首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Based on the variations of geographical locations, the summer rain belts over eastern China were classified in this study into eight types: Inner Mongolia, North China, the Yellow River, the Huaihe River, the Yangtze River, the northern and southern parts of Jiangnan ( to the south of the lower Yangtze River valley), and South China. The file of 8-type rain belts was compiled from 1470 to 2005, and in order to extend the file of rain belts, it was further merged into a file of 4-type rain belts and also completed during the last millennium from 1000 to 1999. At last, the two files show that summer rain belts frequently occur in the Yangtze River valley in warm climate periods, but in the Yellow River or the Huaihe River valley in cold periods.  相似文献   

2.
Hainan, an island province of China in the northern South China Sea, experienced two sustained rainstorms in October2010, which were the most severe autumn rainstorms of the past 60 years. From August to October 2010, the most dominant signal of Hainan rainfall was the 10–20-day oscillation. This paper examines the roles of the 10–20-day oscillation in the convective activity and atmospheric circulation during the rainstorms of October 2010 over Hainan. During both rainstorms,Hainan was near the center of convective activity and under the influence of a lower-troposphere cyclonic circulation. The convective center was initiated in the west-central tropical Indian Ocean several days prior to the rainstorm in Hainan. The convective center first propagated eastward to the maritime continent, accompanied by the cyclonic circulation, and then moved northward to the northern South China Sea and South China, causing the rainstorms over Hainan. In addition, the westward propagation of convection from the tropical western Pacific to the southern South China Sea, as well as the propagation farther northward, intensified the convective activity over the northern South China Sea and South China during the first rainstorm.  相似文献   

3.
Using the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data at 1°×1° resolution, analysis is performed on a persistent heavy rainfall event with two rain bands to the south of the Yangtze River during 17–22 June 2005. The northern rain band was related to the atmospheric mass adjustment of cold front precipitation and the associated ageostrophic feature to the rear right of subtropical westerly jets, while the southern counterpart formed under the joint influence of easterly/westerly jets and the South Asian high (SAH). The ageostrophic wind field to the rear right of the easterly jet center gives rise to an anti-circulation that favors the genesis of the southern belt. The feature of du/dt 0 around the SAH ridge line and to the rear right of the easterly jet streak results in a strong v – vg0 field in the vicinity of the rain region as well as to its south. When westerly jets move southward, an intense v – vg0 feature appears to the north of the rain region, i.e., behind the center of the westerly jets. The associated mass adjustment leads to vigorous divergence over the rain region, which is responsible for the strong precipitation from the warm sector of the front. Also, a θe front at the middle level of the southern rain band and the cold front favor the release of instable energy to enhance the rainstorm. The southern and northern fronts approach each other and the two rain belts merge into one.  相似文献   

4.
The evolution of a mesoscale convective system (MCS) that caused strong precipitation in the northern area of Dabie Mountain during 21-22 June 2008 is analyzed, along with the evolution of the associated meso-β-scale convective vortex (MCV). The mesoscale reanalysis data generated by the Local Analysis and Prediction System (LAPS) at a 3-km horizontal resolution and a 1-h time resolution during the South China Heavy Rainfall Experiment (SCHeREX) were utilized. The results show that two processes played key roles in the enhancement of convective instability. First, the mesoscale low-level jet strengthened and shifted eastward, leading to the convergence of warm-wet airflow and increasing convective instability at middle and low levels. Second, the warm-wet airflow interacted with the cold airflow from the north, causing increased vertical vorticity in the vicinity of steeply sloping moist isentropic surfaces. The combined action of these two processes caused the MCS to shift progressively eastward. Condensation associated with the MCS released latent heat and formed a layer of large diabatic heating in the middle troposphere, increasing the potential vorticity below this layer. This increase in potential vorticity created favorable conditions for the development of a low-level vortex circulation. The vertical motion associated with this low-level vortex further promoted the development of convection, creating a positive feedback between the deep convection and the low-level vortex circulation. This feedback mechanism not only promoted the maturation of the MCS, but also played the primary role in the evolution of the MCV. The MCV formed and developed due to the enhancement of the positive feedback that accompanied the coming together of the center of the vortex and the center of the convection. The positive feedback peaked and the MCV matured when these two centers converged. The positive feedback weakened and the MCV began to decay as the two centers separated and diverged.  相似文献   

