首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abundance and vertical distribution pattern of a mysidMeterythrops microphthalma were investigated in the Japan Sea. Results from vertical hauls from 602–982 m depth to the surface around Yamato Rise in April 1987 indicated that the dominance (by biomass) ofM. microphthalma was third to fifth of major zooplankton taxa. Vertical distribution investigated at a single station in Toyama Bay in June, September and December 1986 showed that the most part of population of this mysid inhabited consistently below 250 m depth. No marked diurnal vertical migration was evident. Data on body composition and oxygen consumption rate ofM. microphthalma are presented. Water content of the body was 75.6–83.8% of wet weight, and ash was 11.4–20.4% of dry weight. Carbon, hydrogen and nitrogen were 37.9–47.5%, 6.2–7.4% and 9.4–10.1%, respectively, of dry weight. Oxygen consumption rates were 2.2–11.0µl O2 individual–1 hr–1 at 0.5°C, and were directly proportional to body mass. From the comparison with the published data on epipelagic and bathypelagic mysids it is revealed that both body nitrogen composition and oxygen consumption rate expressed as adjusted metabolic rate [AMR02,µl O2 (mg body N)–0.85 hr–1] ofM. microphthalma are intermediate between high epipelagic and low bathypelagic levels, indicating typical mesopelagic features.  相似文献   

2.
We have observed the temporal variation of oxygen deficient water with short time scale (less than a few days) in the central area of Ohmura Bay, Kyushu, Japan, in summer, 1995 and 1996. The vertical profiles of temperature were similar to those of dissolved oxygen. We noticed a linear relation between temperature and dissolved oxygen in the bottom layer, and applied the T-DO relation to estimate the net oxygen consumption rate, rather than direct evaluation of the advection and diffusion. Oxygen consumption rate just above the bottom was estimated to be about 0.21 g O2 m–3day–1 in July 1995, and about 0.28 g O2 m–3day–1 in August 1996. The net oxygen consumption rate estimated for the bottom layer below the second thermocline was about 0.61 g O2 m–3day–1 with variability from 0.55 to 0.66 g O2 m–3day–1 during July 25 to 29, 1995. This is was about 0.64 g O2 m–3day–1 with variability from 0.18 to 1.4 g O2 m–3day–1 during August 22 to 30, 1996. The net oxygen consumption rates are about half of those measured with a closed system in the Seto Inland Sea.  相似文献   

3.
Primary productivity was measured byin situ method using13C in the offshore Oyashio region in the spring (May) and summer (September) of 1990. Most of the values were within the range of 0.1 to 4 gC 1–1 h–1 although a very large value, 7.96 gC l–1 h–1, was observed in summer. Most daily primary production fell within the range of 372 to 633 mgC m–2 d–1 although a very large value, 2,109 mgC m–2 d–1, was observed around the frontal area in summer. Chlorophylla (Chl.a) exceeded 1 g l–1 in many cases, and the maximum was 4.61 g l–1 in spring and 7.53 g l–1 in summer. Most primary productivity per unit Chl.a (photosynthetic assimilation ratio) was within the range of 0.1 to 3 gC gChl.a –1 h–1 although higher values, 3–6 gC gChl.a –1 h–1, were observed where small-size phytoplanktons (<2 m) were dominant. These results were compared with results obtained until now in the Oyashio region. The values beyond the range obtained so far in the offshore region were also observed in this study. Furthermore, it was pointed out that the size composition of phytoplankton community has significant influence on the results of Chl.a and photosynthetic assimilation ratio in the Oyashio region.  相似文献   

