首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-seven samples of black weathering crust and host carbonates were studied from seven European countries (Germany, Hungary, Belgium, Czech Republic, France, Italy and Poland) representing 11 different sites. The samples were collected for sites for which long-term air pollution records are available. The mineralogical analyses (XRD, polarizing microscopy, SEM) have shown that despite decreasing SO2 emissions crust samples are still very rich in gypsum. Further, in all host rock samples gypsum was also detected. Good correlations (R2 > 0.9) were also found between water-soluble calcium and gypsum content and between sulphate and gypsum content both for black crusts and host rocks. The black gypsum crusts are four or five times richer in sulphate than the host rock. The conductivity of dissolved crust and host rock samples also shows a positive correlation with gypsum content of the samples. LA-ICP-MS analyses allowed the detection of high Pb-levels in black crusts and a negative shift in lead concentration at the crust/host rock transition. The lead content of the host rock is 2–5 mg/kg, while that of the crust is 3–25 mg/kg in the sample collected from Germany, while in the Belgian sample these values are 2–14 mg/kg and 80–870 mg/kg for the host rock and crust, respectively. The GC–MS technique allowed to detect the PAH content of black crusts and host rocks. The former one contains 0.6–15.6 (102.5) mg/kg, while in the host rock values between 0.2 and 2.4 mg/kg were found. The present study suggests that still large amounts of air pollution-related minerals and organic pollutants are found in the black weathering crusts of European carbonate buildings despite decreasing trends in air pollution.  相似文献   

2.
Black crusts are very common on limestones in polluted urban environments, but white crusts are less frequently developed. On the soft, porous and inherently weak oolitic limestone of Budapest both crusts are frequent, and indeed white ones are more common on the stone walls of the studied fortress. In this paper, black and white crusts and the host rock have been described using morphological criteria, mineralogical analyses (XRD, DTA), elements analyses (microprobe) and micro-morphological (SEM) tests. The analyses have shown that on white crusts the surface dissolution is combined with the precipitation of gypsum and calcite in the pores and accumulation of gypsum on the underside of the crust. Thin white crusts are removed by a combination of salt crystallisation (gypsum) and frost action while very thick stone layers scale off due to freeze-thaw cycles. Black crusts are enriched in gypsum relative to white crusts. Gypsum accumulates on the crust surface and signs of dissolution have not been observed. Airborne particulates (flyash, silt-sized quartz, and organic debris) adhere to the crust surface of sheltered black crusts. These particles are later incorporated into the expanding gypsum crystals, that are visible on the underside of the crust. The host rock also contains gypsum, but it is washed off the surface when the crust is removed. Further exposure of the host rock may lead to the dissolution of calcite crystals as it is observed by SEM. The micro-environment influences the crust formation and adherence of the crusts. On frequently wet and dry surfaces crust removal is more common. The crust serves as a protective layer on the stone surface, but this protection is temporary since trigger mechanisms such as salt crystallisation or frost action can cause rapid surface loss.Special Issue: Stone decay hazards  相似文献   

3.
The travertine buildings of Budapest show extensive black crust formation, which is related to high concentration of atmospheric pollution and a continental climate. Laminar black crusts, framboidal black crusts and leached white surfaces are compared. Physical properties (Schmidt hammer rebound, Duroscope rebound), mineralogical composition and elemental composition are measured. Framboidal black crusts contain more than 50% of acicular gypsum. The crust surface displays idiomorphic rosette-like gypsum crystals with particulates, calcite and gypsum crystal aggregates. The sulphur isotopic composition of the black crusts pinpoints the involvement of rain and dust in crust formation. Thick framboidal black crust has the lowest strength while thin laminar black crust and white dissolved surfaces show minor decrease in surface strength compared to unaltered travertine. The crusts adhere to the travertine surface and rarely show mechanical decay forms that are typical features of porous limestone ashlars in Budapest.  相似文献   

4.
High levels of SO2 and particulate pollution enable the rapid development of gypsum-rich weathering crusts in Budapest. Two types of white crusts, thin and thick ones, and two forms of black crusts, laminar and framboidal ones, were studied in limestone buildings of the parliament and Citadella. The percentage of crust cover and damage categories were documented on selected walls. Petrographic, XRD, XRF and sulphur isotope analyses were performed under laboratory conditions to understand the mechanism of crust formation. White crusts found both on exposed and sheltered walls display a calcite-rich layer with gypsum, while black crusts are enriched with gypsum. The sulphur isotopic composition of white and black crusts overlaps, but the crusts are slightly enriched in heavy isotopes compared to rainwater. S content, Si/Al ratios and particulates in black crusts suggest that air pollution (SO2, dust) contributes to black crust formation. The accumulation of sulphur and Zn enrichment of white crusts were also documented indicating that under high pollution levels, even these compound can accumulate on exposed facades.  相似文献   