5.
Mesoscale modeling study of severe convection over complex terrain   总被引:1,自引:0,他引:1  
Short squall lines that occurred over Lishui, southwestern Zhejiang Province, China, on 5 July 2012, were investigated using the WRF model based on 1°× 1° gridded NCEP Final Operational Global Analysis data. The results from the numerical simulations were particularly satisfactory in the simulated radar echo, which realistically reproduced the generation and development of the convective cells during the period of severe convection. The initiation of this severe convective case was mainly associated with the uplift effect of mesoscale mountains, topographic convergence, sufficient water vapor, and enhanced low-level southeasterly wind from the East China Sea. An obvious wind velocity gradient occurred between the Donggong Mountains and the southeast coastline, which easily enabled wind convergence on the windward slope of the Donggong Mountains; both strong mid–low-level southwesterly wind and low-level southeasterly wind enhanced vertical shear over the mountains to form instability; and a vertical coupling relation between the divergence on the upper-left side of the Donggong Mountains and the convergence on the lower-left side caused the convection to develop rapidly. The convergence centers of surface streams occurred over the mountain terrain and updrafts easily broke through the lifting condensation level(LCL) because of the strong wind convergence and topographic lift, which led to water vapor condensation above the LCL and the generation of the initial convective cloud. The centers of surface convergence continually created new convective cells that moved with the southwest wind and combined along the Donggong Mountains, eventually forming a short squall line that caused severe convective weather.  相似文献   

6.
The climatological features and interannual variation of winter-to-spring transition over southern China and its surrounding areas, and its possible mechanisms are examined in this study. The climatological mean winter-to-spring transition is approximately in mid-March over southern China and the northern South China Sea. During the transition stage, anomalous southwest winds prevail at low-level over southern China and its nearby regions with enhanced convergence center over southern China, bringing more moisture from the Bay of Bengal (BOB) and the South China Sea (SCS) to southern China; meanwhile, the upper level is characterized by an obvious divergence wind pattern over southern China to the southwest part of Japan and enhanced upward motion. All the change of circulation is favorable to an increase of precipitation over southern China after seasonal transition. The winter-to-spring transition is predominantly on the interannual variation over southern China and the northern SCS. Early winter-to-spring transitions may induce more precipitation over southern China in spring, especially in March, while late cases will result in less precipitation. The interannual variability of the winter-to-spring transition and the related large-scale circulation are closely associated with the decaying phase of ENSO events. The warm ENSO events contribute to early winter-to-spring transitions and more precipitation over southern China.  相似文献   

7.
A strong cyclonic wind perturbation generated in the northern South China Sea (SCS) moved northward quickly and developed into a mesoscale vortex in southwest Guangdong Province, and then merged with a southward-moving shear line from mid latitudes in the period of 21-22 May 2006, during which three strong mesoscale convective systems (MCSs) formed and brought about torrential rain or even cloudburst in South China. With the 1° ×1° NCEP (National Centers for Environment Prediction) reanalysis data and the Weather and Research Forecast (WRF) mesoscale model, a numerical simulation, a potential vorticity inversion analysis, and some sensitivity experiments are carried out to reveal the formation mechanism of this rainfall event. In the meantime, conventional observations, satellite images, and the WRF model outputs are also utilized to perform a preliminary dynamic and thermodynamic diagnostic analysis of the rainstorm systems. It is found that the torrential rain occurred in favorable synoptic conditions such as warm and moist environment, low lifting condensation level, and high convective instability. The moisture transport by strong southerly winds associated with the rapid northward advance of the cyclonic wind perturbation over the northern SCS provided the warm and moist condition for the formation of the excessive rain. Under the dynamic steering of a southwesterly flow ahead of a north trough and that on the southwest side of the West Pacific subtropical high, the mesoscale vortex (or the cyclonic wind perturbation), after its genesis, moved northward and brought about enormous rain in most parts of Guangdong Province through providing certain lifting forcing for the triggering of mesoscale convection. During the development of the mesoscale vortex, heavy rainfall was to a certain extent enhanced by the mesoscale topography of the Yunwu Mountain in Guangdong. The effect of the Yunwu Mountain is found to vary under different prevailing wind directions and intensities. The location o  相似文献   