4.
In situ measurements of the primary productivity of ice algae and phytoplankton were carried out in the fast ice area near Syowa Station (69°00S, 39°35E) during the austral spring and summer of 1983/84. Standing stock of ice algae reached a maximum of 45.1 mg chla m–2 in late October. Phytoplankton standing stock attained a value of 3.57 mg chla m–2 in mid-January. Primary production of ice algae in late October (7.64 mgC m–2 hr–1) was 14 times greater than that in mid-January (0.54 mgC m–2 hr–1). Production in the water column in mid-January (3.46 mgC m–2 hr–1) was 50 times greater than that in late October (0.07 mgC m–2 hr–1). These results indicate a substantial production by ice algae in the spring and by phytoplankton in the summer period.  相似文献   

5.
Standing stocks and production rates of phytoplankton and planktonic copepods were investigated at 15 stations in the Inland Sea of Japan during four cruises in October–November 1979, January, April and June 1980. The overall mean of phytoplankton biomass was relatively constant during the study period, ranging from 2.3 mg chl.a m–3 in April to 3.6 mg chl.a m–3 in October–November. Primary production was low in January (mean: 90 mg C m–2 d–1), but higher than 375 mg C m–2 d–1 on the other occasions. Integrated annual primary production was 122 g C m–2 yr–1. In terms of carbon weight,Paracalanus parvus was the most important copepod species. The variation of the mean copepod biomass (range: 7.6 mg C m–3 in April to 20.2 mg C m–3 in June) was smaller than that of copepod production, which was estimated by the Ikeda-Motoda's physiological method. Copepod producion was low in cold seasons (0.6 and 0.9 mg C m–3 d–1 in January and April, respectively), and increased, following the elevation of primary production, to 4.9 mg C m–3 d–1 in June. Annual copepod production was 33.7 g C m–2 yr–1, of which herbivore (secondary) production was 26.4 g C m–2 yr–1 (21.7% of primary production). The ratios of pelagic planktivorous fish catch and total fish catch to the primary production were 0.82 and 1.8%, respectively, indicating very high efficiency in exploiting fishery resources in the Inland Sea of Japan.  相似文献   

6.
The interplay between the oxygen minimum zone and remotely-forced oxygenation episodes determines the fate of the benthic subsystem off the Central Peruvian coast. We analyzed a 12 year monthly time-series of oceanographic and benthic parameters at 94 m depth off Callao, Central Peru (12°S), to analyze: (i) near-bottom oxygen level on the continental shelf in relation to dynamic height on the equator (095°W); and (ii) benthic ecosystem responses to oxygen change (macrobiotic infauna, meiofauna, and sulphide-oxidizing bacteria, Thioploca spp.). Shelf oxygenation episodes occurred after equatorial dynamic height increases one month before, consistent with the propagation of coastal trapped waves. Several but not all of these episodes occurred during El Niños. The benthic biota responded to oxygenation episodes by undergoing succession through three major ecological states. Under strong oxygen deficiency or anoxia, the sediments were nearly defaunated of macro-invertebrates and Thioploca was scarce, such that nematode biomass dominated the macro- and meiobiotas. When frequency of oxygenation events reduced the periods of anoxia, but the prevailing oxygen range was 10–20 μmol L−1, mats of Thioploca formed and dominated the biomass. Finally, with frequent and intense (>40 μmol L−1) oxygenation, the sediments were colonized by macrofauna, which then dominated biomass. The Thioploca state evolved during the 2002–2003 weak EN, while the macrofauna state was developed during the onset of the strong1997–1998 EN. Repeated episodes of strong oxygen deficiency during the summer of 2004, in parallel with the occurrence of red tides in surface waters, resulted in the collapse of Thioploca mats and development of the Nematode state. Ecological interactions may affect persistence or the transition between benthic ecosystem states.  相似文献   

7.
From July to November, the thermocline which has strong temperature gradient (0.7C m–1) is formed in the bottom water of Beppu Bay, and it prevents the downward mixing of surface water. This has caused the bottom water of the basin to become depleted in oxygen, and in November the bottom water below about 60 m depth becomes anoxic. Accordingly manganese and iron are reduced and more soluble under the anoxic condition, those concentrations are high relative to surface water, and the maximums are 1,240g l–1 and 80g l–1. Under the anoxic condition, the flux of dissolved manganese from the sediment is about 10g cm–2 day–1.  相似文献   

