillations during MIS 5 and early MIS 1. For the latter periods, the origin of growth interruptions is evaluated by combining petrographic methods with trace element analyses. The MIS 5c sea-level highstand probably occurred between 103.94 ± 0.58 ka and 96.82 ± 0.42 ka and must have exceeded -10.8 m (relative to present-day local sea level). The minimum average rate of sea-level fall over a 9.4 ka-long period during the MIS 5e/5d transition is calculated from stalagmite and published coral data at 1.74 ± 0.37 m/ka. For the early Holocene, previous discrepancies with respect to a potential multimetre oscillation of local sea level were found to be challenging to reconcile with the existing speleothem data from the area.  相似文献   

14.
In order to examine high-frequency variations of East Asian winter monsoon in Quaternary climatic extremes, two typical loess–paleosol sequences in the Chinese Loess Plateau were investigated. Sandy layers in the loess deposits, the “Upper sand” and “Lower sand” (layers L9 and L15, respectively), which represent a high-resolution record of paleomonsoon changes, have been sampled at intervals of 5–6 cm from sections at Luochuan and Xifeng. The grain size and magnetic susceptibility was measured for all samples. The grain-size results (a proxy of winter monsoon strength) indicate that the winter monsoon strength fluctuated on a millennial timescale during cold climatic extremes, with climatic events of a few hundred to a few thousand years. However, the winter monsoon was relatively stable during warm periods. The magnetic susceptibility signal (a proxy of summer monsoon intensity) is practically constant over the same period. This is tentatively explained by the assumption that the summer monsoon intensity was too low to be recorded in the magnetic susceptibility signal. The intensified winter monsoon events show periodicities in a range of 1000 to 2770 yr, with a dominant cycle of approximately 1450 yr. The detection of this oscillation in older glacial stages strongly suggests that it may be a pervasive cycle of the cold climatic phases of the Quaternary. Millennial-scale variations of the winter monsoon may be caused by instability of the westerly jet, which is determined by temperature differences between the polar and the equatorial regions.  相似文献   

15.
Landward-pointing V-shaped sand ridges several kilometers long are common along the windward margin of the Bahama Islands. Their axes share a northeast–southwest trend. Internally, the ridges contain low-angle oolitic beds with few erosional truncations. Commonly interbedded are tabular, fenestrae-rich beds such as those formed by the sheet flow of water over dry sand. Defined here as “chevron ridges,” these landforms appear to have originated in the rapid remobilization of bank margin ooid bodies by the action of long-period waves from a northeasterly source. Deposits along adjacent coastlines also preserve evidence of the impact of large waves. Reworked eolian sand bodies preserve beach fenestrae and hydraulic scour traces up to +40 m on older ridges. On cliffed coasts, 1000-ton boulders have been thrown well inland, recording the impact of large waves. Amino acid ratios confirm a correlation of the ridges across the archipelago, while stratigraphy, spacing, and cross-cutting relationships indicate emplacement as sea level fell rapidly from the substage 5e maximum at or above +6 m.  相似文献   

16.
《Quaternary Science Reviews》2007,26(3-4):536-559
The Ironshore Formation on Grand Cayman is formed of six unconformity-bounded packages (units A–F). Units A, B, C, and D, known from the subsurface in the northeastern part of Grand Cayman, formed during Marine Isotope Stages (MIS) 11(?), 9, 7, and 5e, respectively. Unconformities at the tops of units A, B, and C are highlighted by terra rossa and/or calcrete layers. Strata in core obtained from wells drilled in George Town Harbour and exposed on the west part of Grand Cayman belong to unit D, and the newly defined units E and F. Corals from unit E yielded Th/U ages of ∼104 ka whereas conch shells from unit F gave ages of ∼84 ka. Unit E equates to MIS 5c whereas unit F developed during MIS 5a.Th/U dating of corals and conchs from the Ironshore Formation on the western part of Grand Cayman shows that unit D formed during the MIS 5e highstand whereas units E and F developed in association with highstands at 95–110 ka (MIS 5c) and 73–87 ka (MIS 5a). Unit E, ∼5 m thick in the offshore cores, is poorly represented in onshore exposures. Unit F, which unconformably overlies unit D at most localities, is formed largely of fossil-poor, cross-bedded ooid grainstones. The unconformity at the top of unit D, a marine erosional surface with up to 2.5 m relief, is not characterized by terra rossa or calcrete in the offshore cores or onshore exposures. Unit D formed with a highstand of +6 m asl, whereas units E and F developed when sea level was +2 to +5 asl and +3 to +6 m asl, respectively. Thus, the highstands associated with MIS 5e, 5c, and 5a were at similar elevations.  相似文献   

