首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present line-strengths and kinematics from the central regions of 32 galaxies with Hubble types ranging from E to Sbc. Spectral indices, based on the Lick system, are measured in the optical and near-infrared (NIR). The 24 indices measured, in conjunction with models of the effects of varying abundance ratios, permit the breaking of age/metallicity degeneracy, and allow estimation of enhancements in specific light elements (particularly C and Mg). The large range of Hubble types observed allows direct comparison of line-strengths in the centres of early-type galaxies (E and S0) with those in spiral bulges, free from systematic differences that have plagued comparisons of results from different studies. Our sample includes field and Virgo cluster galaxies. For early-type galaxies our data are consistent with previously reported trends of Mg2 and Mgb with velocity dispersion. In spiral bulges we find trends in all indices with velocity dispersion. We estimate luminosity-weighted ages, metallicities and heavy-element abundance ratios (enhancements) from optical indices. These show that bulges are less enhanced in light ( α -capture) elements and have lower average age than early-type galaxies. Trends involving age and metallicity also differ sharply between early and late types. An anticorrelation exists between age and metallicity in early types, while, in bulges, metallicity is correlated with velocity dispersion. We consider the implications of these findings for models of the formation of these galaxies. We find that primordial collapse models of galaxy formation are ruled out by our observations, while several predictions of hierarchical clustering (merger) models are confirmed.  相似文献   

2.
3.
Stellar populations in spiral bulges are investigated using the Lick system of spectral indices. Long-slit spectroscopic observations of line strengths and kinematics made along the minor axes of four spiral bulges are reported. Comparisons are made between central line strengths in spiral bulges and those in other morphological types [elliptical, spheroidal (Sph) and S0]. The bulges investigated are found to have central line strengths comparable to those of single stellar populations of approximately solar abundance or above. Negative radial gradients are observed in line strengths, similar to those exhibited by elliptical galaxies. The bulge data are also consistent with correlations between Mg2, Mg2 gradient and central velocity dispersion observed in elliptical galaxies. In contrast to elliptical galaxies, central line strengths lie within the loci defining the range of 〈Fe〉 and Mg2 achieved by Worthey's solar abundance ratio, single stellar populations (SSPs). The implication of solar abundance ratios indicates significant differences in the star formation histories of spiral bulges and elliptical galaxies. A 'single zone with infall' model of galactic chemical evolution, using Worthey's SSPs, is used to constrain the possible star formation histories of our sample. We show that the 〈Fe〉, Mg2 and H β line strengths observed in these bulges cannot be reproduced using primordial collapse models of formation but can be reproduced by models with extended infall of gas and star formation (2–17 Gyr) in the region modelled. One galaxy (NGC 5689) shows a central population with a luminosity-weighted average age of ∼5 Gyr, supporting the idea of extended star formation. Kinematic substructure, possibly associated with a central spike in metallicity, is observed at the centre of the Sa galaxy NGC 3623.  相似文献   

4.
5.
We present a simple metallicity estimator based on the logarithmic [N  ii ]   λ 6584/H α   ratio, hereafter N2, which we envisage will become very useful for ranking galaxies in a metallicity sequence from redshift survey-quality data even for moderately low spectral resolution.
We have calibrated the N2 estimator using a compilation of H  ii galaxies having accurate oxygen abundances, plus photoionization models covering a wide range of abundances. The comparison of models and observations indicates that both primary and secondary nitrogen are important for the relevant range of metallicities.
The N2 estimator follows a linear relation with log(O/H) that holds for the whole abundance range covered by the sample, from approximately  1/50th  to twice the Solar value  [7.2<12+log(O/H)<9.1]  . We suggest that the ([S  ii ]   λλ 6717,6731/H α )  ratio (hereafter S2) can also be used as a rough metallicity indicator. Because of its large scatter the S2 estimator will be useful only in systems with very low metallicity, where [N  ii ] λ 6584 is not detected or in low-resolution spectra where [N  ii ] λ 6584 is blended with H α .  相似文献   

6.
In order to investigate the influence of environment on supernova (SN) production, we have performed a statistical investigation of the SNe discovered in isolated galaxies, in pairs and in groups of galaxies. 22 SNe in 18 isolated galaxies, 48 SNe in 40 galaxy members of 37 pairs and 211 SNe in 170 galaxy members of 116 groups have been selected and studied.
We found that the radial distributions of core-collapse SNe in galaxies located in different environments are similar, and consistent with those reported by Bartunov, Makarova & Tsvetkov . SNe discovered in pairs do not favour a particular direction with respect to the companion galaxy. Also, the azimuthal distributions inside the host members of galaxy groups are consistent with being isotropics. The fact that SNe are more frequent in the brighter components of the pairs and groups is expected from the dependence of the SN rates on the galaxy luminosity.
There is an indication that the SN rate is higher in galaxy pairs compared with that in groups. This can be related to the enhanced star formation rate in strongly interacting systems.
It is concluded that, with the possible exception of strongly interacting systems, the parent galaxy environment has no direct influence on SN production.  相似文献   