5.
Severe stone deterioration is evident at the Cologne cathedral. In particular, the “Drachenfels” trachyte, which was the building material of the medieval construction period, shows significant structural deterioration as well as massive formation of gypsum crusts. The present article investigates crust formation on limestone, sandstone, and volcanic rock from the Cologne cathedral as well as from the Xanten and Altenberg cathedrals. These three buildings, showing varying degrees of deterioration, are located in different areas and exposed to varying industrial, urban, and rural pollution. Thin laminar and black framboidal crusts form on calcareous as well as silicate stone. The lack of a significant intrinsic calcium and sulfur source for the formation of the gypsum crusts on the Drachenfels trachyte indicates major extrinsic environmental impact: a sufficient offer of SO x from pollutant fluxes as well as external calcium sources (e.g., pollution, mortars, neighboring calcite stones). Chemical analyses reveal strong gypsum enrichment within the crusts as well as higher concentrations of lead and other pollutants (arsenic, antimony, bismuth, tin, etc.), which generally can be linked to traffic and industry. The formation of weathering crusts in an industrial environment is clearly distinguishable from that in rural areas. Scanning electron microscopy observations confirm that the total amount of pollution is less at the Altenberg cathedral than at the Cologne and Xanten cathedrals. XRF analyses show that the formation of gypsum occurs in lower amounts at Altenberg. This correlates well with the measured SO2 content and the intensity of the decay at the different locations. Furthermore, the different types of crusts, e.g., framboidal and laminar, can be differentiated and assigned to the different locations. The black weathering crusts on the silicate Drachenfels trachyte contribute to the degradation of the historic building material. They enhance mechanical moisture-related deterioration processes and the decay by chemical corrosion of rock-forming minerals. Although SO2 concentrations in air have shown a strong decrease over the past 30 years, degradation in connection with weathering crusts is still observed. This indicates that not only contemporary or recent emissions, but also past pollutant concentrations have to be considered.  相似文献   

6.
The Angera stone is a sedimentary Triassic dolostone mainly composed of dolomite, which was widely employed in the Lombard architecture. In the present work, the study of the Angera stone of the ‘Cortile del Richini’, a masterpiece of the Lombard baroque, is discussed as an example of a particularly challenging conservation issue. The courtyard suffered from a particularly troubled conservative history and the highly polluted urban environment of Milan provided very favourable conditions for the decay of such a delicate stone type. The last extensive conservative intervention was performed during the nineties due to massive black crust formation and granular disintegration of the stone. Almost 20 years later, a thorough study of the stone has been aimed at the definition of a long-term maintenance project. The Angera stone has been investigated in order to define an updated version of its state of conservation, as well as to track any changes in the degradation mechanisms due to the environmental variations of the Milan city centre. In particular, the soluble salts’ content of the stone substrate has been evaluated as an indicator of the damage level. The results highlighted that the stone is currently in critical condition: An extensive sulphation process is taking place, leading to the chemical transformation of the dolomitic substrate into gypsum. Moreover, the powder deposits affecting the stone surfaces have a similar composition to those generally found in the black crusts growing in urban environment. Therefore, they can be considered as precursor of this particularly dangerous decay mechanism.  相似文献   

7.
在对广东南海平洲、广州花都国际翡翠展销会等翡翠原料集散地大量现场考察的基础上,选取了具有黄色色调、白色和灰黑色皮壳的翡翠原石样品,经肉眼和偏光显微镜观察、X射线粉末衍射和电子探针测试,研究了不同颜色系列翡翠原石皮壳的矿物组成和化学成分特征。结果表明,不同颜色翡翠皮壳的主要矿物均为硬玉,次要矿物则有所不同。黄色皮壳含高岭石、三水铝石、软锰矿和赤铁矿等,白色皮壳含高岭石和水钙铝榴石,黑色皮壳则含高岭石和绿泥石类矿物。与内部玉石成分相比,皮壳中的主要化学成分硼(Na2O)和w(SiO2)有所降低,而w(CaO)和w(MgO)及Fe的质量分数则相对增加;黄色皮壳翡翠中Fe的质量分数越高,则皮壳的黄色色调越深,但皮壳的化学成分受环境影响较大,难以用于判断其内部玉石质量。仅初步总结了翡翠皮壳矿物组成与其内部玉石质量的关系。  相似文献   