17.
The volume of Antarctic ice at the Last Glacial Maximum is a key factor for calculating the past contribution of melting ice sheets to Late Pleistocene global sea level change. At present, there are large uncertainties in our knowledge of the extent and thickness of the formerly expanded Antarctic ice sheets, and in the timing of their release as meltwater into the world’s oceans. This paper reviews the four main approaches to determining former Antarctic ice volume, namely glacial geology, glacio-isostatic studies, glaciological modelling, and ice core analysis and attempts to reconcile these to give a ‘best estimate’ for ice volume. In the Ross Sea there was a major expansion of grounded ice at the Last Glacial Maximum, accounting for 2.3–3.2 m of global sea level. At some time in the Weddell Sea a large grounded ice sheet corresponding to c. 2.7 m of global sea level extended to the shelf break. However, this ice expansion has not yet been confidently dated and may not relate to the Last Glacial Maximum. Around East Antarctica there was thickening and advance offshore of ice in coastal regions. Ice core evidence suggests that the interior of East Antarctica was either close to its present elevation or thinner during the last glacial so the effect of East Antarctica on sea level depends on the net balance between marginal thickening and interior thinning. Suggested East Antarctic contributions vary from a 3–5.5 m lowering to a 0.64 m rise in global sea level. The Antarctic Peninsula ice sheet thickened and extended offshore at the Last Glacial Maximum, with a sea level equivalent contribution of c. 1.7 m. Thus, the Antarctic ice sheets accounted for between 6.1 and 13.1 m of global sea level fall at the Last Glacial Maximum. This is substantially less than has been suggested by most previous studies but the maximum figure matches well with one modelling estimate. The timing of Antarctic deglaciation is not well known. In the Ross Sea, terrestrial evidence suggests deglaciation may have begun at c. 13,000 yr BP1 but that grounded ice persisted until c. 6,500 yr BP. Marine evidence suggests the western Ross Sea was deglaciated by c. 11,500 yr BP. Deglaciation of the Weddell Sea is poorly constrained. Grounded ice in the northern Antarctic Peninsula had retreated by c. 13,000 yr BP, and further south deglaciation occurred sometime prior to c. 6,000 yr BP. Many parts of coastal East Antarctica apparently escaped glaciation at the LGM, but in those areas that were ice-covered deglaciation was underway by 10,000 yr BP. With existing data, the timing of deglaciation shows no firm relation to northern hemisphere-driven sea level rise. This is probably due partly to lack of Antarctic dating evidence but also to the combined influence of several forcing mechanisms acting during deglaciation.  相似文献   