8.
The characteristics of raindrop size distribution(DSD) over the Tibetan Plateau and southern China are studied in this paper, using the DSD data from April to August 2014 collected by HSC-PS32 disdrometers in Nagqu and Yangjiang, comprising a total of 9430 and 6366 1-min raindrop spectra, respectively. The raindrop spectra, characteristics of parameter variations with rainfall rate, and the relationships between reflectivity factor(Z) and rainfall rate(R) are analyzed, as well as their DSD changes with precipitation type and rainfall rate. The results show that the average raindrop spectra appear to be one-peak curves, the number concentration for larger drops increase significantly with rainfall rate, and its value over southern China is much higher, especially in convective rain. Standardized Gamma distributions better describe DSD for larger drops, especially for convective rain in southern China. All three Gamma parameters for stratiform precipitation over the Tibetan Plateau are much higher, while its shape parameter(μ) and mass-weighted mean diameter(D_m), for convective precipitation, are less. In terms of parameter variation with rainfall rate, the normalized intercept parameter(N_w) over the Tibetan Plateau for stratiform rain increases with rainfall rate, which is opposite to the situation in convective rain. The μover the Tibetan Plateau for stratiform and convective precipitation types decreases with an increase in rainfall rate, which is opposite to the case for D m variation. In Z–R relationships, like "Z = AR~b", the coefficient A over the Tibetan Plateau is smaller, while its b is higher, when the rain type transfers from stratiform to convective ones. Furthermore, with an increase in rainfall rate, parameters A and b over southern China increase gradually, while A over the Tibetan Plateau decreases substantially, which differs from the findings of previous studies. In terms of geographic location and climate over the Tibetan Plateau and southern China, the precipitation in the pre-flood seasons is dominated by strong convective rain, while weak convective rain occurs frequently in northern Tibet with lower humidity and higher altitude.  相似文献   

9.
The NCEP/NCAR II daily mean reanalysis data and observed precipitation data are employed to investigate the westward extension of the western Pacific subtropical high (WPSH) during the heavy rain period over the southern China in June 2005. Results show that there may exist a relationship between the east-west shift of the WPSH and the process of a southern China heavy rain. The analysis indicates that the vertical motion in the WPSH area is mainly caused by the latent heat release of monsoon rain belts on its northern and southern sides. The vertical motion could cause the accumulation of air mass in the center and west of the WPSH, which leads to its strengthening. The appearance of the northern and southern monsoon rain belts could not only enhance the WPSH by strengthening the descending draft, but also excite the development of positive vorticity and restrict the WPSH’s movement in the north–south direction. Moreover, the Indian monsoon rainfall to the west of the WPSH may excite the development of anticyclonic vorticity on its eastern side, which leads to the westward extension of the WPSH.  相似文献   

10.
Severe typhoon Damrey moved across Hainan Island from 00:00 UTC 25 September to 00:00 UTC 27 September in 2005 and gave rise to a significant rain process during its 48-h passage. The precipitation intensity on the southern part of the island is stronger than that on the northern, showing obvious asymmetric distribution. Using Tropical Rainfall Measuring Mission (TRMM) data, the associated mesoscale characteristics of the precipitation were analyzed and the formation of asymmetric rainfall distribution was investigated in the context of a subsynoptic scale disturbance, vertical wind shear and orographic factors. The results are shown as follows. (1) The subsynoptic scale system provided favorable dynamic conditions to the genesis of mesoscale rain clusters and rainbands. (2) The southern Hainan Island was located to the left of the leeward direction of downshear all the time, being favorable to the development of convection and leading to the asymmetric rainfall distribution. (3) Mountain terrain in the southern Hainan Island stimulated the genesis, combination and development of convective cells, promoting the formation of mesoscale precipitation systems and ultimately resulting in rainfall increase in the southern island.  相似文献   