8.
We investigated the geographical variations in abundance and biomass of the major taxonomic groups of micro- and net-zooplankton along a transect through Ise Bay, central Japan, and neighboring Pacific Ocean in February 1995. The results were used to estimate their secondary and tertiary production rates and assess their trophic roles in this eutrophic embayment in winter. Ise Bay nourished a much higher biomass of both micro- and net-zooplankton (mean: 3.79 and 13.9 mg C m–3, respectively) than the offshore area (mean: 0.76 and 4.47 mg C m–3, respectively). In the bay, tintinnid ciliates, naked ciliates and copepod nauplii accounted for, on average, 69, 18 and 13% of the microzooplankton biomass, respectively. Of net-zooplankton biomass, copepods (i.e. Acartia, Calanus, Centropages, Microsetella and Paracalanus) formed the majority (mean: 63%). Average secondary production rates of micro- and net-zooplankton in the bay were 1.19 and 1.87 mg C m–3d–1 (or 23.1 and 36.4 mg C m–2d–1), respectively, and average tertiary production rate of net-zooplankton was 0.75 mg C m–3d–1 (or 14.6 mg C m–2d–1). Available data approximated average phytoplankton primary production rate as 1000 mg C m–2d–1 during our study period. The transfer efficiency from primary production to zooplankton secondary production was 6.0%, and the efficiency from secondary production to tertiary production was 25%. The amount of food required to support the zooplankton secondary production corresponded to 18% of the phytoplankton primary production or only 1.7% of the phytoplankton biomass, demonstrating that the grazing impact of herbivorous zooplankton was minor in Ise Bay in winter.  相似文献   

9.
Constant flows, as well as oscillatory tidal flow, play an important role in the long-term dispersion of water in the Seto Inland Sea. Two kinds of numerical model (1-line and 2-line models) of the Seto Inland Sea have been developed to determine the role of density-induced currents, one type of the constant flow, in water dispersion in the Inland Sea. The seasonal variations of temperature, salinity and density fields are simulated and the density-induced current field is predicted at the same time. It is found that the most appropriate value of the longitudinal eddy diffusion coefficient,K x, is 5×106–7×106 cm2sec–1. The value of the overall mean dispersion coefficient is of the order of 107cm2sec–1 (Hayami and Unoki, 1970). Consequently, it is suggested that 50–70% of the total dispersion in the Seto Inland Sea can be attributed to currents other than density-induced currents,i.e., tidal currents, tide-induced currents and wind-driven currents.In winter, both density and velocity fields, calculated using the 1-line model, satisfy the conditions for the existence of a coastal front in Kii Channel and in the eastern Iyo-nada.  相似文献   

10.
Seasonal new production (g C m−2) estimates obtained from dissolved oxygen and nitrate concentrations in surface waters (5 m depth) along a track between the UK (Portsmouth) and northern Spain (Bilbao) are compared. An oxygen flux method, in combination with a ship of opportunity (SOO), was tested on the northwest European shelf for its value in distinguishing high production in frontal regions. Dissolved oxygen, nitrate and chlorophyll a samples were collected monthly from February to July 2004, alongside continuous autonomous measurements of salinity, temperature and chlorophyll fluorescence. Depth integrated new production estimates for all the individually analysed hydrographic regions of the route were produced.Results from three widely used gas-exchange parameterizations gave seasonal (February–July) new production estimates of 54–68 g C m−2 for the Ushant region of the western English Channel and 31–40 g C m−2 for the shelf slope, averaging 24–31 g C m−2 for the route. This is double the route average obtained using the nitrate assimilation method (17 g C m−2) and within the ranges of previous estimates in the same region. The oxygen flux method gave a fivefold enhancement compared to the nitrate method in the Ushant frontal region and a threefold enhancement in the English Channel and shelf break regions. Determining oxygen fluxes to estimate new production may be more reliable than nitrate assimilation in active tidal or frontal regions of shelves where nitrate may be added to the system post-winter through advection or entrainment.  相似文献   

