首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of aerobic oxidation of methane was calculated based on average profiles of the tritiumhelium age of the Baikal waters and concentrations of the dissolved methane in the water column. In the deep lake zone (>200 m), the intensity of oxidation vertically decreases and is (2–0.3) × 10?2 nl CH4l?1 days?1 in southern and central Baikal and (2.8–1.0) × 10?2 nl CH4 l?1 days?1 in northern Baikal. The effective coefficient of the oxidation rate in the lake depressions is 3.6 × 10?4, 3.3 × 10?4, and 3.7 × 10?4 days?1, respectively. At current methane concentrations in the water column, about 80 t of methane is oxidized per year. Oxidation of the dissolved methane in the water column was estimated at a possible increase of its concentration.  相似文献   

2.
Based on shipboard and satellite observations, the characteristics of upwelling in Lake Baikal in the period of direct temperature stratification have been determined for the first time. Coastal upwellings appear annually under the effect of run-down and alongshore winds and are traced along the coast to a distance of up to 60–100 km and up to 250 km in North Baikal. Analogous to the way it occurs in seas, water rises from the depths of 100–200 m (350 m as a maximum) at the velocity of 0.1 × 10−2−6.5 × 10−2 cm/s. Divergence in the field of intràbasin cyclonic macrovortices produces upwelling in the Baikal pelagic zone and downwelling in the vicinity of shores; this lasts from 7 to 88 days and covers the depth interval of 80–300 m in August and up to 400–800 m in early-mid November. The area of upwellings occupies up to 20–60% of the separate basins of the lake. Vertical circulation of water in the field of pelagic upwellings leads to intensification of coastal currents and to formation of the thermobar with a heat inert zone in the central part of the lake in November, and this thermobar is not observed in other lakes, at that.  相似文献   

3.
This paper presents the results on measurements of water temperature in Lake Baikal of 1972–2007. The abnormal warming during this period was accompanied by gradual increase of the upper 300 m layer temperature, but did not affect the water state of the deep zone. Temperature fluctuations in 1972–1992 mainly depended on dynamic influence of atmosphere on the water column causing inter-annual changes in the activity of deep convection. Published in Russian in Doklady Akademii Nauk, 2009, Vol. 426, No. 5, pp. 685–689. Presented by Academician M.A. Grachev September 11, 2008 The article was translated by the authors.  相似文献   

4.
5.
Doklady Earth Sciences - The concentration of polycyclic aromatic hydrocarbons in the water of Lake Baikal is estimated. The published data on the composition of polycyclic aromatic hydrocarbons in...  相似文献   

6.
We report results of bottom temperature monitoring of 2003–2004 in the deepwater South Baikal basin (Lake Baikal) near active gas-fluid methane vents at lake depths of 1020 and 1350 m. Sediments and water temperatures were measured using an autonomous temperature recorder designed at the Institute of Geophysics (Novosibirsk). Experiments implied short-duration recording and pioneering continuous 350 day-long monitoring near the Staryi vent. Measurements within a 1 m thick layer above and below the bottom showed notable variations in water (up to 0.07 °C) and sediment temperatures and in geothermal gradient. The long temperature records include a relatively steady period (mid-June 2003-early February 2004) with smooth temperature variations (especially in sediments) and two transient unsteady periods. The steady season is the best time for heat flow studies in the South Baikal basin. The 0.04–0.05 °C drop in bottom water temperature during the unsteady periods may result from intrusion of cold surface water. A positive temperature anomaly of ∼0.04 °C recorded in April 2003 may be caused, among other reasons, by active gas venting.  相似文献   

7.
8.
9.
Mercury distribution was examined in the sediments of Lake Baikal that were sampled within the scope of the Baikal Drilling International Project in 1996–1999. The Hg concentrations in the ancient sediments are close to those in the modern sediments with the exception of a few peak values, whose ages coincide with those of active volcanism in adjacent areas. Mercury was demonstrated to be contained in the sediments in the adsorbed Hg0 mode, predominantly in relation with organic matter. When the organic matter of the bottom sediments is decomposed in the course of lithification, Hg is retained in the sediments adsorbed on the residual organic matter, and the concentration of this element corresponds to its initial content in the bottom sediments during their accumulation. Mercury concentrations in lithologically distinct bottom sediments of Lake Baikal and its sediments as a whole depend on the climate. Sediments that were formed during warm periods of time contain more Hg than those produced during cold periods or glaciation. Periodical variations in the Hg concentrations in the bottom sediments of Lake Baikal reflect the variations in the contents of this element in the Earth’s atmosphere in the Late Cenozoic, which were, in turn, controlled by the climatic variations on the planet and, thus, can be used for detailed reconstructions of variations in the average global temperature near the planet’s surface.  相似文献   