11.
Based on the NCEP/NCAR reanalysis data,China station precipitation data from 1960 to 2008,and aerosol optical depth (AOD) data in northern China from 1980 to 2004,this paper investigates the variability of winter snow/rainfall in northern China and the associated atmospheric circulation and aerosol distribution characteristics by using composite analysis.The results show that winter precipitation in northern China has been generally increasing since the 1960s.Among the winters of 1990-2008,the years with more rain/snow (MRSYs) are 1998,2003,and 2006,while the years with less rain/snow (LRSYs) are 2005,1997,and 2001.Composite analysis finds that the main differences of atmospheric circulation in East Asia between MRSYs and LRSYs are as follows.1) In MRSYs,strong low-level cold air over the northern polar region and Taymyr Peninsula migrates southward to northern China (Northwest,North,and Northeast China),establishing a channel favoring continuous southward transport of cold air.In LRSYs,however,this cold air channel does not exist.2) In MRSYs,the frontal zone and westerlies are over North China,and the low-level geopotential height field from eastern China to West Pacific exhibits an "east high,west low" pattern,which is conducive to easterly and southerly airflows moving northward along 110 E.In LRSYs,the 500-hPa prevailing westerly winds stay far away from China and the low-level southeasterlies move to higher latitudes,which are disadvantageous to the development of precipitation in northern China.3) In MRSYs,large-scale upward motions combined with local-scale updrafts develop into strong slanted climbing airflows,forming a vertical circulation that favors the generation of heavy snows in eastern China.In LRSYs,the vertical circulation moves eastward into the Pacific Ocean.Furthermore,the correlation analysis on AOD and winter precipitation during the period 1980-2004 in northern China reveals that AOD differs significantly between MRSYs and LRSYs and the annual variation of winter rain/snow is positively correlated to the annual variation of AOD with a correlation coefficient of 0.415 at the 0.001 significance level.  相似文献   

12.
Squall lines frequently invade the Yangtze–Huaihe River region(YHR), where the complex terrain of rivers, lakes,and mountains plays an important role in the initiation and maintenance of convection. The surface heat flux not only varies with surface conditions, but also changes between day and night. Coupled with the terrain forcing, such diurnal–nocturnal thermodynamic differences shift the low-level baroclinity, and thus further complicate the convective activities. To investigate the integrated impact of diurnal–nocturnal thermodynamic differences on the development of squall lines over complex terrain including disasters that might ensue, numerical modeling experiments on a squall line in July 2014 were performed by forcing a squall line to pass the YHR separately at daytime and nighttime. The results show that the low-level instability during the day is much larger than that during the night, and is determined predominantly by the shortwave heating of the surface. Specifically, the solar radiation enhances the temperature gradient between the warmland ahead of the squall line and the convectively generated cold pool in the region around Chaohu Lake and the Yangtze River. Such low-level baroclinity sets preconditions in the environment towards the occurrence of deep convection. The increased precipitation and the evaporation of rain in the daytime also enhance the cold pool and the associated downdraft, which further intensify the squall line. Meanwhile, the valley breeze is intensified during the day. Such scenarios promote convection that extends the squall line and the associated heavy precipitation and wind gusts southward. This research may have significant implications for enhancing the squall line prediction capability in the YHR and improving our understanding of the physical mechanisms of convective activities over complex terrain.  相似文献   

13.
Based on NCEP/NCAR gridded reanalysis, TRMM precipitation data, CMAP, and rainfall observations in East China, a study is conducted with focus on the timing and distinctive establishment of the rainy season of the East Asian subtropical monsoon (EASM) in relation to the South China Sea (SCS) tropical summer monsoon (SCSM). A possible mechanism for the EASM is investigated. The results suggest that 1) the EASM rainy season begins at first over the south of the Jiangnan region to the north of South China in late March to early April (i.e., pentads 16-18), and then the early flooding period in South China starts when southerly winds enhance and convective rainfall increases pronouncedly; 2) the establishment of the EASM rainy season is earlier than that of its counterpart, the SCSM. The EASM and the SCSM each is featured with its own independent rain belt, strong southwesterly wind, intense vertical motion, and robust low-level water vapor convergence. The SCSM interacts with the EASM, causing the EASM rainy belt to move northward. The two systems are responsible for the floods/droughts over the eastern China; and 3) in mid-late March, the eastern Asian landmass (especially the Tibetan Plateau) has its thermal condition changing from a cold to a heat source for the atmosphere. A reversal of the zonal thermal contrast and related temperature and pressure contrasts between the landmass and the western Pacific happens. The argument about whether or not the dynamic and thermal effects of the landmass really act as a mechanism for the earlier establishment of the EASM rain belt is discussed and to be further clarified. Finally, the article presents some common understandings and disagreements regarding the EASM.  相似文献   