11.
Distribution and seasonal variability of dissolved organic carbon (DOC) and surface active substances (SAS) were studied along the depth profile (15 m) in a small eutrophicated and periodically anoxic sea lake (Rogoznica Lake, Eastern Adriatic coast) in 1996 and 1997. The range of DOC concentrations was characteristic for productive coastal marine ecosystems (60% of samples in the range of 1–2 mg l−1and 40% between 2 and 3 mg l−1). Distribution of SAS concentrations was uniform and shifted toward higher concentrations in comparison to other coastal areas in the Adriatic Sea. Eutrophication in the lake is generated by nutrient recycling under anaerobic conditions. Systematically higher concentrations of chlorophyll a, DOC and SAS were determined at the chemocline in the bottom layer (10–12 m) than in the upper water layer (0·5–2 m). Seasonal variability of organic matter was discussed regarding distributions of microphytoplankton (cells >20 μm) and photosynthetic pigments as well as oxygen and salinity changes along the depth profile. The dissolved oxygen saturation reaching up to 300% in the water layer between 8 m and 10 m depths in May and June 1996, was correlated with enhanced concentrations of phytoplankton biomass (reflected as chl a and b, fucoxanthin, peridinin, zeaxanthin) and increased concentrations of DOC and SAS.  相似文献   

12.
The respiration rates of copepod larvae and a ciliate (Placus sp.) from a tropical sea were measured with an oxygen electrode method. The general range of body size of these animals was 40–161m (diameter equivalent to a sphere), and the respiration rate measured was 0.00076–0.00176l O2 (animal)–1h–1 (or 2.02–9.05l O2 (mg wet weight)–1h–1) at 25.5–29.2C. There was no marked difference observed between the respiration rates of copepod larvae and the ciliate. The respiration rates obtained here are relatively higher than the rates of other similar sized protozoans found in the literature, but lower than the rate extrapolated from larger planktonic copepods in tropical seas.The present results and other information available on microzooplankton biomass suggest that microzooplankton respiration is of near equal importance to that of net zooplankton in the study of energy flow through tropical, pelagic ecosystems.  相似文献   

13.
This study focused on the causes of the variation in microphytobenthic biomass and the effects of this variation on macrobenthic animals in the western Seto Inland Sea, Japan, where the importance of microphytobenthos as the primary food source for benthic animals has been recently reported. We investigated the microphytobenthic biomass together with light attenuation of seawater, phytoplanktonic biomass, macrobenthic density and biomass at eight stations (water depth = 5–15 m) during four cruises in 1999–2000. The increased light attenuation coefficient of the water column associated with increased concentration of the phytoplanktonic Chl-a caused a decrease in light flux that reached the seafloor. The biomass of the microphytobenthos within the upper 1 cm of the sediment, 1.9–46.5 mg Chl-a m−2, was inversely correlated with the phytoplanktonic biomass in the overlying water column, 10.9–65.0 mg Chl-a m−2. Thus, interception of light by phytoplankton is considered to be a main cause of the variation in the microphytobenthic biomass. The microphytobenthos biomass showed a significant positive correlation with the macrobenthic density (78–9369 ind. m−2) and biomass (0.4–78.8 gWW m−2). It appears that the increase in oxygen production by the microphytobenthos allowed macrobenthic animals to become more abundant, as a consequence of oxygenation of the organically enriched muddy sediments (14.5 ± 2.69 mg TOC g−1). This study suggests that the variation in the microphytobenthic biomass is influenced by the phytoplanktonic biomass due to shading effect, and the balance between these two functional groups might affect the variability in the macrobenthic density and biomass.  相似文献   