8.
Gypsum crusts are broadly defined as accumulations at or within about 10 m of the land surface from 0.10m to 5.0 m thick containing more than 15% by weight gypsum (CaSO4·2H2O) and at least 5.0% by weight more gypsum than the underlying bedrock. The deposits are often, but not invariably, consolidated owing to cementation by gypsum. The crusts are found in many of the world's deserts where mean monthly potential evaporation exceeds mean monthly precipitation throughout the year. Using structural, fabric and textural criteria, three main types of crust may be distinguished:(1) bedded crusts, found either at or beneath the land surface, which are made up of discrete horizontal strata up to 0.10 m thick, each showing a gradation in gypsum crystal size from less than 50 μm at the top to more than 0.50 mm at the base; (2) subsurface crusts, of which there are two forms, one made up of large, lenticular crystals (up to 0.50 m in diameter)—the desert rose crusts—and the other, a mesocrystalline form, with gypsum crystals up to about 1.0 mm in diameter; and (3) surface crusts, which are subdivided into columnar, powdery and cobble forms, all of which are made up of predominantly alabastrine gypsum (crystallites less than 50 μm in diameter). In southern Tunisia and the central Namib Desert, bedded crusts are found around ephemeral lakes and lagoons. They are characterized by size-graded beds, gypsum contents of 50–80% by weight and comparatively high concentrations of sodium, potassium, magnesium and iron. They are interpreted as shallow-water evaporites which accumulate when saline pools evaporate to dryness. Desert rose crusts or croûtes de nappe generally contain 50–70% by weight gypsum, and have higher sodium concentrations than the second subsurface form. Texturally they are characterized by poikilitic inclusion of clastic material within large lenticular crystals. They are interpreted as hydromorphic accretions, which precipitate in host sediments at near-surface water tables through the evaporation of groundwater. The second form of subsurface crust—the mesocrystalline—often occurs in close association with the various surface forms. Unlike the hydromorphic crusts, they are not restricted to low-lying terrain. They are characterized by gypsum contents reaching 90% by weight, and have a close chemical and textural similarity to columnar surface crusts. This mesocrystalline form represents an illuvial accumulation; the surface forms—excluding the bedded crusts—are exhumed examples at various stages of solutional degradation. Subsurface precipitation of gypsum from meteoric waters containing salts leached from the surface, results in displacive gypsum accumulation in the soil zone. In southern Tunisia, the gypsum is derived from sand and dust deflated from evaporitic basins; in the central Namib, salts dissolved in fog water are the most likely source. Where other salts are present, differential leaching may form two-tiered crusts, calcrete—gypsum or gypsum—halite, if rainfall is sufficient to mobilize the less soluble salt yet insufficient to flush the more soluble. Gypsum crust genesis is restricted to arid environments, and if their susceptibility to post-depositional alteration is acknowledged, they can provide valuable palaeoclimatic indicators.  相似文献   

9.
库车盆地铜成矿作用发生在新近纪,主要有砂岩型、泥岩型、灰岩型、含石英脉硫化物型铜矿化。矿化主要分布在盆地南部的秋里塔格构造带和北部的克拉苏构造带,基本位于背斜核部偏两翼部位,沿近东西向的断裂带呈带状分布,发育在盐丘附近。主要的地表铜矿物是氯铜矿,为干旱气候条件下含盐盆地的产物。盆地古近系蒸发岩电镜分析、石膏铜含量化学分析及新近系碎屑岩中铜含量变化分析结果表明:盐岩、膏岩,褐红色碎屑岩(粉砂岩、泥质粉砂岩、泥岩)为铜的矿源层,灰绿色粉砂岩、泥岩、灰白色(含砾)中粗砂岩为铜的含矿层。铜离子的运移载体为源自大气降水溶解蒸发岩所形成的卤水,卤水淋滤褐红色碎屑岩中的铜并下渗到地下,在以构造挤压为主及盐构造卸负作用产生流体上涌的驱动力下沿断裂向地表运移,随着卤水温度压力降低,在干旱气候条件下,在地表碎屑岩节理面、部分层理面上盐、膏、铜矿物析出,形成地表砂岩型、泥岩型、灰岩型铜矿化。如果含铜卤水经过被方解石交代的硬石膏带时,遇到由于TSR反应形成的还原硫、氧化-还原化学障,铜会发生富集,可能形成地下铜矿体。  相似文献   