14.
The Regional Integrated Environmental Model System(RIEMS 2.0) with NCEP Reanalysis II is utilized to simulate the severe freezing rain and snow storm event over southern China in January 2008,which caused severe damage in the region.The relationships between the freezing rain process and the large-scale circulation,in terms of the westerly and low-level jets,water vapor transportation,and northerly wind area/intensity indices,were analyzed to understand the mechanisms of the freezing rain occurrence.The results indicate the following:(1) RIEMS 2.0 reproduced the pattern of precipitation in January 2008 well,especially for the temporal evolution of daily precipitation averaged over the Yangtze River valley and southern China;(2) RIEMS 2.0 reproduced the persistent trough in the South Branch of the westerlies,of which the southwesterly currents transported abundant moisture into southern China;(3) RIEMS 2.0 reasonably reproduced the pattern of frequencies of light and moderate rain,although it overestimated the frequency of rain in southern China.This study shows that RIEMS 2.0 can be feasibly applied to study extreme weather and climate events in East Asia.  相似文献   

15.
The different effects of anomalous convective activities in the tropical western Pacific on two persistent heavy rain events in South China in 2005 and 2006 have been compared in this study. The dataused consist of NOAA Outgoing Longwave Radiation (OLR) data, the NCEP-NCAR reanalysis and precipitation from meteorological stations in South China. Results show that the persistent heavy rain in 2005 was related to the 10-25-day westward propagation of convective activities in the tropical western Pacific from about 150 °E. The physical mechanism is interpreted as a Gill-type response of subtropical anticyclone westward extension during weak convective activities period over the Philippine Sea. Our researches also show that the persistent heavy rain in 2006 has longer period than that in 2005, and the subtropical anticyclone persists westward in the earlier summer which is possibly related to the lasting anomalous strong convective motion in the southern branch of Intertropical Convergence Zone (ITCZ) in the tropic western Pacific. The anomalous convective activities affect the local Hadley circulation over the western Pacific with anomalous ascending motion south of the equator and anomalous descend motion north of it, in favor of the westward extension of the subtropical anticyclone for a long time. Comparison between the two persistent heavy rain events indicates different physical effects of convective activities in the tropical western Pacific, though both effects are helpful to the subtropical anticyclone westward extension as a common character of large-scale circulation backgrounds for persistent heavy rain events in South China.  相似文献   

16.
ON THE PROCESS OF SUMMER MONSOON ONSET OVER EAST ASIA   总被引:6,自引:0,他引:6  
Using daily observational rainfall data covered 194 stations of China from 1961 to 1995 andNCEP model analyzed pentad precipitation data of global grid point from 1979 to 1997,thedistribution of onset date of rainy season over Asian area from spring to summer is studied in thispaper.The analyzed results show that there exist two stages of rainy season onset over East Asianregion from spring to summer rainy season onset accompanying subtropical monsoon and tropicalmonsoon respectively.The former rain belt is mainly formed by the convergence of cold air and therecurred southwesterly flow from western part of subtropical high and westerly flow from the so-called western trough of subtropical region occurring during winter to spring over South Asia.Thelatter is formed in the process of subtropical monsoon rain belt over inshore regions of South ChinaSea originally coming from south of Changjiang (Yangtze) River Basin advancing with northwardshift of subtropical high after the onset of tropical monsoon over South China Sea.The pre-floodrainy season over South China region then came into mature period and the second peak of rainfallappeared.Meiyu,the rainy season over Changjiang-Huaihe River Basin and North China thenformed consequently.The process of summer tropical monsoon onset over South China Sea in 1998is also discussed in this paper.It indicated that the monsoon during summer tropical monsoononset over South China Sea is the result of the westerly flow over middle part of South China Sea,which is from the new generated cyclone formed in north subtropical high entering into SouthChina Sea,converged with the tropical southwesterly flow recurred by the intensified cross-equatorial flow.  相似文献   

17.
The heavy rainfall in the summer of 1998 over China has been simulated with the NCCRegional Climate Model(RegCM_NCC).It was successful for RegCM_NCC to reproduce thelocation and seasonal shift of the seasonal rain belt in the summer of 1998 over China.The rainyseason in the summer of 1998 over China can be divided into 7 episodes,including the pre-summerrainy season in South China.the Meiyu onset over the Yangtze-Huaihe River Basin,shortappearance of North China rain season and the retreat of seasonal rain belt,the second Meiyuseason over the Yangtze River Valley,the rainy period over the Yellow and Huaihe River Valleyand the seasonal retreat of rain belt over North China.The shortcoming of the RegCM_NCC isover-estimation of precipitation amounts.The regions with large latent heat flux,upper soilmoisture and total runoff are located in the rainy area and move with the simulated rain belt duringthe different episodes.On the contrary,the regions with small sensible heat flux are located in thesimulated rainy area and move with the simulated rain belt during the different episodes.  相似文献   