14.
The accumulation rates of sediment cores in Osaka Bay have been determined by using210Pb dating technique. In the upper 10 cm210Pbex contents show a constant value with depth. The accumulation rates below the homogeneous layer of sediments ranging from 0.12 to 0.61cm y–1 (0.067–0.34 g cm–2 y–1) were obtained. The higher contents of Zn, Cu, Pb and Cr were observed in the upper 10 to 30 cm of sediments. Assuming that the increment of heavy metal content in sediments is due to anthropogenic origin, the amount of anthropogenic input of heavy metals into sediments were estimated to be 1,300–2,700g cm–2 for Zn, 150 – 480 for Cu, 360 – 410 for Pb and 320 – 480 for Cr. The increment appears to start about 100 years ago. In surfical sediments most of heavy metal contents exceeded the background content, and then most part of Osaka Bay is polluted by heavy metals.  相似文献   

15.
The vertical flux of particulate matter at 330 m depth in San Lázaro Basin off southern Baja California ranged from 63 to 587 mg m−2 d−1 between August and November 1996. Organic carbon contents were between 5.6 and 14.8%, yielding flux rates of 9–40 mgC m−2 d−1. In December 1997 and January 1998, at the height of the strong El Niño event, the respective fluxes (47–202 mg m−2 d−1 and 3–8 mgC m−2 d−1) were comparable. The February–June 1998 records, however, revealed sharply reduced mass (1–6 mg m−2 d−1) and organic carbon (0.2–0.8 mgC m−2 d−1) fluxes. The organics collected in 1996 were predominantly autochthonous (δ13C=−22‰; C/N=8). The variations in δ15N (8.3–11.0‰) suggest an alternation of new and regenerated production, possibly associated with fluctuations in the intensity of deep mixing during that autumn. The relatively high organic matter fluxes in December 1997 appear to be associated with regenerated production. The average composition from February to June 1998 (δ13C=−23.6‰; 15N=11.7‰; C/N=10.5) indicates degraded material of marine origin. The maximum δ15N value found (14‰) suggests that deeper, denitrified waters were brought to the surface and possibly advected laterally. Regime changes in the waters of the basin occur at 6–10 week intervals, evidenced by concurrent shifts in most of the measured parameters, including fecal pellet types and metal chemistry. The marine snow-dominated detritus collected showed a shift from a mixed diatom-rich-radiolarian-coccolith assemblage in late 1996 to a coccolith-dominated assemblage, including the contents of fecal pellets, during the 1997–1998 El-Niño period. T–S profiles, plankton analysis and chlorophyll contents of the upper water column indicated that the strong phytoplankton bloom, normally associated with seasonal upwelling along the Pacific coast of Baja, did not occur during the spring of 1998. The persistence of oligotrophic conditions during the 1997–1998 El Niño event favored the dominance of nanoplankton and reduced the vertical flux of particles.  相似文献   