10.
Blackening and disaggregation of exposed surfaces of stone monuments are well-known effects of stone decay taking place in polluted urban environments all over the world. This paper aims to assess the contribution of natural and anthropogenic sources of total suspended particulate (TSP) causing permanent damage (black crusts) to the stone monuments of Catania (Sicily), one of the most popular ??cities of art?? of southern Italy. Atmospheric pollution of Catania, a typical Mediterranean coastal town, is mainly contributed by vehicle exhaust emissions rather than industrial ones. Episodically, the city also suffers gaseous and ash emissions (plumes) from the nearby Mount Etna volcano. Thus, to discriminate between natural and anthropogenic contributions to stone decay on Catania monuments, black crusts and TSP were sampled within the urban area and subjected to specific analytical procedures (optical microscopy, X-ray powder diffraction, Fourier transformed infrared spectroscopy, scanning electron microscopy equipped with energy dispersive spectrometry, ionic chromatography and dual inlet mass spectrometry). Mineralogical, chemical and isotopic characterization of black crusts and TSP provided new insights concerning the partition of sulfate sources in this particular urban context. The influence of Mount Etna emissions on both TSP and black crusts compositions was shown. Nevertheless, the key role of anthropogenic sources in the total sulfate budget was confirmed, while sea spray and volcanic emissions were found to make subordinate contributions. Quantitative data useful for the identification of the threshold pollution levels for preventive conservation of Catania monuments were obtained.  相似文献   

11.
The mineral and chemical compositions of a set of crust samples collected from the North, Central and South Atlantic were examined by means of analytical electron microscopy and ICP-MS, chemical, and microchemical elemental analysis. The dominant mineral phases of the crusts are vernadite, asbolane, and goethite, with minor ferrihydrite, and rare hematite and feroxyhyte. The samples show wide variability in major and trace elements; however, their characteristic geochemical signatures indicate hydrogenetic origin. A comparison between the compositions of oceanic hydrogenetic and hydrothermal crusts and metalliferous hydrothermal sediments from different ocean areas suggests that the geochemical approach may be insufficient in some cases and fail to identify a hydrothermal input in ferromanganese crusts of a mixed composition.  相似文献   

12.
发育完整的灰岩风化壳及其矿物学和地球化学特征   总被引:25,自引:5,他引:20  
对于碳酸盐岩土覆土壤成因、尽管碳酸盐岩风化残积成土说被多数学者认同,但由于碳酸盐岩中酸不溶物含量极低,在风化成土过程中会伴随着巨大的体积缩小变化,原岩结构和半风化带无法保留,从而缺失了探索上覆土壤物质来源的重要中间环节,使得这种观点缺乏野外宏观证据的支持。最近,我们在贵州、湖南等地发现了数个以泥质灰岩和泥质白云岩为基岩的碳酸盐岩风化壳剖面,尚保留有较好的原岩结构,具有明显的风化壳分带和过渡现象。这些风化壳剖面的发现为深入研究碳酸盐岩风化成土过程提供了良好的研究场所。本文选取了较为典型的吉首泥灰岩风化壳剖面,从矿物学地球化学的角度来探讨碳酸盐岩风化壳的形成过程和发育特征,结果表明该风化壳既遵循非碳酸盐岩(主要是结晶岩类)风化壳的发育特征,也具有自己独特的地球化学演化规律。风化壳总体特点受碳酸盐中的酸不溶物矿物组合及化学成分的影响甚至控制,风化非碳酸盐风壳相似的发育特征。吉首泥灰岩风化壳剖面的发育特征和作者早先提出 的碳酸盐岩风化成土的两阶段模式是一致的,即以碳酸盐矿物大量淋失、酸不溶物逐渐堆积或残积为特征的早期阶段和残积物进一步风化成土的阶段,后一阶段的演化类似非碳酸盐岩类的风化过程。  相似文献   