18.
This study presents findings concerning Late Quaternary environmental changes in the Pearl River mouth region, China based on the study of over 300 boreholes. Out of these, 35 boreholes are selected for the reconstruction of transects across the deltaic plain and estuary. 39 radiocarbon dates obtained from these boreholes are used to help define the chronology of stratigraphic units present including two terrestrial units (T1 and T2) and two marine units (M1 and M2). Diatom assemblages are studied in 6 boreholes revealing similarities and differences between the two marine units. Before the area was inundated by the last interglacial sea (MIS 5), an older terrestrial unit of sand and gravel (T2) was laid down in a number of palaeo-valleys. During the last interglacial period, an older marine unit of silt and clay (M2) was laid down which was subsequently subaerially exposed when sea-level regressed during the last glacial period (MIS 4-2) causing the uppermost section to be weathered. During the same period, a younger terrestrial unit of sand and gravel (T1) was deposited along palaeo-river channels. Around the early Holocene before 8.2 cal. ka BP, the postglacial rise in sea level initiated a new phase of sedimentation in the outer part of the estuary, characterised by the high percentages of marine diatoms in the sediments. In the early Holocene, strong monsoon freshwater discharge resulted in sedimentation of a fine-sand layer in the inner part of the estuary. After 8.2 cal. ka BP, rapid rises in sea level caused widespread marine inundation and sedimentation. The diatom data suggest that the relative sea level associated with the M2 and M1 units were both at similar levels. Because the M2 unit is typically recorded at altitudes of 15 m and 20 m below the present sea level, this is likely to be a result of long-term subsidence. Although numerical dating of the pre-M1 units has not been made in the present study, the chronology of these units can be inferred from uranium-series ages and optically stimulated luminescence dating obtained from the adjacent coastal waters of Hong Kong. The T1 unit has yielded ages of about 30.0 cal. ka BP while the M2 unit has yielded ages about 130.0 cal. ka BP confirming their MIS 4-2 and MIS 5 ages respectively.  相似文献   

19.
The Richmond River Valley of northern N.S.W. contains a late Pleistocene succession dating back to approximately 250,000 yr B.P. Dinoflagellate and spore-pollen assemblages from the lowest interval, the lower “Dungarubba Clay” of Drury (1982), indicate deposition in a restricted estuarine environment at approximately 250,000 yr. Deposition in the overlying interval, the upper “Dungarubba Clay” and “Gundurimba Clay”, at approximately 120,000 yr B.P., began in a restricted estuary, but rising sea level caused inundation and deposition in a more open, marine-dominated environment. Dinoflagellate cyst assemblages from the last interglaciation (stage 5) are interpreted by analogy with those from the morphologically similar, modern Broken Bay, N.S.W. They are indicative of an open, marine-dominated environment and imply that barrier formation in the Richmond River Valley, and possibly elsewhere in northern N.S.W., did not commence until after the initial postglacial transgression. Synchronous changes in sea level and rainforest development suggest that there was no significant time lag between climate and sea-level change.  相似文献   

20.
Hydrochemical conditions up to depths of 1000 m below ground level around the Mizunami Underground Research Laboratory were investigated to construct a “baseline condition model” describing the undisturbed hydrochemical environment prior to excavation of the underground facilities at Mizunami, Gifu, Japan. Groundwater chemistry in this area was classified into a Na–Ca–HCO3 type of groundwater in the upper part of sedimentary rock sequence and a Na–(Ca)–Cl type of groundwater in the deeper part of the sedimentary rock sequence and basement granite. The residence time of the groundwaters was estimated from their 14C contents to be approximately 9.3 ka in the middle part of the sedimentary rock and older than 50 ka in the deep part of the granite. The evolution processes of these groundwaters were inferred to be water–rock interactions such as weathering of plagioclase, dissolution of marine sulphate/sulphide minerals and carbonate minerals in the Na–Ca–HCO3 type of groundwater, and mixing between “low-salinity water” in the shallow part and “higher-salinity water” in the deeper part of the granite in the Na–(Ca)–Cl type of groundwater. The source of salinity in the deeper part of the granite was possibly a palaeo-hydrothermal water or a fossil seawater that recharged in the Miocene, subsequently being modified by long-term water–rock interaction. The Cl-depth trend in granitic groundwater changes at a depth of −400 m below sea level. The hydrogeological properties controlling the groundwater flow and/or mixing processes such as advection and diffusion were inferred to be different at this depth in the granite. This hydrochemical conceptual model is indispensable not only when constructing the numerical model for evaluating the hydrochemical disturbance during construction and operation of the MIU facility, but also when confirming a hydrogeological model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号