18.
This paper uses the ARW-WRF model to carry out a numerical simulation of a warm-sector heavy rainfall event over southern China on the 22–23 May, 2014. A composite analysis method was used to analyze the evolution process and structural features of the convective cells on a convection line during this rainfall event. This analysis identified three stages: (1) Stage of activation: the equivalent potential temperature surfaces as lower layers start to bulge and form warm cells and weak vertical convective cloud towers which are subject to the impact of low-level warm moist updrafts in the rainfall sector; (2) Stage of development: the warm cells continue to bulge and form warm air columns and the convective cloud towers develop upwards becoming stronger as they rise; (3) Stage of maturity: the warm air columns start to connect with the stable layer in the upper air; the convective cloud tower will bend and tilt westward with each increasing in height, and the convection cell is characterized by a “crescent-shaped echo” above the 700hPa plane. During this stage the internal temperature of the cell is higher than the ambient temperature and the dynamic structural field is manifested as intensive vertical upward movement. The large-value centers of the northerly and westerly winds in the middle layer correspond to the warm moist center in the cells and the relatively cold center south of the warm air column. Further analysis shows that the formation of the “crescent-shaped” convective cell is associated with horizontal vorticity. Horizontal vorticity in the center and west of the warm cell experiences stronger cyclonic and anticyclonic shear transformation over time; this not only causes the original suborbicular cell echo shape to develop into a crescent-like shape, but also makes a convection line consisting of cells that develop to the northwest.  相似文献   

19.
This paper presents a study on the temporal and spatial variations of the precipitation over the area of the South China Sea (SCS) during the monsoon onset period. The data used are from the Tropical Rainfall Measuring Mission (TRMM) observations between April and June over the nine years from 1998 to 2006. This study focuses on the central and northern part of South China Sea (110-120°E, 10-20°N). Based on the observations, the 27th pentad is selected as the occurrence time of the SCS monsoon onset. The conclusions are as follows. (1) After the monsoon onset, the specific area, defined as the ratio of the number of pixels with certain type of precipitation to the number of total pixels, extends significantly for both convective and stratiform rain, with the latter having a larger magnitude. The specific rainfall, defined as the ratio of the amount of certain type of precipitation to the total amount of precipitation, decreases for convective rain and increases for stratiform rain. (2) Results also show significant increase in heavy rain and decrease in light rain after the monsoon onset. (3) Changes are also observed in the rainfall horizontal distributions over the SCS before and after the monsoon onset, manifested by the relocation of precipitation minima for both convective and stratiform rain. (4) After the monsoon onset, the variability in characteristics of precipitation vertical structure increases significantly, leading to more latent heat release and consequently deeper convection. Meanwhile, the bright-band altitude of stratiform precipitation is also elevated.  相似文献   

20.
The 20-23 June 2002 mesoscale convective systems,which produced heavy rainfalls over the middle and lower reaches of the Changjiang River Basin,are studied using satellite imagery, satellite products and conventional sounding data. Results demonstrate that the torrential rain was caused by three MαCSs (Meso-a scale Convective System) and some MβCS (Meso-β-scale Convective System) activities in succession. The TBB (black-body temperature) analysis depicts that several meso-β-scale cloud clusters and convective cells were embedded and alternately developed within an MαCS.As the strongest convection gradually decreased,the cold TBB area expanded quickly in hours before dissipation. However,the heavy rainfall occurred in MαCS developing and maturing stages.And the minimum TBB fluctuation matched well to the precipitation trend with the lower TBB for the heavier rainfall. A kind of favorable synoptic environment for MαCS genesis and activities could be described as follows.The West Pacific subtropical high is stable with its western ridge reaching to the west region of South China.To its south and west sides,there is the robust ITCZ (Intertropical Convergence Zone),the active Indian-Bengal monsoon cloud surges carry warm and moist air by low-level jet (LLJ) to mid-latitudes where a frontal zone existed for days,meanwhile a 500 hPa short-wave trough moved eastward.At the upper troposphere,the southeasterly divergent flow dominates the environment due to the South-Asian high enhancing and moving eastward,and a monsoon water vapor plume (WVP) is stretched from the Bay of Bengal to the Changjiang River Basin.With a certain favorable configuration including a monsoon WVP,a frontal cloud system,a shortwave trough cloud system,and monsoon cloud clusters,MαCSs could initiate and develop successively in the same region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号