10.
Genetic types of methane from Lake Baikal   总被引:2,自引:0,他引:2  
  相似文献   

11.
12.
Lake-level changes inferred from seismic surveying and core sampling of the floor of Lake Baikal near the Selenga River delta can be used to constrain regional climatic history and appear to be correlated to global climate changes represented by marine oxygen isotope stages (MIS). The reflection pattern and correlation to the isotope stages indicate that the topset and progradational foreset sediments of the deltas formed during periods of stable lake levels and warm climatic conditions. During warm stages, the lake level was high, and during cold stages it was low. The drop in the lake level due to cooling from MIS 5 through MIS 4 is estimated to be 33-38 m; from MIS 3 through MIS 2, it fell an additional 11-15 m. Because the lake level is chiefly controlled by evaporation and river input, we infer that more water was supplied to Lake Baikal during warm stages.  相似文献   

13.
14.
Evidence from the Olkhon Island-Maloe More Strait area, one of the most representative areas of Lake Baikal, has revealed the following unique phenomenon. Under certain favorable conditions, the transport of sedimentary matter to water basin from land is supplemented with the abundant delivery of loose material in the form of sand flows over large areas (up to 3 km2 ) to the adjacent coast. We have revealed a specific cycle of material (reversible lithoflow) accompanied by the differentiation of sediments. The pelitic and silty fractions are separated from the psephitic and psammitic fractions in the subaqueous setting. The eolian transport of the psammitic material from the beach zone into the island is predominated by the removal of the medium-grained sand (fraction 0.5–0.25 mm). The mineral composition of main sources of terrigenous material is given. Formation conditions of the areas of eolian sands and their mineral and grain-size compositions, which reflect the existence of reversible lithoflows on the Baikal coast, are described. The physicomechanical properties (strength and adherence) of sandy sediments are assessed.Translated from Litologiya i Poleznye Iskopaemye, No. 2, 2005, pp. 133–142.Original Russian Text Copyright © 2005 by Akulov, Agafonov, Lomonosova, Vologina.  相似文献   

15.
Based on the general physical nature of tsunami generation, it is established that it is an attribute of seismically hazardous areas and regions adjacent to large water reservoirs and is threatening to the population and infrastructure of the coastal zones. The main preconditions and possibilities for the occurrence of tsunami on Lake Baikal are considered: the information on earthquakes in the Baikal hollow during the instrumental-historical period (1724–2011) is generalized in the map of epicenters of shocks of magnitude M ⩾ 5 and histograms of the distribution of numbers of shocks with respect to magnitude. It is shown that the tsunami waves start forming on Baikal if the earthquake magnitude M is ≈5, but since a system of tsunami monitoring on Baikal is absent, it can be observed only during the strongest earthquakes of M > 7. The catastrophic Tsagan earthquake (1861, M ≈ 7.5) is given as an example. It happened near the eastern coast of Lake Baikal and caused a tsunami with people’s deaths.  相似文献   

16.
In this paper, attention is paid to the importance of short-term prognosis of earthquakes. The variability of determination methods is noted. One of the geochemical methods, based on study of the helium content in deep water of Lake Baikal, is considered; such a method has not been used for open deep-water basins within the zones of high seismic danger. It is established that in the period of earthquake preparation, variations in the helium content deep underwater in Lake Baikal are recorded. A sharp decrease in the helium content two days before the earthquake was recorded first time for a long period of observation, as well as the consequent increase. Further study of the helium content deep underwater in Lake Baikal is recommended, and, should these data be proved, it is recommended as a short-term precursor of earthquakes.  相似文献   

17.
The patterns of renewal of bottom waters in Lake Baikal under the influence of deep convection and intrusion of cold waters have been considered based on the data of temperature surveys of Lake Baikal conducted in 1993–2009. The volumes of the cold bottom layer with the maximums of 200–470 km3 in individual years and the values of its total cooling (−20–60 × 109 MJ) have been determined for South, Middle, and North Baikal. The renewal process is asynchronous and proceeds with different activity in these parts of the lake, which indicates that the mechanisms that cause deep convection in the context of the great latitudinal length and differences in the climate and hydrological processes manifest themselves regionally. The volume of intrusions has been determined. Its average value for the period was higher in South Baikal (20 km3) than in Middle Baikal (9.8 km3) and North Baikal (8.6 km3). The volume of the intrusions in these parts of the lake was 30–70 km3 in some years.  相似文献   

18.
Crystallization of authigenic carbonates in mud volcanoes at Lake Baikal   总被引:1,自引:0,他引:1  
This paper presents data on authigenic siderite first found in surface sediments from mud volcanoes in the Central (K-2) and Southern (Malen’kii) basins of Lake Baikal. Ca is the predominant cation, which substitutes Fe in the crystalline lattice of siderite. The enrichment of the carbonates in the 13C isotope (from +3.3 to +6.8‰ for the Malen’kii volcano and from +17.7 to +21.9‰ for K-2) results from the crystallization of the carbonates during methane generation via the bacterial destruction of organic matter (acetate). The overall depletion of the carbonates in 18O is mainly inherited from the isotopic composition of Baikal water.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号