16.
Environmental parameters that affect the growth ofChattonella antiqua were monitored throughout the outbreak period of this species around the Ie-shima Islands, the Seto Inland Sea, in the summer of 1987 (20 July–13 August). Averaged cell concentration ofC. antiqua over the water column (21 m) was below 10 cells· ml–1 on 20 July, gradually increased to reach the maximum of 250 cells·ml–1 on 7 August, and then rapidly decreased to the value of 30 cells·ml–1 on 13 August.Thermal stratifications were prominent from 20 July to 3 August and were destroyed after 4 August. Temperature and salinity were optimum for the growth ofC. antiqua throughout the survey period.At the bloom initiation period (20–21 July), concentrations of N- and P-nutrients (S N andS P ) were high throughout the water column. From 22 July to 3 August, whenC. antiqua increased its populations,S N andS P at the depth of 0–5m were low but those at the depth of 10–20m kept a high value. After 4 August,S n andS P at the depth of 10–20m decreased rapidly due to wind mixing coupled with the nutrient uptake byC. antiqua. When the populations ofC. antiqua reached the maximum (7–9 August), N-nutrients were depleted throughout the water column but P-nutrients were not. Concentrations of vitamin B12 were almost in the same range as those of the previous years and were optimum for the growth ofC. antiqua.GP- value (growth potential of the seawater with respect to nitrogen and phos-phorus) was higher than 0.6 even at the surface layer (0–5 m) at the bloom-initiation period. During the bloom development period (22 July–3 August), GP at the surface layer (0–5m) was low (<0.2), but GP at the depth of 10–20m kept a rather high value (>0.4).In situ growth rates ofC. antiqua at the depth of 0 and 5m estimated from bottle experiments coincided well with the values expected from GP. A high value of GP at the surface layer in the initiation period and a shallow GP-cline in the development period, combined with the ability of diurnal vertical migration seemed to be at least one reason that natural populations ofC. antiqua grew at a rather high rate and formed red tides in the summer of 1987.  相似文献   

17.
Shimada  A.  Nishijima  M.  Maruyama  T. 《Journal of Oceanography》1995,51(3):289-300
Seasonal appearance ofProchlorococcus was studied by flow cytometry in Suruga Bay, Japan in 1992–1993.Prochlorococcus cells were in high concentrations (>1×104 cells ml–1) from July to October 1992 and September 1993, when the water temperature was over 20°C. The 16S rRNA of the isolated cells showed 98.5% sequence homology with that ofP. marinus (Sargasso strain), indicating that they are the same species. The former has a high divinyl-chlorophyll (DV-Chl.)a/b ratio similar to the Mediterranean strain and different from the Sargasso strain. Maximum concentration ofProchlorococcus at the surface water was 2.5×104 cells ml–1 in August 1992 and their DV-Chl.a accounted for 4.0% of the total chlorophylla. A decrease in cell density to less than 5×103 cells ml–1 was observed from December to May with an exceptional rise in January 1993. WhileProchlorococcus showed a maximum concentration of 3.6×104 cells ml–1 at 10 m depth in September 1992, phycoerythrin (PE)-richSynechococcus spp. were dominant with their maximum concentration of 2.2×105 cells ml–1 in the same water body. On the other hand, phycocyanin (PC)-richSynechococcus spp. and the larger phytoplankters showed maximum concentrations in the surface waters in May and June. BothProchlorococcus and PE-richSynechococcus showed their lowest concentrations in April. A significant positive correlation was obtained between cell concentrations of the PE-richSynechococcus andProchlorococcus.  相似文献   

18.
A red tide due toGymnodinium nagasakiense was observed in August 1988 in Tanabe Bay, Wakayama Prefecture, Japan. The maximum cell concentration ofG. nagasakiense reached 1×105 cells ml–1 at the surface water. From May to September 1988, the following were monitored: water temperature, salinity, chlorophylla, D.O., dissolved nutrients (NO2–N, NO3–N, NH4–N, PO4–P DON, DOP), particulate nutrients (PON, POP) and three dissolved selenium species [Se(IV), Se(VI), Organic Se]. Dissolved inorganic nitrogen (NO3–N, NH4–N) decreased but PON, POP, DON, DOP and inorganic phosphate increased at the peak of the bloom. The concentration of organic selenium increased up to the bloom initiation period which started on 5 July, and then the concentration of Se(IV) increased as the concentration of organic selenium decreased at the peak of the bloom (3 August). The strong relationship was found between the concentration of Se(IV) and the cell concentration ofG. nagasakiense (r 2=0.98). The Se(IV) requirement ofG. nagasakiense was 2.89×10–17 moles cell–1, which was agreed well with 4.4×10–17 moles cell–1 found in a laboratory experiment onG. nagasakiense using selenium spiked artificial sea water medium. The average ratio of Se(IV) to dissolved inorganic nitrogen (DIN) during the red tide bloom was 11441, the ratio of Se(IV) to DIN at the surface with the maximum cell concentration ofG. nagasakiense of 1×105 cells ml–1 was 1137. These results suggested that selenium may play an important role in red tide outbreak ofG. nagasakiense.  相似文献   