13.
Increasingly complex life forms were found in older biological soil crusts in the Gurbantaunggut Desert in Northwestern China. These crusts may play a critical role in mineral erosion and desert soil formation by modifying the weathering environment and ultimately affecting mineralogical variance. To test this hypothesis, variations in the morphological features and mineralogical components of successional biological soil crusts at 1 cm were studied by optical microscopy, SEM and grain size analysis. Concentrations of erosion-resistant minerals decreased with crust succession, while minerals susceptible to weathering increased with crust development. Neogenetic minerals were found in late stage crusts, but not in early stage crusts. Silt and clay concentrations were highest in early formation crusts and soil mean particle size decreased with crust succession. Cyanobacteria, lichen and moss were shown to erode and etch rocks, and secondary minerals produced by weathering were localized with the living organisms. Thus, more developed crusts appeared to contribute to greater mineral weathering and may be a major cause of mineralogical variance seen in the Gurbantunggut Desert. The greater activity and complexity of older crusts, as well as their improved moisture condition may function to accelerate mineral weathering. Therefore, protection and recovery of biological crusts is vital for desert soil formation.  相似文献   

14.
The black limestone widely used in Slovenian monuments, particularly in the baroque architecture, is deteriorating extensively due to salt crystallization. Samples of soluble salts from two important historical monuments (in Ljubljana, Slovenia) were investigated in terms of their mineral and isotopic (S and O) compositions. Results revealed the presence of gypsum and soluble salts of the MgSO4·nH2O series, such as starkeyite (MgSO4·4H2O), pentahydrite (MgSO4·5H2O) and hexahydrite (MgSO4·6H2O). Whereas black crusts and subflorescences consisted of gypsum, efflorescences appeared to be an assemblage of gypsum and MgSO4 hydrates. Sample δ18Osulfate values varied from ?1.9‰ to +5.5‰ vs. V-SMOW and δ34Ssulfate values from ?19.8‰ to +3.2‰ vs. V-CDT. The respective isotopic composition of analysed outdoor and indoor monument samples indicated different sources of contamination.  相似文献   

15.
Calcium oxalate (whewellite) was found to be the primary component of crusts on limestone in the dry rock shelters throughout the Lower Pecos region of Texas. This material forms a translucent patina that covers the pictographs in this area. Evidence from analyses using SEM/EDS, FTIR, XRD, Raman spectroscopy, and AMS is presented that suggests the oxalate-rich crusts were produced by metabolic activity of lichen or fungi on or near the surface of the limestone substrate. The paucity of hyphae and microbes in samples studied using SEM may indicate that the organisms responsible for the production of the oxalate are no longer present on the shelter walls. Radiocarbon ages of three oxalate samples range from 2100 to 5570 years B. P., indicating that the crust may be used for obtaining chronological information on the rock art.  相似文献   

16.
Stone objects decay in all environments, but the modes of decay vary from one region to another. In the modern industrial countries acid deposition has accelerated the decay of stone. Many objects that survived centuries of weathering without serious damage have, in the present century, decomposed beyond recognition. The black crusts seen on stone structures mostly contain gypsum formed by SO2 reactions with calcareous minerals. These crusts exfoliate, destroying the sculptural form. Because of the absence of proven technology to treat and restore these objects, the caryatids at the Acropolis had to be moved indoors to save them from further disfiguration.In arid climates, the salts in stone and the meteorologic conditions combine to disrupt stone structures. The Great Sphinx at Giza is a prominent example of this mode of stone decay. In humid, tropical regions, such as in southern India, hydrolysis disrupts the mineral structure, causing rapid damage even to such durable stone as granite.The human effort to save the deteriorating structures has often aggravated the problem. The sandstone at the Legislative Building in Olympia, Washington has, because of the protective acrylic coating, suffered greater damage than the similar but unprotected sandstone at a nearby school building.It appears that proper management can greatly help to reduce the decay of the stone. A scientifically designed cleaning can inhibit the formation of crusts and the accumulation of efflorescences. The absence of the crusts and efflorescence and application of appropriate impregnants, which consolidate yet maintain the "breathability" of stone, may prolong the life of historic structures.  相似文献   

17.
In zones washed by rain (façades, pinnacles, pilasters), fine siliceous sandstones are covered by a black varnish, which gives a dirty appearance to monuments. In composition, structure and areas covered by it, it differs from the usual black gypsum crust. Experiments carried out on blocks covered by black varnish show the modifications due to their growth. Results show that despite their low thickness and the coherence of the stone below, the accumulation of hydrophobic matters and the wetting-drying cycles modify the transfer properties of sandstones several centimeters below the surface. Thus, although sandstones seem to be protected by the black varnish, in the long run, a flake detachment process, in the areas covered by it, affects them. Therefore, damage to sandstones by black varnish can be explained by the fact that a wetting and drying cycle modifies the pore network.  相似文献   