7.
galev (GALaxy EVolution) evolutionary synthesis models describe the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological time-scales of ≥13 Gyr from the onset of star formation shortly after the big bang until today.
For galaxies, galev includes a simultaneous treatment of the chemical evolution of the gas and the spectral evolution of the stellar content, allowing for what we call a chemically consistent treatment: we use input physics (stellar evolutionary tracks, stellar yields and model atmospheres) for a large range of metallicities and consistently account for the increasing initial abundances of successive stellar generations.
Here we present the latest version of the galev evolutionary synthesis models that are now interactively available at http://www.galev.org . We review the currently used input physics, and also give details on how this physics is implemented in practice. We explain how to use the interactive web interface to generate models for user-defined parameters and also give a range of applications that can be studied using galev , ranging from star clusters, undisturbed galaxies of various types E–Sd to starburst and dwarf galaxies, both in the local and the high-redshift Universe.  相似文献   

8.
9.
10.
We present a generalization of the multiphase chemical evolution model (CEM) applied to a wide set of theoretical galaxies with different masses and evolutionary rates. This generalized set of models has been computed using the so-called universal rotation curve from Persic, Salucci & Steel to calculate the radial mass distribution of 44 theoretical protogalaxies. This distribution is a fundamental input which, besides its own effect on the galaxy evolution, defines the characteristic collapse time-scale or gas infall rate on to the disc. We have adopted 10 sets of values, between 0 and 1, for the molecular cloud and star formation efficiencies, as corresponding to their probability nature, for each one of the radial distributions of total mass. Thus, we have constructed a biparametric grid of models, depending on those efficiency sets and on the rotation velocity, whose results are valid in principle for any spiral or irregular galaxy. The model results provide the time-evolution of different regions of the disc and the halo along galactocentric distance, measured by the gas (atomic and molecular) and stellar masses, the star formation rate (SFR) and chemical abundances of 14 elements, for a total of 440 models. This grid may be used to estimate the evolution of a given galaxy for which only present time information, such as radial distributions of elemental abundances, gas densities and/or star formation, which are the usual observational constraints of chemical evolution models (CEMs), is available.  相似文献   

11.
We present new evolutionary synthesis models for simple stellar populations for a wide range of ages and metallicities. The models are based on the Padova isochrones. The core of the spectral library is provided by the medium resolution Lejeune et al. atmosphere models. These spectra are complemented by Non Local Thermodynamic Equilibrium (NLTE) atmosphere models for hot stars that have an important impact on the stellar cluster's ionizing spectra: O, B and WR stellar spectra at the early ages, and spectra of post asymptotic giant branch stars and planetary nebulae, at intermediate and old ages. At young ages, our models compare well with other existing models, but we find that the inclusion of the nebular continuum, not considered in several other models, significantly reddens the integrated colours of very young stellar populations. This is consistent with the results of spectral synthesis codes particularly devised for the study of starburst galaxies. At intermediate and old ages, the agreement with the literature model is good and, in particular, we reproduce the observed colours of star clusters in Large Magellanic Cloud well. Given the ability to produce good integrated spectra from the far-ultraviolet to the infrared at any age, we consider that our models are particularly suited for the study of high-redshift galaxies. These models are available on the web site http://www.fractal-es.com/SEDmod.htm and also through the Virtual Observatory Tools on the PopStar server.  相似文献   

12.
We present a statistical study of a very large sample of H  ii galaxies taken from the literature. We focus on the differences in several properties between galaxies that show the auroral line [O  iii ]λ4363 and those that do not present this feature in their spectra. It turns out that objects without this auroral line are more luminous, are more metal-rich and present a lower ionization degree. The underlying population is found to be much more important for objects without the [O  iii ]λ4363 line, and the effective temperature of the ionizing star clusters of galaxies not showing the auroral line is probably lower. We also study the subsample of H  ii galaxies whose properties most closely resemble the properties of the intermediate-redshift population of luminous compact blue galaxies (LCBGs). The objects from this subsample are more similar to the objects not showing the [O  iii ]λ4363 line. It might therefore be expected that the intermediate- redshift population of LCBGs is powered by very massive, yet somewhat aged, star clusters. The oxygen abundance of LCBGs would be greater than the average oxygen abundance of local H  ii galaxies.  相似文献   

13.
14.
The evolution in X-ray properties of early-type galaxies is largely unconstrained. In particular, little is known about how, and if, remnants of mergers generate hot gas haloes. Here we examine the relationship between X-ray luminosity and galaxy age for a sample of early-type galaxies. Comparing normalized X-ray luminosity to three different age indicators, we find that L X L B increases with age, suggesting an increase in X-ray halo mass with time after the last major star formation episode of a galaxy. The long-term nature of this trend, which appears to continue across the full age range of our sample, poses a challenge for many models of hot halo formation. We conclude that models involving a declining rate of type Ia supernovae, and a transition from outflow to inflow of the gas originally lost by galactic stars, offer the most promising explanation for the observed evolution in X-ray luminosity.  相似文献   

15.
16.
17.
18.
We present a summary of high‐spatial resolution follow‐up observations of the elliptical (E) and lenticular (S0) galaxies in the SAURON survey using the OASIS integral field spectrograph. The OASIS observations explore the central 8″ × 10″ regions of these galaxies using a spatial sampling four times higher than SAURON, often revealing previously undiscovered features. Around 75% (31/48) of the SAURON E/S0s with central velocity dispersion ≳ 120 km s−1 were observed with OASIS, covering well the original SAURON representative sample.We present here an overview of this follow‐up survey, and some preliminary results on individual objects, including a previously unreported counter‐rotating core in NGC4382; the decoupled stellar and gas velocity fields of NGC2768; and the strong age gradient towards the centre of NGC3489. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号