19.
As part of a larger project on the deep benthos of the Gulf of Mexico, an extensive data set on benthic bacterial abundance (n>750), supplemented with cell-size and rate measurements, was acquired from 51 sites across a depth range of 212–3732 m on the northern continental slope and deep basin during the years 2000, 2001, and 2002. Bacterial abundance, determined by epifluorescence microscopy, was examined region-wide as a function of spatial and temporal variables, while subsets of the data were examined for sediment-based chemical or mineralogical correlates according to the availability of collaborative data sets. In the latter case, depth of oxygen penetration helped to explain bacterial depth profiles into the sediment, but only porewater DOC correlated significantly (inversely) with bacterial abundance (p<0.05, n=24). Other (positive) correlations were detected with TOC, C/N ratios, and % sand when the analysis was restricted to data from the easternmost stations (p<0.05, n=9–12). Region-wide, neither surface bacterial abundance (3.30–16.8×108 bacteria cm−3 in 0–1 cm and 4–5 cm strata) nor depth-integrated abundance (4.84–17.5×1013 bacteria m−2, 0–15 cm) could be explained by water depth, station location, sampling year, or vertical POC flux. In contrast, depth-integrated bacterial biomass, derived from measured cell sizes of 0.027–0.072 μm3, declined significantly with station depth (p<0.001, n=56). Steeper declines in biomass were observed for the cross-slope transects (when unusual topographic sites and abyssal stations were excluded). The importance of resource changes with depth was supported by the positive relationship observed between bacterial biomass and vertical POC flux, derived from measures of overlying productivity, a relationship that remained significant when depth was held constant (partial correlation analysis, p<0.05, df=50). Whole-sediment incubation experiments under simulated in situ conditions, using 3H-thymidine or 14C-amino acids, yielded low production rates (5–75 μg C m−2 d−1) and higher respiration rates (76–242 μg C m−2 d−1), with kinetics suggestive of resource limitation at abyssal depths. Compared to similarly examined deep regions of the open ocean, the semi-enclosed Gulf of Mexico (like the Arabian Sea) harbors in its abyssal sediments a greater biomass of bacteria per unit of vertically delivered POC, likely reflecting the greater input of laterally advected, often unreactive, material from its margins.  相似文献   

20.
The typically anaerobic nature of mangrove sediments provides significant challenges to the mangrove trees and biota inhabiting them. The burrowing activities and flow of water through the numerous and complex animal burrows perforating the sediments of mangroves have a major influence on the biogeochemistry of the sediments and are important to the enhancement of nutrient and oxygen exchange. Two new methods are presented for monitoring the tidal flushing of Sesarma messa and Alpheus cf macklay burrows in a Rhizophora stylosa mangrove forest – by measuring oxygen content of burrow water and by determining the change in fluorescence of a dye tracer through tidal inundation. A case study using the first of these showed oxygen consumption rates at the burrow wall deep within the burrow were found to be between 210 and 460 μmol O2 m−2 h−1. The influx of oxygen during a flood tide was found to be significant and indicated that approximately 40% of the burrow water is flushed during a single tidal event. However, the high consumption rate of oxygen within the burrow resulted in the oxygen concentration remaining at or below one-third of the oxygen content of the flooding tidal water. A test application of the second method, using rhodamine dye as a tracer, indicated that the exchange of water between the burrow and the flooding tide was found to be in the order of 30% of the burrow volume. These new techniques provide a means to further study the nutrient exchange within these burrow systems and verify the initial findings that several tidal inundations are necessary to completely flush the burrows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号