18.
As a US east coast state with a major income from outdoor recreation and tourism, Delaware highly values its environmental quality and natural resources. However, no results on polycyclic aromatic hydrocarbons (PAHs) contamination in soil at natural recreational areas (NRAs) in the state have been reported. In this study soil samples from seven state parks, two city parks, two state forests, and two national wildlife refuges in Delaware were analyzed for the concentrations of 12 selected PAHs. Results indicated that the median concentration of total PAHs in urban, suburban, and rural NRAs was 1,159, 138, and 130 μg/kg, respectively. Based on the classification proposed by Maliszewska-Kordybach, soil PAH contamination level at almost all sampling sites in urban NRAs was classified as contaminated or heavily contaminated, while that at sampling sites in suburban and rural NRAs was classified as not or weakly contaminated. Principal component analysis showed that all these areas share the same independent variable, which may be composed of one or more contribution sources. Pyrogenic processes were inferred to be the major source of soil PAH contamination in Delaware NRAs. Individual PAH concentration at all sampling sites were observed below the limit of Canadian Quality Guidelines except for site F3, where the concentration of benzo[b]flouranthene, benzo[k]flouranthene, and benzo[a]pyrene was found to exceed the limit by 88.3, 125, and 281 %, respectively. Further investigation on PAH contamination and possible remediation in area F are recommended.  相似文献   

19.
碳酸盐岩的化学风化是岩溶关键带各圈层相互作用的主要形式,风化壳中蕴含重要气候环境和物质循环信息。通过对广西桂林会仙峰丛谷地石灰土的化学风化强度及元素迁移特征的研究,并与滇黔湘和青藏高原的岩溶风化壳的对比分析,结果表明:(1)会仙石灰土化学蚀变指数(CIA)均值为92.14,与贵州兴义岩溶风化壳相当,反映炎热潮湿气候下的强烈化学风化;白云岩风化壳CIA与灰岩风化壳相当,CIA值主要受“不溶物”含量的影响;地形上,从上坡到下坡,从坡地到谷地,垂向剖面从浅部到深部,碳酸盐岩风化壳的CIA值呈减小趋势;(2)包括会仙石灰土在内的中国南方碳酸盐岩风化壳的CIA值与纬度成负相关,青藏高原地区和北方地区碳酸盐岩风化壳的CIA值与纬度不存在相关性,可能受晚第三纪以来印度板块俯冲推挤,青藏高原地区构造抬升和夷平面变形的影响;(3)与硅酸盐风化壳、黄土剖面不同,碳酸盐岩风化壳CIA和Na/K(摩尔比值)不存在相关性,但CIA和K/Al(摩尔比值)则存在显著负相关,可采用K/Al来表征碳酸盐岩剖面的风化程度,其主要是受可溶成分的快速淋失影响;会仙石灰土、贵州兴义风化壳较其他风化壳更接近Al端,化学风化程度更高;(4)会仙石灰土的化学成分与中国其他地区碳酸盐岩风化壳基本一致,剖面上分布均匀;与上陆壳相比,Na、K、Ca、Mg表现为亏损,其他元素为富集;和下伏碳酸盐岩的稳定元素Ti相比,除了Cr、Fe、P、Al富集或不变外,其他元素都发生明显的迁移淋失;会仙风化壳元素的迁移性由强到弱为:Ca ? Mg ? B ? Na ? N ? Cd ? Zn ? As ? K ? Pb ? Si ? Mn ? Al ? Cr ? Fe ? P,高含量Ca、Mg的快速溶失对其他元素的迁移性有重要影响。   相似文献   

20.
用场发射扫描电子显微镜及能谱仪和X射线衍射仪,对淄博市中心城区大气降尘的矿物组成、微形貌和微区成分进行了分析.结果表明,淄博市大气降尘的矿物组成有石英、长石、石膏、方解石、赤铁矿、白云母、伊利石和非晶质等.矿物微形貌特点和矿物组成揭示了降尘组分主要来源于3种途径:与高温过程有关的工业活动排放的产物,自然成因和大气化学反应的产物.球形赤铁矿、板状方解石和絮状石膏是本研究中观察到的3种典型矿物微形貌.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号